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Abstract Predicting the dynamics and functions of microbiomes constructed from the 
bottom-up is a key challenge in exploiting them to our benefit. Current models based on ecolog-
ical theory fail to capture complex community behaviors due to higher order interactions, do 
not scale well with increasing complexity and in considering multiple functions. We develop and 
apply a long short-term memory (LSTM) framework to advance our understanding of community 
assembly and health-relevant metabolite production using a synthetic human gut community. A 
mainstay of recurrent neural networks, the LSTM learns a high dimensional data-driven non-linear 
dynamical system model. We show that the LSTM model can outperform the widely used gener-
alized Lotka-Volterra model based on ecological theory. We build methods to decipher microbe-
microbe and microbe-metabolite interactions from an otherwise black-box model. These methods 
highlight that Actinobacteria, Firmicutes and Proteobacteria are significant drivers of metabolite 
production whereas Bacteroides shape community dynamics. We use the LSTM model to navigate 
a large multidimensional functional landscape to design communities with unique health-relevant 
metabolite profiles and temporal behaviors. In sum, the accuracy of the LSTM model can be 
exploited for experimental planning and to guide the design of synthetic microbiomes with target 
dynamic functions.
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Introduction
Microbial communities perform chemical and physical transformations to shape the properties of 
nearly every environment on Earth from driving biogeochemical cycles to mediating human health and 
disease. These functions performed by microbial communities are shaped by a multitude of abiotic 
and biotic interactions and vary as a function of space and time. The complex dynamics of microbial 
communities are influenced by pairwise and higher order interactions, wherein interactions between 
pairs of species can be modified by other community members (Sanchez-Gorostiaga et al., 2019; 
Mickalide and Kuehn, 2019; Hsu et  al., 2019). In addition, the interactions between community 
members can change as a function of time as the community continuously reacts to and modifies 
its environment (Hart et al., 2019). Therefore, flexible modeling frameworks that can capture the 
complex and temporally changing interactions that determine the dynamic behaviors of microbiomes 
are needed. These predictive modeling frameworks could be used to guide the design of interven-
tions to precisely manipulate community-level functions to our benefit.

The generalized Lotka-Volterra (gLV) model has been widely used to predict community dynamics 
and deduce pairwise microbial interactions shaping community assembly (MacArthur, 1970). For 
example, the gLV model has been used to predict the assembly of tens of species based on absolute 
abundance measurements of lower species richness (i.e. number of species) communities (Venturelli 
et al., 2018; Mounier et al., 2008; Clark et al., 2021). The parameters of the gLV model can be 
efficiently inferred based on properly collected absolute abundance measurements and can provide 
insight into significant microbial interactions shaping community assembly (Bucci et  al., 2016). 
However, this model does not represent higher order interactions or microbial community functions 
beyond species growth. To capture such microbial community functions, composite gLV models have 
been developed to predict a community-level functional activity based on species abundance at an 
endpoint (Clark et al., 2021; Stein et al., 2018). However, these approaches have been limited to 
the prediction of a single community-level function at a single time point. Therefore, new modeling 
frameworks are needed to capture temporal changes in multiple community-level functions, such as 
tailoring the metabolite profile of the human gut microbiome (Fischbach and Sonnenburg, 2011).

Neural network architectures, such as recurrent neural networks (RNNs), are universal function 
approximators (Dambre et al., 2012; Schäfer and Zimmermann, 2006) that enable greater flexibility 
compared to gLV models for modeling dynamical systems. However, neural network based models 
often require significantly more model parameters, which poses additional challenges to model fitting 
and generalizability. A particular RNN model architecture called long short-term memory (LSTM) 
addresses challenges associated with training on sequential data by incorporating gating mechanisms 
that learn to regulate the influence of information from previous instances in the sequence (Lipton 
et al., 2015). From their initial successes in speech recognition (Graves et al., 2005) and computer 
vision (Byeon et al., 2015), LSTMs have recently been applied to modeling biological data such as 
subcellular localization of proteins (Sonderby et  al., 2015) and prediction of biological age from 
activity collected from wearable devices (Rahman and Adjeroh, 2019). Related to microbiomes, deep 
learning frameworks have been applied to predict gut microbiome metabolites based on commu-
nity composition data (Le et  al., 2020), final community composition based on microbial interac-
tions (Larsen et al., 2012) and end-point community composition based on the presence/absence 
of species (Michel-Mata et  al., 2021). In addition, RNN architectures have been used to model 
phytoplankton (Jeong et al., 2001) and macroinvertebrate (Chon et al., 2001) community dynamics. 
Despite achieving reasonable prediction performance, previous efforts at modeling ecological system 
dynamics using RNNs are typically limited to handful of organisms (<10), have provided limited model 
interpretation and have not been leveraged to predict temporal changes in community behaviors. In 
addition, RNN architectures have not been used for bottom-up community design, which could be 
exploited for applications in bioremediation, bioprocessing, agriculture, and human health (Leggieri 
et al., 2021; Lawson et al., 2019; Clark et al., 2021).

Here, we apply LSTMs to model time dependent changes in species abundance and the production 
of key health-relevant metabolites by a diverse 25-member synthetic human gut community. LSTMs 
are a good model for microbiomes because (1) LSTMs are a natural choice for a neural network based 
model of time-series data (Goodfellow et al., 2016); (2) LSTMs are highly flexible models that can 
capture complex interaction networks that are often neglected in ecological models; (3) LSTMs can 
be modified to capture additional system variables such as environmental factors (e.g. metabolites). 

https://doi.org/10.7554/eLife.73870
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In addition, LSTMs have some advantages over traditional RNNs because they can capture long-term 
dependencies. LSTMs have additional parameters that adjust the effects of earlier time points on the 
predictions at later time points in a time-series. We use the trained LSTM model to elucidate signifi-
cant microbe-microbe and microbe-metabolite interactions.

The flexibility and accuracy of the LSTM model enabled systematic integration into our experimental 
planning process in two stages. First, the LSTM was fit to data from a previous study with low temporal 
resolution involving a moderate number of synthetic microbial communities (Clark et al., 2021). The 
distribution of LSTM metabolite predictions was then used to identify sparse sub-communities in the 
tails of the distribution, communities that we refer to as ‘corner cases’. A second experiment was then 
performed that expanded the training data for the LSTM in the vicinity of these corner cases with 
higher time resolution. The LSTM-guided two-stage experimental planning procedure substantially 
reduced the number of experiments compared to random sampling of the functional landscape with 
temporal resolution in a single stage experiment. Therefore, the LSTM analysis enabled our main 
findings on dynamical behaviors of communities and identified the key species critical for commu-
nity assembly and metabolite profiles. Compared to the gLV model, the proposed LSTM framework 
provides a better fit to the experimental data, captures higher order interactions and provides higher 
accuracy predictions of species abundance and metabolite concentrations. In addition, our approach 
preserves model interpretability through a suitably developed gradient-based framework and locally 
interpretable model-agnostic explanations (LIME) (Ribeiro et al., 2016a). Using our time-series data 
of species abundance and metabolite concentrations, we demonstrate that the temporal behaviors of 
the communities cluster into distinct groups based on the presence and absence of sets of species. 
Our results highlight that LSTM models are powerful tools for predicting and designing the dynamic 
behaviors of microbial communities.

Results
LSTM outperforms the generalized Lotka Volterra ecological model
Our first objective was to compare the predictive performance of the LSTM model to a commonly 
used ecological modeling approach. The gLV model is a widely used ecological model consisting of 
a coupled set of ordinary differential equations that captures the growth dynamics of members of 
a community based on their intrinsic growth rate and interactions between all pairs of community 
members (Venturelli et al., 2018). Therefore, the gLV model is not suited to capture higher order 
interactions among species or changes in inter-species interactions resulting from variation in the 
environment. By contrast, the LSTM modeling framework is flexible and can capture complex relation-
ships between species as well as time-dependent changes in inter-species interactions. To evaluate 
the strengths and limitations of these modeling frameworks, we characterized the performance of the 
gLV and LSTM models in learning the behavior of a ground truth model that included pairwise and 
third-order interactions between species (Methods).

Our ground truth model is based on a gLV model of a 25-member synthetic gut community from a 
previous study (Clark et al., 2021). To perturb our ground truth model with higher order interactions, 
we add third-order interaction terms with either mild or moderate parameter magnitudes (Methods). 
Using this model, we simulate sub-communities that vary in the number of species. Of all the randomly 
simulated communities, those containing six or fewer species are used to train both the gLV and LSTM 
models (624 training communities), while the remaining communities (3299 test communities with ≥10 
species) are used as a hold-out test set. The 624 training communities includes 25 monospecies, 
300 unique pairwise communities, 100 unique three-member communities, 100 unique five-member 
communities, and 99 unique six-member communities. The simulated data spans 48 hr separated by 
an interval of 8 hr, reflecting the experimentally feasible periodic sampling interval of 8 hr.

Recall that we restrict our attention to simpler (fewer species) communities for training to deter-
mine if the behavior of lower order communities can be used to predict higher order communities. 
Further, pairwise inter-species interactions are easier to decipher in lower order communities due 
to potential co-variation among parameters (correlations between parameters) as a consequence 
of model structure or methods of data collection. A similar training/test partitioning was used to 
generate predictive models of complex community behaviors (Venturelli et al., 2018; Clark et al., 
2021; Hromada et al., 2021).

https://doi.org/10.7554/eLife.73870
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The prediction performance of the trained gLV and LSTM models on the hold-out test set are 
similar for the ground truth model containing only pairwise interactions (Pearson ‍R2‍ of 0.89 and 0.85 
for gLV and LSTM models, respectively) (Figure 1b, c left). For the ground truth model with mild third-
order interactions (interaction coefficients that do not exceed 25% of the maximum of the absolute 
values of the coefficients for the second-order interactions), the performance of the LSTM model is 
substantially better than the gLV model with the ‍R2‍-score of 0.85, as opposed to 0.52 for the gLV 
model (Figure 1b, c, middle). In addition, the LSTM model performs significantly better than the gLV 
model for higher magnitude (moderate) third-order perturbations (third-order interaction coefficients 
that do not exceed 50% of the maximum of the absolute values of the coefficients for second-order 
interactions) (Figure 1b, c, right).

This in silico analysis highlights the advantages of adopting more expressive neural network models 
over severely constrained ecological models such as gLV. In addition, a key advantage of the proposed 
LSTM model over the gLV model is the amount of time required for training the two models. The gLV 
equations are coupled nonlinear ordinary differential equations, and thus training gLV models requires 

X(t0)

X(tfinal)
~

a

c

0 0.5 1 1.5 2
True Abundance

0

0.5

1

1.5

2

Pr
ed

ic
te

d 
Ab

un
da

nc
e m=0.97, R2=0.89

x=y

2nd Order

2

9

0 0.5 1 1.5
True Abundance

0

1

2

3

4

5

6

Pr
ed

ic
te

d 
Ab

un
da

nc
e

Mild 3rd Order
m=0.81, R2=0.59
x=y

1.5

9

0 0.5 1 1.5
True Abundance

0

1

2

3

4

5

6

Pr
ed

ic
te

d 
Ab

un
da

nc
e

Moderate 3rd Order

0 0.4 0.8 1.2
True Abundance

0

0.4

0.8

1.2

Pr
ed

ic
te

d 
Ab

un
da

nc
e

Mild 3rd Order

m=1.79, R2=0.52
x=y

m=0.73, R2=0.84
x=y

0 0.4 0.8 1.2
True Abundance

0

0.4

0.8

1.2
Pr

ed
ic

te
d 

Ab
un

da
nc

e

Moderate 3rd Order
m=0.66, R2=0.79
x=y

Ground Truth Complexity

Ground Truth Complexity

gLV Predictions

LSTM Predictions

t

Ab
un

da
nc

e

gLV Model

LSTM Model

Training
Examples:
<6 Species

Higher Richness
Training Examples

0 0.4 0.8 1.2
True Abundance

0

0.4

0.8

1.2

Pr
ed

ic
te

d 
Ab

un
da

nc
e m=0.91, R2=0.95

x=y

b

d

Pr
ed

ic
te

d 
Ab

un
da

nc
e

0 0.5 1 1.50

1

1.5

0.5

Pr
ed

ic
te

d 
Ab

un
da

nc
e

True Abundance

2nd Order
m=0.77, R2=0.85
x=y

Figure 1. Comparison of generalized Lotka Volterra (gLV) and Long Short Term Memory (LSTM) model prediction performance of species abundance in 
a 25-member microbial community in response to third-order perturbations of varying magnitude. For both models, training data consists of low species 
richness communities (‍> 0.05‍ species, ‍N = 82, 475‍, Pearson correlation p-value lt0.0001). (a) & (d): Data was generated using a gLV model that captures 
monospecies growth and pairwise interactions. Scatter plots of true versus predicted species abundance at ‍t = 48hr‍ using the gLV and LSTM models, 
respectively. ‍X ‍ represents a vector of species abundances. (b) & (e) Scatter plot of true versus predicted species abundance of the gLV and LSTM 
models, respectively when the simulated data is subjected to low magnitude (mild) third-order interactions. (c) & (f) Scatter plot of true versus predicted 
species abundance of gLV and LSTM models, respectively when the simulated data is further subjected to moderately large third-order interactions. 
(g) Scatter plot of true versus predicted species abundance for the LSTM model. The training set included a set of higher richness communities (50 each 
of 11 and 19 member communities). All predictions are forecasted from the species abundance at time 0.

https://doi.org/10.7554/eLife.73870
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substantial computational time (nearly 5–6 hr), whereas the LSTM models can be trained in minutes on 
the same platform. Therefore, the LSTM approach is highly suited for real-time training and planning 
of experiments. Note that both the composite as well as the LSTM model require tuning of hyperpa-
rameters for optimal performance. The details of the computational implementation are provided in 
the Methods section.

To further leverage this in silico experimental approach, we aimed to identify what type of datasets 
are required for building predictive models of high richness community behaviors depending on the 
nature of their underlying interactions. In further analyzing our results, we observed a crescent shaped 
prediction profile, representing an inherent bias, which we hypothesized was due to the training data 
containing only communities with ≤6 species (Figure 1c). To test this hypothesis, we augmented the 
training set with 100 communities enriched with a larger number of species (randomly sampled 11 and 
19-member communities). Using this enriched training set, the LSTM model accurately predicts the 
community dynamics of the hold-out set with an ‍R2‍ of 0.95 (Figure 1d). In sum, the LSTM has difficulty 
predicting the behavior of high richness communities when the training data consists of only low rich-
ness communities. However, adding a moderate number of high richness communities to the training 
set eliminates the prediction bias and improves the prediction performance of the LSTM.

LSTM accurately predicts experimentally measured microbial 
community assembly
After validating our methods using the ground truth modeling approach described above, we eval-
uated the ability of the LSTM to capture the dynamics of experimentally characterized synthetic 
human gut microbial communities. We tested the effectiveness of the LSTM on time-resolved species 
abundance data from a previous study of a well-characterized twelve-member synthetic human gut 
community (Venturelli et al., 2018). The experimental data consists of species abundance sampled 
approximately every 12hr. A total of 175 microbial communities with sizes varying from 2 to 12 were 
used to train and evaluate the LSTM model. Of the 175 microbial communities, 102 microbial commu-
nities were selected randomly to constitute the training set, while the remaining 73 microbial commu-
nities constituted the hold-out test set (Supplementary file 1). This train/test split was similar to that 
used to train a gLV model in the previous study (Venturelli et al., 2018). The previous study repre-
sented perturbations in cell densities and nutrient availability by diluting the community 20-fold every 
24 hr into fresh media (i.e. passaging of the communities) (Figure 2a ). The sequential dilutions of the 
communities are external perturbations that introduce further complexity towards model training.

We trained a LSTM network to predict species abundances at various time points given the infor-
mation of initial species abundance. We found that a total of five LSTM units can predict species abun-
dance at different time points (12, 24, 36, 48, and 60 hr) based on the initial species abundance. The 
output of each LSTM unit is used as an input to the next unit. However, the input to the current LSTM 
unit is randomized between the output from the previous LSTM unit and the true abundance at the 
current time point in the randomized teacher forcing mode of training in order to eliminate temporal 
bias in the prediction of end-point species abundances. We did not model the passaging perturba-
tions explicitly, since the experimental procedure was consistent across all communities. This also 
highlights the advantage of using black-box approaches, such as the LSTM network, where physical 
parameters such as dilution do not need to be explicitly modeled. Here, each LSTM unit consists of a 
single hidden layer comprising of 2048 hidden units with ReLU activation. The details on hyperparam-
eter tuning, learning rates, and choice of optimizer are provided in the Methods section.

Despite the passaging perturbations and variation in the sampling times, the LSTM accurately 
predicts (Pearson ‍R2‍-scores of 0.74, 0.73, 0.74, 0.70, and 0.69 at time points 12, 24, 36, 48, and 60 hr, 
respectively) not only the end-point species abundance, but also the abundances at intermediate time 
points on hold-out test sets (Figure 2b-f). These results demonstrate that the LSTM model can accu-
rately predict the temporal changes in species abundance of multi-species communities in the pres-
ence of external perturbations. Representative communities that were accurately or poorly predicted 
by the LSTM are shown in (Figure 2—figure supplement 1).

https://doi.org/10.7554/eLife.73870
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LSTM enables end-point design of multifunctional synthetic human gut 
microbiomes
The chemical transformations (i.e. functions) performed by the community are the key design variables 
for microbiome engineering goals, as evidenced by their major impacts on human health (Sharon 
et al., 2014). Thus, we explored prediction of microbial community functions by applying the LSTM 
framework to design health-relevant metabolite profiles using synthetic human gut communities.

A core function of gut microbiota is to transform complex dietary substrates into fermentation end 
products such as the beneficial metabolite butyrate, which is a major determinant of gut homeostasis 
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Figure 2. The LSTM model can predict the temporal changes in species abundance in a 12-member synthetic human gut community in response to 
periodic dilution (passaging). (a) Proposed LSTM modeling methodology for the dynamic prediction of species abundance in a microbial community. 
The initial abundance information is an input to the first LSTM cell, the output of which is trained to predict abundance at the next time point. 
Consequently, the predicted abundance becomes an input to another LSTM cell with shared weights to predict the abundance at the subsequent time 
point. The process is repeated until measurements at all time points are available. ‍X ‍ represents a vector of species abundances. Thus, all predictions 
are forecasted from the abundance at time 0. (b) Scatter plot of measured (true) and predicted species abundance of a 12-member synthetic human gut 
community at 12 hr (‍N = 876‍, p-value ‍= 2.44e − 257‍). (c) Scatter plot of measured (true) and predicted abundance at 24 hr (p-value ‍= 6.51e − 257‍). 
(d) Scatter plot of measured (true) and predicted abundance at 36 hr (p-value ‍= 7.42e − 257‍). (e) Scatter plot of measured (true) and predicted 
abundance at 48 hr (p-value ‍= 1.66e − 227‍). (f) Scatter plot of measured (true) and predicted abundance at 60 hr (p-value ‍= 3.39e − 227‍).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Prediction of temporal changes of species abundance for a few representative communities by the LSTM network.

https://doi.org/10.7554/eLife.73870
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(Litvak et al., 2018). In a previous study, we designed butyrate-producing synthetic human gut micro-
biomes from a set of 25 prevalent and diverse human gut bacteria using a composite gLV and statis-
tical model (Clark et al., 2021). While the composite model approach was successful in predicting 
butyrate concentration, designing community-level profiles of multiple metabolites adds substantial 
complexity and limited flexibility using the composite modeling approach. Thus, we leveraged the 
accuracy and flexibility of LSTM models to design the metabolite profiles of synthetic human gut 
microbiomes. We focused on the fermentation products butyrate, acetate, succinate, and lactate 
which play important roles in the gut microbiome’s impact on host physiology and interactions with 
constituent community members (Fischbach and Sonnenburg, 2011).

We used the species abundance and metabolite concentrations from our previous work (Clark 
et al., 2021) to train an initial LSTM model. This model uses a feed-forward network (FFN) at the 
output of the final LSTM unit that maps the endpoint species abundance (a 25-dimensional vector) to 
the concentrations of the four metabolites (Figure 3a). The entire neural network model comprising 
LSTM units and a feed-forward network is learned in an end-to-end manner during the training process, 
(i.e. all the network weights are trained simultaneously). Cross-validation of this model (Model M1, 
Supplementary file 1) on a set of hold-out community observations shows good agreement between 
the model predictions and experimental measurements for metabolite concentrations and micro-
bial species abundances (Figure 3—figure supplement 1). Thus, we used this model to design high 
species richness (i.e. >10 species) communities with tailored metabolite profiles (Figure 3a).

We first used the LSTM model M1 to simulate every possible combination of >10 species (26,434,916 
total communities). The simulated communities separate into two regions: one centered around a 
dense ellipse of high butyrate concentration characterized by communities containing the butyrate-
producing species Anaerostipes caccae (AC) and a second dense ellipse of communities that produce 
low levels of butyrate and lacked AC (Figure 3b). This bimodality due to the presence/absence of AC 
is consistent with our previous finding that AC is the strongest driver of butyrate production in this 
system (Clark et al., 2021). In addition, the strong negative correlation between lactate and butyrate 
in the AC+ cluster of communities (‍R2 = 0.72‍, ‍p < 0.001‍, N=14,198,086) is consistent with the ability 
of AC to transform lactate into butyrate (Clark et al., 2021). These results demonstrate that the LSTM 
model can capture the major microbial drivers of metabolite production as well as the correlations 
between different metabolites.

We used our simulated metabolite production landscape to plan informative experiments for 
testing the predictive capabilities of our model. First, we designed a set of ‘distributed’ communities 
that spanned the range of typical metabolite concentrations predicted by our model. To this end, 
we selected 100 communities closest to the centroids of 100 clusters determined using k-means 
clustering of the four-dimensional metabolite space. Second, we designed a set of communities to 
test our model’s ability to predict extreme shifts in metabolite outputs. To do so, we identified four 
‘corners’ of the distribution in the lactate and butyrate space (Figure 3b). We next examined the 
relationship between acetate and succinate within each of these corners and found that the distribu-
tions varied depending on the given corner (Figure 3b, inset). The total carbon concentration in the 
fermentation end products across all predicted communities displayed a narrow distribution (mean 
316 mM, standard deviation 20 mM, Figure 3—figure supplement 2). The production of the four 
metabolites are coupled due to the structure of metabolic networks and fundamental stoichiometric 
constraints (Oliphant and Allen-Vercoe, 2019). Therefore, the model learned the inherent ‘trade-off’ 
relationships between these fermentation products based on the patterns in our data. We chose a 
final set of 80 ‘corner’ communities for experimental validation (five communities from each combina-
tion of maximizing or minimizing each metabolite, Methods).

By experimentally characterizing the endpoint community composition and metabolite concen-
trations of the 180 designed communities, we found that the LSTM model M1 accurately predicted 
the rank order of metabolite concentrations and microbial species abundances. The LSTM model 
substantially outperformed the composite model (gLV and regression, model from previous work 
[Clark et al., 2021]) trained on the same data for the majority (59%) of output variables (Figure 3—
figure supplement 3a). Additionally, replacing the regression module of the composite model with 
either a Random Forest Regressor or a Feed Forward Network did not improve the metabolite predic-
tion accuracy beyond that of the LSTM (Figure 3—figure supplement 3a). One of the key limita-
tions of the composite models is that the metabolite variables are a function of the endpoint species 

https://doi.org/10.7554/eLife.73870
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Figure 3. LSTM-guided design and interpretability of community-level metabolite production profiles (a) Schematic of model-training and design 
of communities with tailored metabolite outputs. (b) Heatmap of butyrate and lactate concentrations of all possible communities predicted by the 
LSTM model M1. Grey points indicate communities chosen via ‍k‍-means clustering to span metabolite design space. Colored boxes indicate ‘corner’ 
regions defined by ‍95th‍ percentile values on each axis with points of the corresponding color indicating designed communities within that ‘corner’. 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.73870
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abundance, but the species abundances are not a function of the metabolite concentrations. By 
contrast, the LSTM model can capture such feedbacks between metabolites and species. Notably, the 
LSTM model prediction accuracy for the metabolites was similar for both the ‘distributed’ and ‘corner’ 
communities (Figure 3—figure supplement 3b–e). These results indicate that our model is useful for 
designing communities with a broad range of metabolite profiles that includes those at the extremes 
of the metabolite distributions.

To determine if the LSTM model could separate groups of communities with extreme behaviors, 
we treated the ‘corners’ as classes and quantified the classification accuracy of our model. The model 
accurately classified the communities when considering only butyrate and lactate concentrations. 
However, the model had poorer separation when acetate and succinate were also considered in 
defining the classes (Figure 3—figure supplement 3f). The misclassification rate was higher for small 
Euclidean distances between classes and decreased with the Euclidean distance (Figure 3—figure 
supplement 3g). This implies that the insufficient variation in concentrations due to fundamental 
stoichiometric constraints limited our ability to define 16 distinct classes that maximized/minimized 
each metabolite. While model M1 accurately predicted metabolite concentrations and the majority 
of species abundances, several individual species abundances were poorly predicted (‍R2 = 0 − 0.6‍, 
Figure 3—figure supplement 3a). Thus, we used the dataset to improve the LSTM model. To this 
end, we combined the new observations with the original observations and randomly partitioned the 
data into 90% for training and 10% for cross-validation. The resulting model (M2, Supplementary file 
1) was substantially more predictive of species abundances (‍R2 > 0.5‍ for all but five species FP, RI, CA, 
BA, CH (Figure 3c)).

Using local interpretable model-agnostic explanations to decipher 
interactions
One of the commonly noted limitations of machine learning models is their lack of interpretability for 
extracting biological information about a system. Fortunately, generally applicable tools have been 
developed to aid in model interpretation. Thus, we sought to use such methods to decipher key 
relationships among variables within the LSTM to deepen our biological understanding of the system. 
We used local interpretable model-agnostic explanations (LIME) (Ribeiro et al., 2016b), to quantify 
the impact of each species’ presence on each metabolite and species in each of the sub-communities 
used to train model M2. We used the median impact of each species presence on each metabo-
lite or species across all training instances to generate networks that revealed microbe-metabolite 
(Figure 3d) and microbe-microbe (Figure 3e) interactions. In general, these networks represent broad 

Insets show heat maps of acetate and succinate concentrations for all communities within the corresponding boxes on the main figure. Boxes on the 
inset indicate ‘corners’ defined by ‍95th‍ percentile values on each axis with colored points corresponding to the same points indicated on the main 
plot. (c) Cross-validation accuracy of LSTM model trained and validated on a random 90/10 split of all community observations (model M2), evaluated 
as Pearson correlation ‍R2‍ for the correlation of predicted versus measured for each variable (all p-valueslt0.05, N and p-value for each test reported in 
Supplementary file 1). Dashed line indicates ‍R2 = 0.5‍, which is used as a cutoff for including a variable in the subsequent network diagrams. (d) and 
(e) Network representation of median LIME explanations of the LSTM model M2 from (c) for prediction of each metabolite concentration (d) or species 
abundance (e) by the presence of each species. Edge widths are proportional to the median LIME explanation across all communities from (b) used to 
train the model in units of concentration (for (d)) or normalized to the species’ self-impact (for (e)). Only explanations for those variables where the cross-
validated predictions had ‍R2 > 0.5‍ are shown. Networks were simplified by using lower thresholds for edge width (5 mM for (d), 0.2 for (e)). Red and blue 
edges indicate positive and negative contributions, respectively.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Cross-validation of LSTM model M1 predictions of species abundance and metabolite concentration.

Figure supplement 2. Predicted total carbon in fermentation products.

Figure supplement 3. Prediction and classification statistics for model M1 predictions of designed community sets.

Figure supplement 4. Metabolite production of each species grown in monoculture Bars show the mean net production or consumption of each 
metabolite for monocultures of each species (bar color indicates species as specified in the legend).

Figure supplement 5. Metabolite-species LIME explanations computed over a 20-fold partitioning of the data set.

Figure supplement 6. Microbe-microbe LIME explanations computed over a 20-fold partitioning of the data set.

Figure supplement 7. Comparison of LIME explanations of LSTM to gLV Parameters.

Figure 3 continued

https://doi.org/10.7554/eLife.73870
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design principles for the community metabolic outputs by indicating which species have the most 
consistent and strong impacts on each metabolite and species abundance across a wide range of sub-
communities. For instance, the metabolite network highlights Anaerostipes caccae (AC) as having the 
largest positive effect on butyrate production with an additional positive contribution from EL and a 
negative contribution from DP, consistent with the previous composite gLV model of butyrate produc-
tion by this community (Clark et al., 2021).

In addition, the number of microbial species impacting each metabolite in these networks trended 
with the number of microbial species that individually produced or consumed each metabolite 
(Figure 3—figure supplement 4). For example, butyrate displayed the fewest edges (3) and was 
produced by the lowest number of individual species (4). By contrast, acetate had the most edges (6) 
and was produced by the largest number of individual species (19). The inferred microbe-metabolite 
network consisted of diverse species including Proteobacteria (DP), Actinobacteria (BA, BP, EL), 
Firmicutes (AC, ER, DL) and one member of Bacteroidetes (PC), but excluded members of Bacte-
roides. Therefore, while Bacteroides exhibited high abundance in many of the communities, they 
did not substantially impact the measured metabolite profiles but instead modulated species growth 
and thus community assembly (Figure 3e). We explored the consistency of LIME explanations for the 
full 25-member community in response to random partitions of the training data to provide insights 
into the sensitivity of the LIME explanations given the training data (Figure 3—figure supplement 
5, Figure 3—figure supplement 6). These results demonstrated that the direction of the strongest 
LIME explanations of the full community were consistent in sign despite variations in magnitude. One 
exception is for the species Roseburia intestinalis (RI), which had high variability across different test/
train splits. This is consistent with previous observations that RI has substantial growth variability across 
experimental communities (Clark et al., 2021). In sum, these results demonstrate that in general the 
LIME explanations were robust to variations in the training data.

The LIME explanations of inter-species interactions exhibited a statistically significant correlation 
with their corresponding inter-species interaction parameters from a previously parameterized gLV 
model of this system (Clark et al., 2021; Figure 3—figure supplement 7a). The sign of the inter-
action was consistent in 80% of the interactions with substantial magnitude (>0.05 in both the LIME 
explanations and gLV parameters) (Figure 3—figure supplement 7b). This consistency with previous 
observations suggests that the LSTM model was able to capture similar broad trends in inter-species 
relationships as gLV (interpreted through the average LIME explanation across all observed commu-
nities). The LSTM model captured more nuanced context-specific behaviors (interpreted as the LIME 
explanation for one specific community context) than the mathematically restricted gLV model, which 
substantially improved the predictive capability of the LSTM model. These results demonstrate that 
the LSTM framework is useful for developing high accuracy predictive models for the design of precise 
community-level metabolite profiles. Our approach also preserves the ability to decipher different 
types of interactions in the LSTM model that are explicitly encoded in less accurate and flexible 
ecological models such as gLV.

Sensitivity of LSTM model prediction accuracy highlights poorly 
understood species and pairwise interactions
Identification of species that limit prediction performance could guide selection of informative exper-
iments to deepen our understanding of the behaviors of poorly predicted communities. Therefore, 
we evaluated the sensitivity of the LSTM model (model M2) prediction accuracy to species pres-
ence/absence and the amount of training data. High sensitivity of model prediction performance to 
the number of training communities indicates that collection of additional experimental data would 
continue to improve the model. Additionally, identifying poorly understood communities will guide 
machine learning-informed planning of experiments. To evaluate the model’s sensitivity to the size of 
the training dataset, we computed the hold-out prediction performance (‍R2‍) as a function of the size 
of the training set by sub-sampling the data (Figure 4a). We used 20-fold cross-validation to predict 
metabolite concentrations and species abundance. Our results show that the ability to improve predic-
tion accuracy as a function of the size of the training data set was limited by the variance in individual 
species abundance in the training set (Figure 4—figure supplement 1). For instance, certain species 
with low variance (e.g. FP, EL, DP, RI) in abundance in the training set displayed low sensitivity to 
the amount of training data and were poorly predicted by the model. The high sensitivity of specific 

https://doi.org/10.7554/eLife.73870
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metabolites (e.g. lactate) and species (e.g. AC, BH) to the amount of training data indicates that 
further data collection would likely improve the model’s prediction performance.

To determine how pairwise combinations of species impacted model prediction performance, we 
used 20-fold cross-validation to evaluate the prediction performance (‍R2‍) on subsets of the total 
dataset, where subsets were selected based on the presence of individual species or pairs of species 

Measured

detciderP

Predictions on communities with
selected bacterial species

+ Organism A
+ Organism B

Prediction performance of Acetate (R2) Prediction performance of metabolites (R2)

R2 = .9 

Sensitivity of model performance 
to training data size

AC

Acetate

BY

AC

DP

Butyrate

Lactate Succinate

DP

BP BA

BF

R2 = .4 

0.5 0.6 0.7 0.8 0.9 1.0

0.35

0.40

0.45

0.50

0.55

0.60

Acetate
0.5 0.6 0.7 0.8 0.9 1.0

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Butyrate

0.5 0.6 0.7 0.8 0.9 1.0
0.60

0.65

0.70

0.75

Lactate
0.5 0.6 0.7 0.8 0.9 1.0

0.60

0.63

0.65

0.68

0.70

0.72

Succinate

a b

c d
% of training data

Figure 4. Hold-out prediction performance on sub-communities provides information about poorly understood species and interactions between 
species. (a) Sensitivity of metabolite prediction performance (‍R2‍) to the amount of training data. Training datasets were randomly subsampled 30 times 
using 50–100% of the total dataset in increments of 10%. Each subsampled training set was subject to 20-fold cross-validation to assess prediction 
performance. Lineplot of the mean prediction performance over the 30 trials for each percentage of the data. Error bars denote 1 s.d. from the 
mean. (b) Schematic scatter plot representing how communities containing species A and B define a poorly predicted subsample of the full sample 
set (c) Heatmap of prediction performance (‍R2‍) of acetate for each subset of communities containing a given species (diagonal elements) or pair of 
species (off-diagonal elements). (d) Heatmap of prediction performance for acetate, butyrate, lactate, and succinate. A sample subset containing a 
given species or pair of species included all communities in which the species were initially present. Predictions for each community were determined 
using 20-fold cross validation so that for each model the predicted samples were excluded from the training samples. N and p-values are reported in 
Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Sensitivity of species abundance prediction performance (‍R2‍) to the size of the training dataset.

https://doi.org/10.7554/eLife.73870
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(Figure  4b). Using this approach, we identified individual species and species pairs that had the 
greatest impact on the prediction performance of metabolite concentrations. Sample subsets with 
poor prediction performance highlight individual species and species pairs whose presence reduced 
the model’s ability to accurately predict metabolite concentrations. Although the subsets were smaller 
than the total data set (‍n = 761‍), calculation of prediction performance was not limited by small sample 
sizes, where the number of communities in each subset ranged from ‍n = 77‍ to ‍n = 478‍.

The interaction network shown in Figure 3d shows the impact of individual species on each metab-
olite, but does not provide information about whether the effect is due to individual species or pair-
wise interactions. To determine whether pairwise interactions influence metabolite concentrations, we 
quantified how prediction performance changed in response to the presence individual species and 
pairs of species. Specifically, if prediction performance taken over a subset of communities containing 
a given species pair was markedly different than prediction performance for the subsets corresponding 
to the individual species, this implies that the given pairwise interaction impacts metabolite produc-
tion. Using equation 5 (Methods), we found that the prediction performance of lactate and butyrate 
were the least sensitive to species pairs (average decrease in prediction performance for subsets 
with species pairs of 0.72% and 1.10% compared to corresponding single species subsets). However, 
the prediction performance of acetate and succinate were the most sensitive to the presence of 
species pairs (increase in prediction performance of 6.68% for acetate and a decrease of 2.951% for 
succinate). This difference in prediction performance suggests that pairwise interactions influences 
the production of acetate and succinate, while the production of lactate and butyrate are primarily 
driven by the action of single species. The sensitivity of acetate and succinate to pairwise interac-
tions is consistent with the inferred interaction network shown in Figure 3d, which highlights multiple 
species-metabolite interactions for acetate and succinate and sparse and strong species-metabolite 
interactions for butyrate and lactate.

Pairs of certain Bacteroides and butyrate producers including BY-RI, BU-RI, and BY-AC resulted in 
reduced prediction performance of acetate. This suggests that interactions between specific Bacte-
roides and butyrate producers were important for acetate transformations, which is consistent with 
the conversion of acetate into butyrate. Based on the LIME analysis in Figure 3d, AC, DP, and BP had 
the largest impact on lactate. Thus, the hold-out prediction performance for lactate was primarily 
impacted by specific pairs that include these species. In sum, these results demonstrate how the LSTM 
model can be used to identify informative experiments for investigating poorly understood species 
and interactions between species, where collection of more data would likely improve model predic-
tion performance.

Time-resolved measurements of communities reveal design rules for 
qualitatively distinct metabolite dynamics
We next leveraged the LSTM model’s dynamic capabilities to understand the temporal changes in 
metabolite concentrations and community assembly of the 25-member synthetic gut microbiome. To 
this end, we chose a representative subset of 95 out of the 180 communities from Figure 3b, Figure 5—
figure supplement 1a, 60 communities for training, 34 for validation, plus the full 25-member commu-
nity and experimentally characterized species abundance and metabolite concentrations every 16 hr 
during community assembly (Figure 5a). We analyzed the dynamic behaviors of these communities 
using a clustering technique to extract high-level design rules of species presence/absence that deter-
mined qualitatively distinct temporal metabolite trajectories (i.e. broad trends consistent across a set 
of communities) and exploited the LSTM framework to identify context-specific impacts of individual 
species on metabolite production (i.e. a more fine-tuned case-by-case analysis).

The temporal trajectories of species abundance and metabolite concentrations showed a wide 
range of qualitatively distinct trends across the 95 communities (Figure 5b–g). For example, some 
metabolites concentrations monotonically increased (e.g. butyrate in Figure 5b, c, e and g), monotoni-
cally decreased (e.g. lactate in Figure 5b, c) or exhibited biphasic dynamics (e.g. acetate in Figure 5c). 
To determine if there were communities with similar temporal changes in metabolite concentrations, 
we clustered communities using a minimal spanning tree (Grygorash et al., 2006) on the Euclidean 
distance between the metabolite trajectories of each pair of communities (Figure 5a). The resulting 
six clusters exhibited high quantitative within-cluster similarity and qualitatively distinct metabolite 
trajectories (Figure 5b–g). Clusters 4 and 5, which contained the largest number of communities, had 

https://doi.org/10.7554/eLife.73870
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Figure 5. Community metabolite trajectories cluster into qualitatively distinct groups which can be classified based on presence and absence of key 
microbial species. (a) Schematic of experiment and network representing a minimal spanning tree across the 95 communities where weights (indicated 
by edge length) are equal to the Euclidean distance between the metabolite trajectories for each community. Node colors indicate clusters determined 
as described in the Materials and methods. Red node with black outline annotated with ‘25’ represents the 25-member community. Annotations indicate 
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a high fraction of ‘distributed’ communities (Figure 3b). Clusters with a smaller number of commu-
nities contained a higher percentage of ‘corner’ communities (Figure 5—figure supplement 1b,c). 
Therefore, the LSTM model informed by endpoint measurements of species abundance and metab-
olite concentrations elucidated ‘corner’ communities with qualitatively distinct temporal behaviors. 
These communities were unlikely to be discovered via random sampling of sub-communities due to 
the high density of points towards the center of the distribution and low density of communities in 
the tails of the distribution (Figure 3b). Additionally, some ‘corner’ communities that were similar in 
metabolite profiles when considering the endpoint measurement separated into different clusters 
when considering the dynamic data (e.g. Clusters 2 and 3, which have similar metabolite profiles 
at 48 hr but qualitatively distinct dynamics) (Figure 5b). This demonstrates that using a community 
design approach to explore the extremes of system behaviors with a limited time resolution enabled 
the identification of new features when the communities with extreme functions were characterized 
with higher time resolution.

To identify general patterns in species presence/absence of these communities that could explain 
the temporal behaviors of each cluster, we used a decision tree analysis to identify an interpretable 
classification scheme (Figure 5—figure supplement 1d). Using this approach, the large clusters were 
separated by relatively simple classification rules (i.e. AC+ for Cluster 4 and AC- for Cluster 5), whereas 
the smaller clusters had more complex classification rules involving larger combinations of species 
(3–7 species), all involving AC, DP, and DL (Figure 5a). The influential role of DP was corroborated 
by a previous study showing that DP substantially inhibits butyrate production (Clark et al., 2021). 
In addition, the inferred microbe-metabolite networks based on the LSTM model M2 demonstrated 
that the presence of DL was linked to higher acetate and lower succinate production (Figure 3d), 
consistent with its key role in shaping metabolite dynamics in this system. The variation in the number 
of communities across clusters is consistent with previous observations that species-rich microbial 
communities tend towards similar behavior(s) (e.g. Clusters 4 and 5 contained many communities). By 
contrast, more complex species presence/absence design rules are required to identify communities 
that deviate from this typical behavior (e.g. Clusters 1–3 and 6 contained few communities) (Clark 
et al., 2021).

Using LSTM with higher time-resolution to interpret contextual 
interactions
While our clustering analysis identified general design rules for metabolite trajectories, there remained 
unexplained within-cluster variation. Thus, we used the LSTM framework to identify those effects 
beyond these general species presence/absence rules that determine the precise metabolite trajec-
tory of a given community. Simultaneous predictions of species abundance and the concentration 
of all four metabolites at all time points necessitates specific modifications to the LSTM architecture 
shown in Figure 2a. In particular, we consider a 29-dimensional input vector whose first 25 compo-
nents correspond to the species abundance, while the remaining four components correspond to the 
concentration of metabolites (Figure 5h). The 29-dimensional feature vector is suitably normalized so 
that the different components have zero mean and unity variance. The feature scaling is important to 

the most specific microbial species presence/absence rules that describe most data points in the cluster of the corresponding color as determined by 
a decision tree classifier (Materials and methods). Communities that deviate from the rules for their cluster are indicated with a border matching the 
color of the closest cluster whose rules they do follow. Network visualization generated using the draw_kamada_kawai function in networkx (v2.1) for 
Python 3. (b–g) Temporal changes in metabolite concentrations for communities within each cluster (indicated by sub-plot border color), with individual 
communities denoted by transparent lines. Solid lines and shaded regions represent the mean ±1 s.d. of all communities in the cluster. (h) Schematic 
of LSTM model training and computation of gradients to evaluate impact of species abundance on metabolite concentrations in a specific community 
context. (i) Heatmap of model M3 prediction accuracy for four metabolites in the 34 validation communities at each time point (Pearson correlation ‍R2‍, 
N=34 for all tests). (j) Heatmap of the gradient analysis of model M3 as described in (h) for the full 25-species community. N and p-values are reported in 
Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Characteristics of the dynamic community behaviors.

Figure supplement 2. Prediction accuracy of model M3 for species abundance.

Figure supplement 3. Comparison of the discrete generalized Lotka-Volterra model to the LSTM using the same training algorithm.

Figure 5 continued
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prevent dominance of high-abundance species. The output of each LSTM unit is fed into the input 
block of the subsequent LSTM unit in order to advance the model forward in time. The reason behind 
concatenating instantaneous species abundances with metabolite concentrations can be understood 
as follows. Prediction of metabolite concentrations at various time points requires a time-series model 
(either using ODEs or LSTM in this case). Further, the future trajectory of metabolite concentrations 
is a function of both the species abundance, as well as the metabolite concentrations at the current 
time instant. Therefore, we concatenate both the metabolite concentrations and species abundances 
to create a 29-dimensional feature vector. The trained LSTM framework on the 60 training commu-
nities (model M3) displayed good prediction performance on the metabolite concentrations of the 
34 validation communities plus the full 25-species community (Figure 5i). The prediction accuracy of 
species abundance was lower than metabolite concentrations, presumably due to the limited number 
of training set observations of each species (Figure 5—figure supplement 2).

We used a gradient-based sensitivity analysis of the LSTM model M3 to provide biological insights 
into the contributions of individual species based on the temporal changes in metabolite concen-
trations (Figure 5h and j, Methods). This method involves computing partial derivatives of output 
variables of interest with respect to input variables, which are readily available through a single back-
propagation pass (LeCun et al., 1988; Peurifoy et al., 2018). As an example case, we applied this 
analysis approach to the full 25-species community, which was grouped into Cluster 4, with the design 
rule ‘AC+’ (Figure  5a). Consistent with this design rule, we observed strong sensitivity gradients 
between the abundance of AC and the concentrations of butyrate, acetate, and lactate, consistent 
with our biological understanding of the system (Clark et al., 2021). Beyond the ‘AC+’ design rule, 
there was a strong sensitivity gradient between DL and acetate and succinate, consistent with the 
inferred networks based on the LSTM model M2 that used endpoint measurements (Figure  3d). 
Further, the contributions of certain species on metabolite production varied as a function of time. For 
instance, in the initial time point, species abundances were similar and thus the contribution of indi-
vidual species to metabolite production was uniform. However, interactions between species during 
community assembly enhanced the contribution of specific metabolite driver species such as AC. In 
addition, the contributions of individual species such as PC and BA to succinate production peaked at 
32 hr and then decreased by 48 hr, highlighting that the effects of these species were maximized at 
intermediate time points. In sum, the gradient-based method identified the quantitative contributions 
of each species to the temporal changes in metabolite concentrations for a representative 25-member 
community, identifying context-specific behaviors beyond the previously identified broader design 
rules. These two complementary approaches are useful for identifying design rules governing metab-
olite dynamics. The clustering method can identify broad design rules for species presence/absence 
and the LSTM analysis gradient approach can uncover fine-tuned quantitative contributions of species 
to the temporal changes in community-level functions.

To directly evaluate the performance of the gLV and LSTM model, we trained a discretized version 
of the gLV model (approximate gLV model) on the same dataset and used the same algorithm as the 
LSTM. The approximate gLV model was augmented with a two layer feed-forward neural network 
with a hidden dimension equivalent to the hidden dimension used in the LSTM model to enable 
metabolite predictions (Figure 5—figure supplement 3a, b). The approximate gLV model enables 
the computation of gradients via the backpropagation algorithm, which is also used to train the LSTM. 
By contrast, computation of gradients of the continuous-time gLV model requires numerical inte-
gration. This approximate gLV model does not perform as well as the LSTM model at species abun-
dance predictions using the same data used to train LSTM model M3 (Figure 5—figure supplement 
3c, b). In addition, the LSTM outperforms the approximate gLV augmented with the feed-forward 
network at metabolite predictions (Figure 5—figure supplement 3e, f). In sum, the LSTM outper-
forms the discretized gLV model using the same training algorithm, highlighting the power of the 
LSTM model in accurately predicting the temporal changes in microbiome composition and metabo-
lite concentrations.

Discussion
The LSTM modeling framework trained on species abundance and metabolite concentrations accu-
rately predicted multiple health-relevant functions of complex synthetic human gut communities. This 
model is powerful for designing communities with target metabolite profiles. Microbial communities 
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continuously impact metabolites by releasing or consuming them. Therefore, by modeling both micro-
bial growth and the metabolites they produce/consume together, the LSTM captured the intercon-
nections between these variables. Due to its flexibility, the LSTM model outperforms the widely used 
gLV model in the presence of higher-order interactions. We leveraged the computational efficiency 
of LSTM model to predict the metabolite profiles of tens of millions of communities. We used these 
model predictions to identify sparsely represented ‘corner case’ communities that maximized/mini-
mized community-level production of four health-relevant metabolites. In the absence of a predictive 
model, these infrequent communities would have been difficult to discover among the vast metabo-
lite profile landscape of possible communities.

Beyond the model’s predictive capabilities, we showed that biological information including signif-
icant microbe-metabolite and microbe-microbe interactions, can be extracted from LSTM models. 
These biological insights could enable the discovery of key species and interactions driving commu-
nity functions of interest. Further, this could inform the design of microbial communities from the 
bottom-up or interventions to manipulate community-level behaviors. For example, the inferred 
microbe-metabolite network highlighted AC is a major ecological driver of several metabolites 
including butyrate, acetate and lactate in our system. In addition, this microbe-metabolite network 
did not include species of the highly abundant genus Bacteroides but instead featured members 
of Firmicutes (AC, ER, DL), Actinobacteria (BA, BP, EL), Proteobacteria DP and Bacteroidetes PC. 
Notably, Bacteroides displayed numerous interactions in the microbe-microbe interaction network, 
suggesting that they played a key role in the growth of constituent community members opposed to 
production of specific metabolites. Therefore, our model suggests that Bacteroides influence broad 
ecosystem functions such as community growth dynamics whereas species highlighted in the microbe-
metabolite network contribute to specialized functions such as the production of specific measured 
metabolites (Rivett and Bell, 2018). Therefore, the microbe-metabolite interaction network could 
be used to identify key species that could be targeted for manipulating the dynamics of specific 
metabolites.

We performed time-resolved measurements of metabolite production and species abundance 
using a set of designed communities and demonstrated that communities tend towards a typical 
dynamic behavior (i.e. Clusters 4 and 5). Therefore, random sampling of sub-communities from the 
25-member system would likely exhibit behaviors similar to Clusters 4 and 5. We used the LSTM 
model to identify ‘corner cases’ communities that displayed metabolite concentrations near the tails 
of the metabolite distributions at the endpoint. The model allowed us to identify unique sub-clusters 
with disparate dynamic behaviors. We demonstrated that the endpoint model predictions were confir-
matory (Figure 3c) and also led to new discoveries when additional measurements were made in the 
time dimension. Specifically, certain ‘corner cases’ communities identified based on prediction of a 
single time-point displayed distinct dynamic trajectories. For instance, Clusters 2 and 3 based on the 
decision tree classifier displayed similar end-point metabolite concentrations (Figure 5c, d). However, 
lactate decreased immediately over time in Cluster 2 communities but remained high until approx-
imately 30 hr and then decreased in Cluster 3 communities. The design rule for Cluster 3 included 
the presence of lactate producers BU and DL (Figure  3—figure supplement 4), suggesting that 
these individual species’ lactate producing capabilities enabled the community to maintain a high 
lactate concentration for an extended period of time in the context of the Cluster 3 communities. 
While we focused on the production of four health-relevant metabolites produced by gut microbiota, 
a wide range of health-relevant compounds are produced by gut bacteria. Therefore, communities 
that cluster together based on dynamic trends in the four measured metabolites could separate into 
new clusters based on the temporal patterns of other compounds produced or degraded by the 
communities.

Time-resolved measurements were required to reveal the different dynamic behaviors of commu-
nities in Clusters 2 and 3 to improve our understanding and the design of community functions. The 
ability to resolve differences in the dynamic trajectories of communities requires time sampling when 
the system behavior is changing as a function of time as opposed to time sampling once the system 
has reached a steady-state (i.e. saturated as a function of time). The time to reach steady-state varied 
across different communities and metabolites of interest. For instance, lactate reached steady-state at 
an earlier time point (12 hr) in Cluster 4 communities whereas communities in Cluster 3 approached 
steady-state at a later time point (48 hr). Therefore, model-guided experimental planning could be 
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used to identify the optimal sampling times to resolve differences in community dynamic behaviors. 
Achieving a highly predictive LSTM model required substantially less training data than a previous 
study that approximated the behavior of mechanistic biological systems models with RNNs (Figure 2; 
Wang et al., 2019). While the performance of any data-driven algorithm improves with the quantity 
and quality of available data, we demonstrate that the LSTM can translate learning on lower-order 
communities to accurately predict the behavior of higher-order communities given a limited and infor-
mative training set that is experimentally feasible. For synthetic microbial communities, the quality of 
the training set depends on the frequency of time-series measurements within periods in which the 
system displays rich dynamic behaviors (i.e. excitation of the dynamic modes of the system), the range 
of initial species richness, representation of each community member in the training data and sufficient 
variation in species abundances or metabolite concentrations (Figure 4—figure supplement 1). The 
dynamic behaviors of the synthetic communities characterized in vitro may likely exhibit significant 
differences to their behaviors in new environments such as the mammalian gut. However, communi-
ties in sub-clusters whose behaviors deviated substantially from the typical community behaviors (e.g. 
Clusters 2 and 3 versus Clusters 4 and 5) may be more likely than random to display unique dynamic 
behaviors in vivo. Future work will investigate whether the in vitro dynamic behavior cluster patterns 
can be used as prior information to guide the design of informative communities in new environments 
for building predictive models.

The current implementation of the LSTM model lacks uncertainty quantification for individual 
predictions, which could be used to guide experimental design (Radivojević et al., 2020). Recent 
progress in using Bayesian recurrent neural networks has led to emergence of Bayesian LSTMs (Fortu-
nato et al., 2017; Li et al., 2021), which provides uncertainty quantification for each prediction in the 
form of posterior variance or posterior confidence interval. However, currently, the implementation 
and training of such Bayesian neural networks can be significantly more difficult than training the 
LSTM model developed here. In addition, we benchmarked the performance of the LSTM against a 
widely used gLV model which has been demonstrated to accurately predict community assembly in 
communities with up to 25 species (Venturelli et al., 2018; Clark et al., 2021). The gLV model has 
been modified mathematically to capture more complex system behaviors (McPeek, 2017). However, 
implementation of these gLV models to represent the behaviors of microbiomes with a large number 
of interacting species poses major computational challenges.

While our current approach treated microbiome species composition as the sole set of design 
variables in a constant environmental background, microbiomes in reality are impacted by differ-
ences in the physicochemical composition of their environment (Thompson et  al., 2017). Given 
sufficient observations of community behavior under varied environmental contexts (e.g. presence/
absence of certain nutrients), our LSTM approach could be further leveraged to design complemen-
tary species and environmental compositions for desired microbiome functional dynamics. Further, we 
can leverage the wealth of biological information stored in the sequenced genomes of the constituent 
organisms. Integrating methods such as genome scale models (Magnúsdóttir et al., 2017) with our 
LSTM framework could leverage genomic information to enable predictions when the genomes of the 
organisms are varied (i.e. alternative strains of the same species with disparate metabolic capabilities). 
In this case, introducing variables representing the presence/absence of specific metabolic reactions 
would potentially enable the model to predict the impact of a species with a varied set of metabolic 
reactions on a given set of functions without new experimental observations. Integrating this informa-
tion into the model could thus enable a mapping between genome information and community-level 
functions.

While previous approaches have used machine learning methods to predict microbiome functions 
based on microbiome species composition (Le et al., 2020; Larsen et al., 2012; Thompson et al., 
2019), our approach is a major step forward in predicting the future temporal trajectory of micro-
biome functions from an initial species composition. The dynamic nature of our approach enables the 
design of optimal initial community compositions or interventions to steer a community to a desired 
future state. The flexibility of our approach to various time resolutions could be especially useful in 
scenarios where a microbiome may display undesired transients on the path from an initial state to a 
desired final state. For instance, in treatment of gut microbiome dysbiosis, it is important to ensure 
that any transient states of the microbiome are not harmful to the host (e.g. pathogen blooms or over-
production of toxic metabolites) as the system approaches a desired healthy state (Xiao et al., 2020). 
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However, because predictions with increased time resolution require more data for model training, 
the ability of our approach to predict system behaviors based on initial and final observations is useful 
for scenarios where transient states may be less important, such as in bioprocesses where the concen-
tration of products at the time of harvest is the primary design objective (Yenkie et al., 2016). Finally, 
the computational efficiency and accuracy of the LSTM model could be exploited in the future for 
autonomous design and optimization of multifunctional communities via computer-controlled design-
test-learn cycles (King et al., 2009).

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation

Source or 
reference Identifiers Additional information

Strain, strain background 
(Prevotella copri CB7) PC DSM 18205

Strain, strain background 
(Parabacteroides johnsonii M-165) PJ DSM 18315

Strain, strain background 
(Bacteroides vulgatus NCTC 
11154) BV ATCC 8482

Strain, strain background 
(Bacteroides fragilis EN-2) BF DSM 2151

Strain, strain background 
(Bacteroides ovatus NCTC 11153) BO ATCC 8483

Strain, strain background 
(Bacteroides thetaiotaomicron 
VPI 5482) BT ATCC 29148

Strain, strain background 
(Bacteroides caccae VPI 3452 A) BC ATCC 43185

Strain, strain background 
(Bacteroides cellulosilyticus 
CRE21) BY DSMZ 14838

Strain, strain background 
(Bacteroides uniformis VPI 0061) BU DSM 6597

Strain, strain background 
(Desulfovibrio piger VPI C3-23) DP ATCC 29098

Strain, strain background 
(Bifidobacterium longum subs. 
infantis S12) BL DSM 20088

Strain, strain background 
(Bifidobacterium adolescentis 
E194a (Variant a)) BA ATCC 15703

Strain, strain background 
(Bifidobacterium 
pseudocatenulatum B1279) BP DSM 20438

Strain, strain background 
(Collinsella aerofaciens VPI 1003) CA DSM 3979

Strain, strain background 
(Eggerthella lenta 1899 B) EL DSM 2243

Strain, strain background 
(Faecalibacterium prausnitzii A2-
165) FP DSM 17677

Strain, strain background 
(Clostridium hiranonis T0-931) CH DSM 13275

Strain, strain background 
(Anaerostipes caccae L1-92) AC DSM 14662
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Reagent type (species) or 
resource Designation

Source or 
reference Identifiers Additional information

Strain, strain background (Blautia 
hydrogenotrophica S5a33) BH DSM 10507

Strain, strain background 
(Clostridium asparagiforme N6) CG DSM 15981

Strain, strain background 
(Eubacterium rectale VPI 0990) ER ATCC 33656

Strain, strain background 
(Roseburia intestinalis L1-82) RI DSM 14610

Strain, strain background 
(Coprococcus comes VPI CI-38) CC ATCC 27758

Strain, strain background (Dorea 
longicatena 111–35) DL DSMZ 13814

Strain, strain background (Dorea 
formicigenerans VPI C8-13) DF DSM 3992

Sequence-based reagent
Forward Primer 
Index: ATCACG IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC ATCACG ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: CGATGT IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC CGATGT ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT T ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: TTAGGC IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC TTAGGC ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT GT ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: TGACCA IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC TGACCA ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT CGA ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: ACAGTG IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC ACAGTG ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT ATGA ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: GCCAAT IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC GCCAAT ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT TGCGA ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: CAGATC IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC CAGATC ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT GAGTGG ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: ACTTGA IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC ACTTGA ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT CCTGGAG ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: GATCAG IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC GATCAG ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: TAGCTT IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC TAGCTT ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT T ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: GGCTAC IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC GGCTAC ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT GT ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: CTTGTA IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC CTTGTA ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT CGA ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: AGTCAA IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC AGTCAA ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT ATGA ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: AGTTCC IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC AGTTCC ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT TGCGA ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: ATGTCA IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC ATGTCA ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT GAGTGG ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: CCGTCC IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC CCGTCC ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT CCTGGAG ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: GTAGAG IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC GTAGAG ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: GTCCGC IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC GTCCGC ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT T ​ACTC​CTAC​GGGA​GGCA​GCAGT
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Reagent type (species) or 
resource Designation

Source or 
reference Identifiers Additional information

Sequence-based reagent
Forward Primer 
Index: GTGAAA IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC GTGAAA ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT GT ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: GTGGCC IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC GTGGCC ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT CGA ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: GTTTCG IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC GTTTCG ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT ATGA ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: CGTACG IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC CGTACG ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT TGCGA ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: GAGTGG IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC GAGTGG ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT GAGTGG ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: GGTAGC IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC GGTAGC ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT CCTGGAG ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: ACTGAT IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC ACTGAT ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: ATGAGC IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC ATGAGC ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT T ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: ATTCCT IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC ATTCCT ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT GT ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: CAAAAG IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC CAAAAG ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT CGA ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: CAACTA IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC CAACTA ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT ATGA ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: CACCGG IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC CACCGG ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT TGCGA ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: CACGAT IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC CACGAT ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT GAGTGG ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: CACTCA IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC CACTCA ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT CCTGGAG ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: CAGGCG IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC CAGGCG ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: CATGGC IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC CATGGC ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT T ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: CATTTT IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC CATTTT ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT GT ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: CCAACA IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC CCAACA ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT CGA ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: CGGAAT IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC CGGAAT ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT ATGA ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: CTAGCT IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC CTAGCT ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT TGCGA ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: CTATAC IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC CTATAC ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT GAGTGG ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: CTCAGA IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC CTCAGA ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT CCTGGAG ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: GACGAC IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC GACGAC ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: TAATCG IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC TAATCG ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT T ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: TACAGC IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC TACAGC ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT GT ​ACTC​CTAC​GGGA​GGCA​GCAGT
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Sequence-based reagent
Forward Primer 
Index: TATAAT IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC TATAAT ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT CGA ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: TCATTC IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC TCATTC ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT ATGA ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: TCCCGA IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC TCCCGA ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT TGCGA ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: TCGAAG IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC TCGAAG ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT GAGTGG ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Forward Primer 
Index: TCGGCA IDT

​AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACAC TCGGCA ​ACAC​TCTT​TCCC​TACA​
CGAC​GCTC​TTCC​GATCT CCTGGAG ​ACTC​CTAC​GGGA​GGCA​GCAGT

Sequence-based reagent
Reverse Primer 
Index: ATCACGAG IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT ATCACGAG ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: CGATGTTC IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT CGATGTTC ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT A ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: TTAGGCGA IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT TTAGGCGA ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT TC ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: TGACCAAT IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT TGACCAAT ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT CTA ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: ACAGTGCT IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT ACAGTGCT ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT GATA ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: GCCAATGT IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT GCCAATGT ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT ACTCA ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: CAGATCGA IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT CAGATCGA ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT TTCTCT ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: ACTTGAAA IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT ACTTGAAA ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT CACTTCT ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: GATCAGTG IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT GATCAGTG ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: TCTACCTC IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT TCTACCTC ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT A ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: CTTGTATG IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT CTTGTATG ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT TC ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: TAGCTTCC IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT TAGCTTCC ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT CTA ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: GGCTACCA IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT GGCTACCA ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT GATA ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: ATGCACTT IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT ATGCACTT ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT ACTCA ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: GACGGAAC IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT GACGGAAC ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT TTCTCT ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: AGCCTTGG IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT AGCCTTGG ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT CACTTCT ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: CCGTAGAG IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT CCGTAGAG ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: GTGAGACT IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT GTGAGACT ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT A ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: AATGCTCA IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT AATGCTCA ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT TC ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: GCATCGTA IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT GCATCGTA ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT CTA ggactaccagggtatctaatcctgt
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Sequence-based reagent
Reverse Primer 
Index: CGAACAGC IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT CGAACAGC ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT GATA ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: TCGGAAGG IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT TCGGAAGG ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT ACTCA ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: TTCTGTCG IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT TTCTGTCG ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT TTCTCT ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: GTACTCAC IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT GTACTCAC ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT CACTTCT ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: AGTAATAC IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT AGTAATAC ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: CAAGATAT IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT CAAGATAT ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT A ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: TGTTTGGT IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT TGTTTGGT ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT TC ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: CTCCAACC IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT CTCCAACC ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT CTA ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: AAATTCTG IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT AAATTCTG ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT GATA ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: CCCGCCAA IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT CCCGCCAA ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT ACTCA ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: TACAAATA IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT TACAAATA ​GTGA​CTGG​AGTT​CAGA​CGTG​
TGCT​CTTC​CGATCT TTCTCT ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: GGGCTATA IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT GGGCTATA ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT CACTTCT ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: TTTCGGAC IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT TTTCGGAC ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: TGCGCGTC IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT TGCGCGTC ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT A ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: TCCCGCTG IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT TCCCGCTG ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT TC ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: GTTTCAGG IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT GTTTCAGG ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT CTA ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: GGAGGGGG IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT GGAGGGGG ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT GATA ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: GCTGTTAG IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT GCTGTTAG ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT ACTCA ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: GAGTGTGA IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT GAGTGTGA ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT TTCTCT ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: CGTCCCCG IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT CGTCCCCG ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT CACTTCT ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: CCTCATCA IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT CCTCATCA ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: CCACGACA IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT CCACGACA ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT A ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: CATTGGCT IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT CATTGGCT ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT TC ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: AGGGGCCC IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT AGGGGCCC ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT CTA ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: ACGACACT IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT ACGACACT ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT GATA ggactaccagggtatctaatcctgt
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Sequence-based reagent
Reverse Primer 
Index: ACCGACGC IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT ACCGACGC ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT ACTCA ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: TATAGTAT IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT TATAGTAT ​GTGA​CTGG​AGTT​CAGA​CGTG​
TGCT​CTTC​CGATCT TTCTCT ggactaccagggtatctaatcctgt

Sequence-based reagent
Reverse Primer 
Index: AACTCAGT IDT

​CAAG​CAGA​AGAC​GGCA​TACGAGAT AACTCAGT ​GTGA​CTGG​AGTT​CAGA​
CGTG​TGCT​CTTC​CGATCT CACTTCT ggactaccagggtatctaatcctgt

 Continued

Experimental methods
Strain maintenance and culturing
All anaerobic culturing was carried out in an anaerobic chamber with an atmosphere of 2.5 ± 0.5% 
H2, 15±1% CO2 and balance N2. All prepared media and materials were placed in the chamber at 
least overnight before use to equilibrate with the chamber atmosphere. The strains used in this work 
were obtained from the sources listed in our previous publication (Clark et al., 2021) and perma-
nent stocks of each were stored in 25% glycerol at -80°C. Batches of single-use glycerol stocks were 
produced for each strain by first growing a culture from the permanent stock in anaerobic basal broth 
(ABB) media (Oxoid) to stationary phase, mixing the culture in an equal volume of 50% glycerol, and 
aliquoting 400µL into Matrix Tubes (ThermoFisher) for storage at -80°C. Quality control for each batch 
of single-use glycerol stocks included (1) plating a sample of the aliquoted mixture onto LB media 
(Sigma-Aldrich) for incubation at 37°C in ambient air to detect aerobic contaminants and (2) Illumina 
sequencing of 16 S rDNA isolated from pellets of the aliquoted mixture to verify the identity of the 
organism. For each experiment, precultures of each species were prepared by thawing a single-use 
glycerol stock and combining the inoculation volume and media as described in Clark et al., 2021 to 
a total volume of 5 mL (multiple tubes inoculated if more preculture volume needed). Cultures were 
incubated until stationary phase at 37°C using the preculture incubation times described in Clark 
et al., 2021. All experiments were performed in a chemically defined medium (DM38), as previously 
described (Clark et al., 2021). This medium supports the individual growth of all organisms except 
Faecalibacterium prausnitzii (Clark et al., 2021).

Community culturing experiments and sample collection
Synthetic communities were assembled using liquid handling-based automation as described previ-
ously (Clark et al., 2021). Briefly, each species’ preculture was diluted to an OD600 of 0.0066 in DM38. 
Community combinations were arrayed in 96 deep well (96DW) plates by pipetting equal volumes of 
each species’ diluted preculture into the appropriate wells using a Tecan Evo Liquid Handling Robot 
inside an anaerobic chamber. For experiments with multiple time points, duplicate 96DW plates 
were prepared for each time point. Each 96DW plate was covered with a semi-permeable membrane 
(Diversified Biotech) and incubated at 37°C. After the specified time had passed, 96DW plates were 
removed from the incubator and samples were mixed by pipette. Cell density was measured by pipet-
ting 200µL of each sample into one 96-well microplate (96 W MP) and diluting 20 L of each sample 
into 180µL of PBS in another 96 W MP and measuring the OD600 of both plates (Tecan F200 Plate 
Reader). We selected the value that was within the linear range of the instrument for each sample. A 
total of 200µL of each sample was transferred to a new 96DW plate and pelleted by centrifugation at 
2400xg for 10 min. A supernatant volume of 180µL was removed from each sample and transferred 
to a 96-well microplate for storage at -20°C and subsequent metabolite quantification by high perfor-
mance liquid chromatography (HPLC). Cell pellets were stored at -80°C for subsequent genomic DNA 
extraction and 16 S rDNA library preparation for Illumina sequencing. 20µL of each supernatant was 
used to quantify pH using a phenol Red assay (Silverstein, 2012). Phenol red solution was diluted to 
0.05% weight per volume in 0.9% w/v NaCl. Bacterial supernatant (20µL) was added to 180µ of phenol 
red solution in a 96 W MP, and absorbance was measured at 560 nm (Tecan Spark Plate Reader). A 
standard curve was produced by fitting the Henderson-Hasselbach equation to fresh media with a pH 
ranging between 3 and 11 measured using a standard electro-chemical pH probe (Mettler-Toledo). 
We used (1) to map the pH values to the absorbance measurements.

https://doi.org/10.7554/eLife.73870
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	﻿‍
pH = pKa + b · log10

(
A−Amin
Amax−A

)
‍� (1)

The parameters ‍b‍ and pKa were determined using a linear regression between pH and the ‍log‍ term 
for the standards in the linear range of absorbance (pH between 5.2 and 11) with ‍Amax‍ representing 
the absorbance of the pH 11 standard, ‍Amin‍ denoting the absorbance of the pH 3 standard and ‍A‍ 
representing the absorbance of each condition.

HPLC quantification of organic acids
Butyrate, succinate, lactate, and acetate concentrations in culture supernatants were quantified as 
described previously (Clark et al., 2021). Supernatant samples were thawed in a room temperature 
water bath before addition of 2µL of ‍H2SO4‍ to precipitate any components that might be incompat-
ible with the running buffer. The samples were then centrifuged at 2400xg for 10 min and then 150µL 
of each sample was filtered through a 0.2µm filter using a vacuum manifold before transferring 70µL of 
each sample to an HPLC vial. HPLC analysis was performed using a Shimadzu HPLC system equipped 
with a SPD-20AV UV detector (210 nm). Compounds were separated on a 250×4.6 mm Rezex OA-Or-
ganic acid LC column (Phenomenex Torrance, CA) run with a flow rate of 0.2 ml min-1 and at a column 
temperature of -50°C. The samples were held at 4°C prior to injection. Separation was isocratic with 
a mobile phase of HPLC grade water acidified with 0.015 N ‍H2SO4‍ (‍415µLL−1

‍). At least two standard 
sets were run along with each sample set. Standards were 100, 20, and 4  mM concentrations of 
butyrate, succinate, lactate, and acetate, respectively. The injection volume for both sample and stan-
dard was 25µL. The resultant data was analyzed using the Shimadzu LabSolutions software package.

Genomic DNA extraction and sequencing library preparation
Genomic DNA extraction and sequencing library preparation were performed as described previ-
ously (Clark et al., 2021). Genomic DNA was extracted from cell pellets using a modified version 
of the Qiagen DNeasy Blood and Tissue Kit protocol. First, pellets in 96DW plates were removed 
from -80°C and thawed in a room temperature water bath. Each pellet was resuspended in ‍180µL‍ of 
enzymatic lysis buffer (20 mM Tris-HCl (Invitrogen), 2 mM Sodium EDTA (Sigma-Aldrich), 1.2% Triton 
X-100 (Sigma-Aldrich), 20  mg/mL Lysozyme from chicken egg white (Sigma-Aldrich)). Plates were 
then covered with a foil seal and incubated at 37°C for 30 min with orbital shaking at 600 RPM. Then, 

‍25µL‍ of ‍20mgmL−1
‍ Proteinase K (VWR) and 200 L of Buffer AL (QIAGEN) were added to each sample 

before mixing with a pipette. Plates were then covered by a foil seal and incubated at 56°C for 30 min 
with orbital shaking at 600 RPM. Next, ‍200µL‍ of 100% ethanol (Koptec) was added to each sample 
before mixing and samples were transferred to a Nucleic Acid Binding (NAB) plate (Pall) on a vacuum 
manifold with a 96DW collection plate. Each well in the NAB plate was then washed once with ‍500µL‍ 
Buffer AW1 (QIAGEN) and once with ‍500µL‍ of Buffer AW2 (QIAGEN). A vacuum was applied to the 
Pall NAB plate for an additional 10 min to remove any excess ethanol. Samples were then eluted into 
a clean 96DW plate from each well using ‍110µL‍ of Buffer AE (QIAGEN) preheated to 56°C. Genomic 
DNA samples were stored at -20°C until further processing.

Genomic DNA concentrations were measured using a SYBR Green fluorescence assay and then 
normalized to a concentration of ‍1ngL−1

‍ by diluting in molecular grade water using a Tecan Evo 
Liquid Handling Robot. First, genomic DNA samples were removed from -20°C and thawed in a 
room temperature water bath. Then, ‍1µL‍ of each sample was combined with ‍95µL‍ of SYBR Green 
(Invitrogen) diluted by a factor of 100 in TE Buffer (Integrated DNA Technologies) in a black 384-well 
microplate. This process was repeated with two replicates of each DNA standard with concentrations 
of 0, 0.5, 1, 2, 4, and ‍6ngL−1

‍. Each sample was then measured for fluorescence with an excitation/
emission of 485/535 nm using a Tecan Spark plate reader. Concentrations of each sample were calcu-
lated using the standard curve and a custom Python script was used to compute the dilution factors 
and write a worklist for the Tecan Evo Liquid Handling Robot to normalize each sample to ‍1ngL−1

‍ in 
molecular grade water. Samples with DNA concentration less than ‍1ngL−1

‍ were not diluted. Diluted 
genomic DNA samples were stored at -20°C until further processing.

Amplicon libraries were generated from diluted genomic DNA samples by PCR amplification of 
the V3-V4 of the 16 S rRNA gene using custom dual-indexed primers for multiplexed next genera-
tion amplicon sequencing on Illumina platforms (Clark et al., 2021). Primers were arrayed in skirted 
96-well PCR plates (VWR) using an acoustic liquid handling robot (Labcyte Echo 550) such that each 

https://doi.org/10.7554/eLife.73870


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Baranwal, Clark et al. eLife 2022;11:e73870. DOI: https://doi.org/10.7554/eLife.73870 � 25 of 36

well received a different combination of one forward and one reverse primer (‍0.1µL‍ of each). After 
liquid evaporated, dry primers were stored at -20°C. Primers were resuspended in ‍15µL‍ PCR master 
mix (‍0.2µL‍ Phusion High Fidelity DNA Polymerase [Thermo Scientific], ‍0.4µL‍ 10 mM dNTP Solution 
[New England Biolabs], ‍4µL‍ 5  x Phusion HF Buffer [Thermo Scientific], ‍4µL‍ 5  M Betaine [Sigma-
Aldrich], ‍6.4µL‍ Water) and ‍5µL‍ of normalized genomic DNA to give a final concentration of 0.05 M 
of each primer. Primer plates were sealed with Microplate B seals (Bio-Rad) and PCR was performed 
using a Bio-Rad C1000 Thermal Cycler with the following program: initial denaturation at 98°C (30 s); 
25 cycles of denaturation at 98°C (10 s), annealing at 60°C (30 s), extension at 72°C (60 s); and final 
extension at 72°C (10 min). Of PCR products from each well, 2 µL were pooled and purified using the 
DNA Clean & Concentrator (Zymo) and eluted in water. The resulting libraries were sequenced on an 
Illumina MiSeq using a MiSeq Reagent Kit v3 (600-cycle) to generate 2 × 300 paired end reads.

Bioinformatic analysis for quantification of species abundance
Sequencing data were used to quantify species relative abundance as described previously (Clark 
et al., 2021). Sequencing data were demultiplexed using Basespace Sequencing Hub’s FastQ Gener-
ation program. Custom python scripts were used for further data processing as described previously 
(Clark et al., 2021). Paired end reads were merged using PEAR (v0.9.10) (Zhang et al., 2014) after 
which reads without forward and reverse annealing regions were filtered out. A reference database of 
the V3-V5 16 S rRNA gene sequences was created using consensus sequences from next-generation 
sequencing data or Sanger sequencing data of monospecies cultures. Sequences were mapped to 
the reference database using the mothur (v1.40.5) (Schloss et al., 2009) command ​classify.​seqs (Wang 
method with a bootstrap cutoff value of 60). Relative abundance was calculated as the read count 
mapped to each species divided by the total number of reads for each condition. Absolute abundance 
of each species was calculated by multiplying the relative abundance by the OD600 measurement 
for each sample. Samples were excluded from further analysis if .1% of the reads were assigned to 
a species not expected to be in the community (indicating contamination). We expect the precision 
of our measurements to drop rapidly for species representing <1% of the community due to limited 
sequencing depth. We typically sequenced on the order of 10,000 molecules of PCR amplified DNA 
of the 16 S rRNA gene per sample, so if a species is only represented by on the order of 10 of those 
molecules (0.1%), then a single sequencing read error would be a 10% error, whereas a species repre-
sented by (>100) reads (1%) would only have 1% error per read.

Choice of sample sizes
Sample sizes were chosen based on limitations of experimental throughput as increased number of 
biological replicates would have reduced the number of possible different communities that could be 
observed. We chose a minimum of two biological replicates (for complex communities in our valida-
tion set) and some sample types have up to seven biological replicates (such as the full community, 
which was repeated in most experiments as a control for consistency between experimental days).

Computational methods
Long short-term memory for dynamic prediction on microbial communities
Long short term memory (LSTM) networks belong to the class of recurrent neural networks (RNNs) 
and model time-series data. They were first introduced by Hochreiter et al. (Hochreiter and Schmid-
huber, 1997) to overcome the vanishing or exploding gradients problem (Hochreiter, 1998) that 
occur due to long-term temporal dependencies. Since their inception, LSTMs have been further 
refined (Gers et al., 2000; Graves and Schmidhuber, 2005) and find numerous applications in several 
domains, including but not limited to neuroscience (Storrs and Kriegeskorte, 2019), weather fore-
casting (Karevan and Suykens, 2020), predictive finance (Fischer and Krauss, 2018), Google Voice 
for speech recognition (Esch, 2014; Fischer and Krauss, 2018) and Google Allo for message sugges-
tion (Wei et al., 2018).

Similar to any recurrent neural network, an LSTM network comprises of a network of multiple 
LSTM units, each representing the input-output map at a time instant. Figure 2 shows the schematic 
of the proposed LSTM network architecture for abundance prediction. For a microbial community 
comprising of ‍N ‍ species, each LSTM unit models the dynamics at time ‍t‍ using the following set of 
equations:

https://doi.org/10.7554/eLife.73870
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	﻿‍

it = σ
(
Wiixt + bii + Whiht−1 + bhi

)

ft = σ
(
Wifxt + bif + Whfht−1 + bhf

)

gt = tanh
(
Wigxt + big + Whght−1 + bhg

)

ot = σ
(
Wioxt + bio + Whoht−1 + bho

)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh (ct), ‍�

(2)

where ht, ct, xt are the hidden state, cell state and input abundance at time ‍t‍, respectively, and it, ft, 
gt, ot are input, forget, cell and output gates, respectively. σ is the sigmoid function, and ⊙ denotes the 
Hadamard product. The parameters ‍{Wmn, bmn}‍ for ‍m, n ∈ {f, g, h, i, o}‍ are trainable and shared across 
all LSTM units. The output gate ot is further used to generate the abundance for next time instant as:

	﻿‍ yt : xt+1 = Wyoot + byo.‍� (3)

As shown in Figure 2, yt is fed to the LSTM unit at the next timestep (‍t + 1‍), which in turn predicts 
the species abundance at time ‍t + 2‍. The process is repeated across multiple LSTM units in order 
to obtain ‍xtfinal‍. The entire architecture is trained to minimize the mean-squared loss between the 
predicted abundance ‍xtfinal‍ and true abundance ‍̂xtfinal‍.

Using teacher forcing for intermittent time-series forecasting (Figures 1, 2 
and 5)
The end-goal for the proposed LSTM-network based abundance predictor is to accurately capture 
the steady-state (final) abundance from initial abundance. In typical LSTM networks, the output of 
the recurrent unit at the previous timestep ‍yt−1‍ is used as an input to the recurrent unit at the current 
timestep xt. This kind of recurrent model, while has the ability to predict final abundance, is incapable 
of handling the one-step-ahead prediction. The problem is even more critical when one tries to antic-
ipate more than a single timestep into the future. Teacher forcing (Benny Toomarian and Barhen, 
1992) entails a training procedure for recurrent networks, such as LSTMs, where ‘true’ abundances at 
intermittent timesteps are used to guide (like a teacher) the model to accurately anticipate one-step-
ahead abundance.

Teacher forcing is an efficient method of training RNN models that use the ground truth from a 
prior time step as input. This is achieved by occasionally replacing the predicted abundance ‍yt−1‍ 
from the previous timestep with the true abundance ‍̂xt‍ at the current timestep as input abundance 
to the LSTM unit at the current timestep during the training process. Teacher forcing not only stabi-
lizes the training process, it forces the output abundances at all times to closely match the corre-
sponding true abundances. This is precisely why we do not just use the ground truth abundances at 
intermittent timesteps in order to robustify the prediction of steady-state abundance. Once trained, 
the inference in such models is achieved by ignoring the ground truth abundances and using the 
predicted abundance from previous instant to roll forward the model in time. Teacher forcing was 
used to train the LSTM in all cases where intermediate time points were measured (Figures  1, 
2 and 5), as opposed to cases that only included initial and final time points (Figures  3 and 4). 

Metabolite profiling
Microbial communities are a rich source of a variety of metabolites that are very commonly used as 
nutritional supplements, natural compounds to cure infectious diseases and in sustainable agricul-
ture development. The concentration and chemical diversities of metabolites produced in a microbial 
community is a direct consequence of the diversity of interactions between organisms in the commu-
nity. In essence, the dynamical evolution of relative species abundance and intra-community interac-
tions govern the nature and amount of metabolites produced in the community. The functional map 
between species abundance and concentration of metabolites is highly complex and nonlinear, and 
is often approximated using simple regressors involving unary and pairwise interaction terms. In this 
paper, we model the species-metabolite map through appropriate modification of the LSTM network.

The aforementioned LSTM network for predicting the species abundance is suitably modified to 
augment four additional components that correspond to the concentration of metabolites at each 

https://doi.org/10.7554/eLife.73870
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time instant. In particular, the species abundance data (of size ‍Nspecies‍) is concatenated with the metab-
olite concentration data (of size ‍Nmetabs‍) to form a ‍(Nspecies + Nmetabs)‍-dimensional feature vector, which 
is suitably normalized so that the different components have zero mean and unity variance. The feature 
scaling is important to prevent over reliance on features with a broad range of values. Concatenation 
of species abundance data and the metabolite concentration data ensures that the future trajectory of 
metabolite concentrations evolves as a function of both the species abundance, as well as the metab-
olite concentrations at previous time instants. As before, the ‍(Nspecies + Nmetabs)‍-dimensional output of 
each LSTM unit is fed into the input block of the subsequent LSTM unit in order to advance the model 
forward in time. The model predictions at each time point is then transformed back to the original 
scale in order to obtain the Pearson ‍R2‍ scores on the unnormalized data. Compared with existing 
approaches that employ ordinary differential equations (ODEs) and multiple linear regression models 
for predicting metabolites, the proposed architecture enables more accurate and rapid estimation 
of all four metabolites. All the LSTM models were implemented in Python using PyTorch on an Intel 
i7-7700HQ CPU @2.80 GHz processor with 16 GB RAM and NVIDIA GeForce GTX 1060 (6GB GDDR5) 
GPU. The exact details of the neural network architecture consisting of number of layers, learning 
rate, choices of optimizer and nonlinear activations are described in Supplementary file 1.

Data preprocessing for LSTM networks
Data normalization is one of the most widely adopted practices for efficient training of neural networks. 
Data normalization is known to speed up the training leading to faster convergence. At the same time, 
when working with multi-modal data or data with features represented at multiple scales, it is recom-
mended to normalize the features (also known as feature standardization) to the same scale in order to 
avoid over reliance on features with large magnitudes. A common choice for feature standardization 
is to have zero-mean and unit-variance for each feature in the data. Let ‍x

(n)
i (k)‍ and ‍c

(n)
j (k)‍ represent 

the abundance of the ‍ith‍-species and concentration of the ‍jth‍-metabolite at the ‍kth‍ time instant for 
the ‍nth‍ sample. The mean and standard deviation of the quantities ‍{x(n)

i (k)}‍ and ‍{c(n)
j (k)}‍ can then be 

computed over the training dataset defined by:

	﻿‍

µxi (k) = 1
Nsamples

Nsamples∑
n=1

x(n)
i (k), µcj (k) = 1

Nsamples

Nsamples∑
n=1

c(n)
j (k),

σxi (k) =

���� 1
Nsamples

Nsamples∑
n=1

(x(n)
i (k) − µxi (k))2, σcj (k) =

���� 1
Nsamples

Nsamples∑
n=1

(c(n)
j (k) − µcj (k))2.

‍�

The quantities can then be standardized as:

	﻿‍

x̃(n)
i (k) :

x(n)
i (k) − µxi (k)

σxi (k)
,

c̃(n)
j (k) :

c(n)
j (k) − µcj (k)

σcj (k)
.
‍�

The process is repeated for all species and metabolites at each time-point, and the scaled inputs 

‍{x̃(n)
i (k)}‍ and ‍{c̃(n)

j (k)}‍ are then fed to the LSTM neural networks for prediction. During inference on 
the test data, the normalized output of each LSTM unit is inversely transformed back to its original 
scale using the precomputed ‍{µxi (k),σxi (k)}‍ and ‍{µcj (k),σcj (k)}‍. The readers are encouraged to refer to 
Goodfellow et al., 2016; Zheng and Casari, 2018 for additional details on feature standardization. 
It is also not uncommon to normalize the data with respect to the mean and standard deviation of 
the entire dataset (and not just with respect to the training dataset). However, in practical scenarios, 
the test data is not known a priori, and thus it is undesirable to employ statistics from the hold-out 
test data for feature standardization. In our implementation of data preprocessing for LSTM networks, 
we had employed feature standardization using (a) training data only, and (b) both training and test 
data. The predictive performance of our LSTM models was nearly identical for both of these feature 
standardization approaches. The feature standardization can be toggled by the normalize_all variable 
in our open-source implementation.

https://doi.org/10.7554/eLife.73870
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Hyperparameter tuning for LSTM networks
Similar to other learning algorithms, training an LSTM network entails choosing a set of hyperparam-
eters for optimal performance. We used an exhaustive grid-search for hyperparameter optimization, 
while the choice of learning algorithm (optimizer) was restricted to Adam (Kingma and Ba, 2014) 
due to its superior empirical performance. For each experiment, nearly 10% of the training dataset 
was reserved as a cross-validation set, and the performances of the trained models were evaluated 
using cross-validation sets. This information was used to select the best hyperparameter settings. The 
choices for hyperparameters include: (a) learning rate, (b) number of hidden layers per LSTM unit, (c) 
number of units per layer within an LSTM unit, (d) mini-batch size, and (e) input data normalization. 
The input features are normalized to have zero mean and unit variance. The choices of learning rates 
include 0.005, 0.001, and 0.0001, respectively, each with a decay of 0.25 after every 25 epochs. The 
gradual decay in learning rates prevents potential overfitting to the data. An L2 regularization term 
with a very small weight decay coefficient (‍10−5‍) is augmented to the loss function for preventing 
further overfitting. Choices for mini-batch size included 1, 10, 20, and 50, respectively. It was observed 
that sizes 10 and 20 resulted in improved training loss, and hence we used mini-batch sizes of 10 or 
20 in all evaluations. The number of hidden layers per LSTM cell was iterated from 1 to 2. A two-
layered LSTM did not result in any noticeable improvement over a single-layered LSTM cell, and thus 
we restricted our focus to just a single-layered LSTM cell for the sake of simplicity and faster training/
inference. Finally, we tried 512, 1024, 2048, and 4096 hidden units per LSTM cell, and depending 
upon the complexity of the problem, we used 2048 hidden units (predictions of species and no predic-
tion of metabolites) or 4096 hidden units (simultaneous prediction of species and metabolites). The 
exact details on the number of training epochs, learning rates, decay rates for different experiments 
can be found in the Supplementary file 1.

Specific applications of computational methods
Comparison of gLV and LSTM in silico (Figure 1)
To compare the LSTM and gLV models, we used a ground truth model of a 25-species community of 
the form:

	﻿‍

dxi(t)
dt =




ri +
Nspecies∑

j=1
aijxj(t) +

Nspecies∑
j=1
j̸=i

Nspecies∑
k=1
k̸=i,j

bijkxj(t)xk(t)




xi(t),

‍�

(4)

where and represent individual species exponential growth rate and pairwise interaction coeffi-
cients, respectively. The parameters represent the effect of third-order interactions. The parameters 
and were derived from a gLV model in a previous study (Clark et  al., 2021). We consider three 
types of simulation studies, each corresponding to varying contributions of the third-order interac-
tions (second-order only: , mild third-order: uniformly sampling in the range , moderate third order: 
uniformly sampling in the range ). In each scenario, the ground truth data was generated for 624 
training communities (25 monospecies, 300 two-member, 100 three-member, 100 five-member, and 
99 six-member communities) by simulating the species abundance trajectories over the course of 
48  hr and ‘sampling’ every 8  hr. The values from these ‘sampled’ time points were used to train 
both an LSTM model (methods described above in ‘Computational Methods’ with specific details in 
Supplementary file 1) and a standard gLV model (trained using FMINCON function in MATLAB as 
described previously [Clark et al., 2021]). These two models were then used to predict a set of 3299 
hold-out communities >10 species simulated using the same ground truth model. For an additional 
analyses, the training data for the LSTM was augmented by including ground truth data for an addi-
tional 100 communities with 11 or 19 species.

LSTM training for experimental 12-species community (Figure 2)
The data used in this analysis consisted of 175 microbial community subsets of a 12-species commu-
nity sampled every 12 hr for 60 hr (Venturelli et al., 2018). Of these communities, 102 were chosen 
randomly to constitute the training data and the remaining 73 constituted the hold-out set. The LSTM 
was trained as described above in ‘Computational Methods’ with specific details in Supplementary 
file 1.

https://doi.org/10.7554/eLife.73870
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Using LSTM Model to design multifunctional communities (Figure 3)
We used the LSTM model trained on previous data (Figure 3a) to design two sets of communities: a 
‘distributed’ community set and a ‘corner’ community set. For the ‘distributed’ community set, we first 
took the predicted metabolite concentrations for all communities with .10 species and used ‍k‍-means 
clustering with ‍k = 100‍ (Python 3, scikit-learn v0.23.1, sklearn.cluster.Kmeans function) to identify 100 
cluster centroids that were distributed across all of the predictions. We then found the closest commu-
nity to each centroid in terms of Euclidean distance in the four-dimensional metabolite concentration 
space. These 100 communities constituted the ‘distributed’ community set.

For the ‘corner’ community set, we first defined four ‘corners’ in the lactate and butyrate concen-
tration space by binning all communities with .10 species as shown in Figure 3b:

1.	 5% lowest lactate concentration communities, then 5% lowest butyrate concentration of those
2.	 5% lowest lactate concentration communities, then 5% highest butyrate concentration of those
3.	 5% lowest butyrate concentration communities, then 5% lowest lactate concentration of those
4.	 5% lowest butyrate concentration communities, then 5% highest lactate concentration of those.

Within each of those four ‘corners’, we identified four ‘sub-corners’ in the acetate and succinate 
concentration space by binning communities as shown in Figure 3b:

1.	 5% lowest acetate concentration communities, then 5% lowest succinate concentration of those
2.	 5% lowest acetate concentration communities, then 5% highest succinate concentration of 

those
3.	 5% lowest succinate concentration communities, then 5% lowest acetate concentration of those
4.	 5% lowest succinate concentration communities, then 5% highest acetate concentration of 

those

This process resulted in 16 ‘sub-corners’ total. For each ‘sub-corner’, we then chose a random 
community and then identified four more communities that were maximally different from that 
community in terms of which species were present (Hamming distance). This overall process resulted 
in 80 communities constituting the ‘corner’ community set.

Composite model: gLV model for predicting species abundance (Figure 3)
To benchmark the performance of the LSTM model for predicting metabolite production, we used 
a previously described Composite Model consisting of a generalized Lotka-Volterra (gLV) model for 
predicting species abundance dynamics and a regression model with interaction terms to predict 
metabolite concentration at a given time from the species abundances at that time (Clark et  al., 
2021). Because our LSTM model was trained on the same dataset as Composite Model M3 from Clark 
et al., 2021, we used those gLV model parameters.

Composite model: regression models for predicting metabolite concentra-
tions (Figure 3)
Our composite model implementation is similar to the model described in Clark et  al., 2021 for 
predicting metabolite concentration from community composition at a particular time. We used the 
exact gLV model parameter distributions obtained by Clark et  al., 2021, which were determined 
using an approach based on Shin et  al., 2019. The regression model mapping endpoint species 
abundance to metabolite concentrations from Clark et  al., 2021 was focused specifically on the 
prediction of butyrate. Therefore, we adapted the approach to prediction of multiple metabolites. 
First, we modified the model form to include first order and interaction terms for all 25 species, 
rather than just the butyrate producers. Then, we separately trained four regression models, one for 
each metabolite (butyrate, lactate, acetate, succinate), using the measured species abundance and 
measured metabolite concentrations from the same dataset used to train the LSTM model. We trained 
these models as described previously (Clark et al., 2021) by using Python scikit-learn (Pedregosa, 
2011) and performed L1 regularization to minimize the number of nonzero parameters. Regularization 
coefficients were chosen by using 10-fold cross validation. We selected the regularization coefficient 
value with the lowest median mean-squared error across the training splits.

For predicting end-point metabolite profiles from initial species abundance using the LSTM network, 
a feed-forward network (FFN) was used at the output of the last LSTM unit to convert end-point 
species abundance to end-point metabolite concentrations. On the other hand, the composite model 

https://doi.org/10.7554/eLife.73870
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in Clark et al., 2021 uses multiple linear regressors at its output to predict a given metabolite concen-
tration from species abundance. At this point, it is still unclear if the superior performance of LSTM 
network is due to the addition of a more powerful FFN at its output over the multiple linear regressors 
at the output of the composite model. Therefore, we replaced the simple multiple linear regressors 
component of the composite model from Clark et al., 2021 with a Random Forest regressor (Segal, 
2004) or a FFN. However, neither of these additions improved the metabolite prediction accuracy 
beyond that of the LSTM with a FFN (Figure 3—figure supplement 3a).

Composite model: simulations for prediction (Figure 3)
Custom MATLAB scripts were used to predict community assembly using the gLV model as described 
previously (Clark et al., 2021). For each community, the growth dynamics were simulated using each 
parameter set from the posterior distribution of the gLV model parameters. The resulting community 
compositions for each simulation at 48 hr were used as an input to the regression models (multiple 
linear regression/Random Forest/FFN) implemented in Python to predict the concentration of each 
metabolite in each community for each gLV parameter set. Because of the large number of commu-
nities and the large number of parameter sets (i.e., hundreds of simulations per community), we used 
parallel computing (MATLAB parfor) to complete the simulations in a reasonable timeframe (∼1 hr for 
the communities in Figure 3—figure supplement 3a).

Understanding relationships between variables using LIME (Figure 3)
Black-box methods, such as the LSTM-networks employed in this manuscript, do not offer much 
insights into the underlying mechanics that make them so powerful. Consequently, any potential 
pitfalls that may come along with building such models remain unexplored. For networks that are of 
significant biological importance, basing assumptions on falsehoods can be catastrophic. We over-
come this limitation by resorting to Local Interpretable Model-Agnostic Explanations (LIME) (Ribeiro 
et al., 2016a).

LIME has three key components: (a) Local, that is, any explanation reflects the behavior of a clas-
sifier around the sampled instance, (b) Interpretability, that is, the explanations offered by LIME are 
interpretable by human, (c) Model-Agnostic, that is, LIME does not require to peak into any model. 
It generates explanations by analyzing the model’s behavior for an input perturbed around its neigh-
borhood. In this manuscript, we employ LIME to explain both qualitatively and quantitatively, as to 
how the abundances of various species affect the concentrations of all four metabolites, and if the 
presence or absence of a given species has any significance on the resulting metabolite profile.

We carried out the LIME analysis to generate interpretable prediction explanations for model M2 
for each community instance used to train the model. We used lime v0.2.0.1 for Python 3 (https://​
github.com/marcotcr/lime; Ribeiro, 2021) to train an explainer on the predictions of the training 
instances for each output variable (25 species, 4 metabolites) and then generated explanation tables 
for every input variable (species presence/absence) for every training instance. We then determined 
the median value for which the presence of a given species explained the prediction for each output 
variable to generate the networks in Figure 3d, e.

In a separate analysis, we investigated the sensitivity of LIME explanations to the training data used 
to fit the LSTM model. Because the purpose of this analysis was to understand the variability in LIME 
explanations and not to understand the dependence of LIME explanations on different communities, 
we only considered LIME explanations of the full community. This is in contrast to the LIME explana-
tions shown in Figure 3d, e, which present the median LIME explanation taken over all of the commu-
nities in the training data. Training data was varied using 20-fold cross-validation, and LIME sensitivity 
of both metabolites (Figure 3—figure supplement 5) and species (Figure 3—figure supplement 6) 
was computed after fitting the LSTM model to each partition of the training data.

Understanding relationships between variables using prediction sensitivity 
(Figure 4)
For each metabolite (Acetate, Butyrate, Lactate, Succinate), fractions of 0.5, 0.6, 0.7, 0.8, 0.9, and 1 of 
the total dataset were randomly sampled. Each sub-sampled dataset was subject to 20-fold cross vali-
dation to determine the sensitivity of held-out prediction performance to the amount of data available 

https://doi.org/10.7554/eLife.73870
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for training. This process was repeated 30 times, and the average prediction over the 30 trials was 
used to compute the final held-out prediction performance (‍R2‍).

The sensitivity of the model to the presence of individual species and pairs of species was deter-
mined by evaluating prediction performance (‍R2‍) for subsets of the data containing each species 
and each possible pair of species. To evaluate how prediction performance of each metabolite was 
affected by the presence of species pairs, we computed the average percent difference between 
prediction performance taken over subsets containing a single species and all pairs of species using 
the following equation:

	﻿‍
Pairwise sensitivity = 100

N2
species

∑Nspecies
i=1

∑Nspecies
j ̸=i

R2
ij−R2

i
R2

i
,
‍�

(5)

where ‍R
2
i ‍ is the prediction performance taken over the subset of samples containing species ‍‍, and 

‍R
2
ij‍ is the prediction performance taken over the subset of samples containing species ‍‍ and ‍j‍.

Clustering metabolite trajectories (Figure 5)
To generate the clusters from the dynamic community observations (Figure 5), we used a graph-
theoretic divisive clustering algorithm (Jain et al., 1999) based on the minimal spanning tree (Zahn, 
1971). We first generated an undirected graph wherein each node was a community observed in our 
experiment and each edge weight was the Euclidean distance between two communities based on 
all metabolite measurements (4 metabolites ×3  time points = 12-dimensional space for Euclidean 
distance calculation). We then determined the minimal spanning tree for this graph using the 
minimum_spanning_tree function in networkx (v2.1) for Python 3. We then used this minimal spanning 
tree to generate clusters by iteratively removing the edge with the largest weight until 6 clusters were 
formed. In each iteration, if any edge removal resulted in a cluster with <5 communities (i.e. minimum 
cluster size), that edge was returned and the next largest edge was removed. The number of clusters 
and minimum cluster size were chosen based on an elbow method (Pal and Biswas, 1997), wherein 
scatter plots were made of the mean intracluster distance versus the number of clusters for various 
minimum cluster sizes and a combination of minimum cluster size and number of clusters that fell on 
the elbow of the plot was chosen.

Decision tree classification of metabolite trajectories (Figure 5)
The decision tree shown in Figure 5—figure supplement 1d and used to produce the annotations 
in Figure 5a was generated using the DecisionTreeClassifier with the default parameter settings in 
scikit-learn (v0.23.1) for Python 3 (visualization generated using plot_tree function from the same).

Understanding relationships between variables using sensitivity gradients 
(Figure 5)
Interpretability of neural-network (NN) models continues to be an interesting challenge in machine 
learning. While LIME is a great tool to explain what machine learning classifiers are doing, it is model-
agnostic and uses simple linear models to approximate local behavior. Model-agnostic characteristic 
enforces retraining linear models on the training data and analyzing local perturbations, before LIME 
can be used to invoke interpretability. Moreover, the type of modifications that need to be performed 
on the data to get proper explanations are typically use case specific. Consequently, model-aware 
interpretability methods that take into account the weights of an already trained NN are more suitable.

For tasks, such as classification of images and videos, there is a natural way to interpret NN models 
using class activation maps (CAMs) (Selvaraju et al., 2017). CAMs assign appropriate weighting to 
different convolutional filters and highlights part of the images that activate a given output class the 
most. However, CAMs do not extend to other NN architectures, such as LSTMs. Fortunately for us, 
the answer to interpretability lies in the model training itself. Let ‍Y ‍ be the output variable of interest 
whose perturbation with respect to an input ‍x‍ needs to be estimated. The effect of ‍x‍ on ‍Y ‍ can be 

approximated through the partial derivative 
‍
∂Y
∂x ‍

. For instance, ‍Y ‍ may denote butyrate concentration in 

an experiment, while ‍x‍ can be used to represent abundance of a given species. The sign of the partial 
derivative depicts positive (or negative) correlation between the two variables, while the magnitude 
represents the extent of it. In order to evaluate the partial derivatives, we freeze the weights of the 
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already trained LSTM model and declare the inputs to be variables. A single backpropagation pass 
then evaluates the partial derivatives of an output variable of interest with respect to all the input vari-
ables. This is in contrast to LIME-based interpretability method, which requires training an additional 
model on top of an already trained deep learning model. Most deep learning libraries already imple-
ment a computational graph for performing efficient forward and backward passes during the training 
phase. This computational graph can be used to evaluate sensitivity gradients.

There indeed are other methods for explanation of neural networks, most notably the Shapley 
explainability method (Lundberg and Lee, 2017). This method is substantially more computationally 
burdensome than LIME or a sensitivity gradient based method (Jia, 2019a; Jia, 2019b). LIME and 
sensitivity gradients are based on first-order perturbations around the already learned model, and can 
be used to depict local model behavior with little to no computational burden. By contrast, explain-
ability methods like Shapley are computationally expensive. An exact computation of Shapley values 
for a ‍K ‍-dimensional input requires estimating ‍2K ‍ possible coalitions of the feature values and the 
“absence” of a feature has to be simulated by drawing random instances, which increases the variance 
for the estimate of the Shapley values estimation.

Comparison of the discretized gLV model to the LSTM (Figure 5—figure 
supplement 3)
To train the gLV model using the same algorithm used to train the LSTM and enable metabolite 
prediction, the gLV model was discretized and augmented with a feed-forward neural network. 
The approximate gLV model is

	﻿‍

x(t+1)
i = x(t)

i


ri +

Nspecies∑
j=1

aijx(t)
j


 ,

c(t+1)
i = FFN(x(t+1)

i ), ‍�

where ‍xi‍ is the abundance of species ‍‍, ‍ri‍ is the growth rate of species ‍‍, ‍aij‍ represents the impact 
of species ‍j‍ on species ‍‍, and ‍ci‍ is the concentration of metabolite ‍‍. Metabolite concentrations at time 
step ‍t‍ are predicted using a feed-forward neural network (FFN). The structure of the discretized gLV 
model requires that all species abundances are strictly non-negative. When training the gLV, the data 
were pre-processed such that each feature (species abundance and metabolite concentration) ranges 
between zero and one based on the maximum value of each feature in the training data, computed 
at each time step. This is in contrast to the scaling used for the LSTM, which results in negative values 
for transformed species abundances. The stochastic gradient descent algorithm was used to train the 
LSTM and the discretized gLV model, using the Adam (Kingma and Ba, 2014) optimizer. The default 
settings of the Pytorch function, ReduceLROnPlateau, were used to adjust the learning rate during 
training. Species growth rates, ‍ri‍, and interaction coefficients, ‍aij‍, were initialized to zero prior to fitting.
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