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Abstract— The centralized power generation infrastruc-
ture that defines the North American electric grid is slowly
moving to the distributed architecture due to the explosion
in use of renewable generation and distributed energy re-
sources (DERs), such as residential solar, wind turbines
and battery storage. Furthermore, variable pricing policies
and profusion of flexible loads entail frequent and severe
changes in power outputs required from the individual
generation units, requiring fast availability of power alloca-
tion. To this end, a fixed-time convergent, fully distributed
economic dispatch algorithm for scheduling optimal power
generation among a set of DERs is proposed. The proposed
algorithm incorporates both load balance and generation
capacity constraints.

Index Terms— Distributed algorithms, Optimization, Non-
linear control systems, Power generation dispatch

I. INTRODUCTION

ECONOMIC dispatch (ED) is one of the key optimization
issues in power systems, and concerns with optimal

allocation of power output from a number of generators in
order to meet the system load requirements at the lowest
possible cost, subject to operation constraints on generators
[1]. Various analytical and heuristic techniques have been
proposed to address the ED problem including, but not limited
to, Newton-Raphson gradient descent [2], using optimized
transition matrix [3], and estimating power mismatch [4].
However, these methods address the ED problem in a cen-
tralized manner, where a global control center processes the
information and implements the centralized dispatch algo-
rithms, requiring access to global quantities, such as load
and generator output values of each node in the network.
While centralized architectures offer easy implementation of
ED algorithms, they are vulnerable to single-point failures. In
addition, centralized ED algorithms do not scale well with the
number of generators and need restructuring as the power sys-
tem evolves with time [5]. To increase robustness, scalability
and efficiency, the centralized power generation infrastructure
is slowly moving towards a distributed implementation. As a
consequence, several distributed dispatch algorithms have been
proposed in the recent years [5], [6]. Distributed architectures
avoid single-point failures and offer plug-and-play capabilities,
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where a DER can be added or removed from an existing power
system in a communication agnostic fashion.

An ED problem with load balance constraint can be for-
mulated as a constrained optimization problem, characterized
by a Lagrange multiplier corresponding to the constraint.
This Lagrange multiplier is often referred as the incremental
cost, and must be equal for all generators at optimality
[7]. Thus a centralized ED problem can be addressed in a
distributed manner by reaching consensus on incremental cost
associated with each generation unit. Several consensus based
approaches, namely the incremental cost consensus (ICC) [7],
ratio consensus method [8], and distributed gradient method
[9] have been proposed as viable alternatives of the centralized
ED method. While these methods do alleviate some of the
major issues associated with centralized ED algorithms, they
have their own disadvantages. For instance, the algorithm in
[10] requires global information about power output from each
generator, as well as the total load demand.

As the power systems become more complex due to in-
creased penetration of DERs, flexible loads and dynamic
pricing, power outputs required from every generation units
undergo frequent and severe changes, and thus it is crucial to
investigate distributed ED algorithms with fast convergence
characteristics. Recent works, such as [5], [6], investigate
distributed nonlinear protocols that guarantee consensus on
incremental costs associated with each generation unit, as
well as its convergence to optimal solution in a finite time.
The notion of finite-time stability of dynamical systems was
introduced by the authors in [11], guaranteeing convergence to
the equilibrium point within a finite time. The algorithms pro-
posed in [5], [6] are based either on the finite-time consensus
protocol [12] or the finite-time average consensus algorithm
(FACA) [13]. However, convergence time, even though finite,
depends on the initial values of the individual incremental
costs, and increase as in the initial conditions go farther away
from the equilibrium point. Fixed-time convergence [14] is a
stronger notion of convergence, where convergence-time does
not depend upon the initial values of the incremental costs.
In this paper, a distributed fixed-time algorithm is proposed or
time-varying communication graphs and additive uncertainties.
The key contributions of this paper are:
Fixed-time convergence: A novel fixed-time consensus al-
gorithm is proposed, and employed to solve large-scale dis-
tributed ED problem, within a user-specified fixed-time.
Time-varying communication topology: Different from the



physical architecture of the power system and in contrast to
most of the aforementioned work on finite-time approaches,
the proposed framework allows for a separate communication
network, the topology of which is allowed to vary with time.
Robustness to additive disturbances: The fixed-time consen-
sus algorithm developed in this paper is designed to be robust
with respect to a class of additive disturbances.
Consistent discretization: A rate-matching discretization
scheme is discussed, which allows the mentioned convergence
properties to be preserved for discretized implementation.

II. PRELIMINARIES
A. Notation

We use R, R+ to denote the set of reals and non-negative
reals, respectively. G = (A,V) represents an undirected graph
with adjacency matrix A = [aij ] ∈ RN×N , aij ∈ {0, 1}
and set of nodes V = {1, 2, · · · , N}. Ni represents the set
of 1-hop neighbors of node i. In particular, it follows that∑N
j=1 aijfj(·) =

∑
j∈Ni fj(·) for any function fj(·). Λ2(·)

represents the second smallest eigenvalue of a matrix. Finally,
for any x ∈ R, we define function sgnµ : R → R as:
sgnµ(x) = |x|µsign(x), µ > 0, with sgn(x) , sign(x).

B. Fixed-time stability (FxTS)
Consider the following dynamical system:

ẋ(t) = f(x(t)), (1)

where x ∈ Rd, f : Rd → Rd is a continuous function with
f(0) = 0. As defined in [14], the origin is said to be a fixed-
time stable (FxTS) equilibrium of (1) if it is Lyapunov stable
and limt→T x(t) = 0, where T <∞ is independent of x(0).

Lemma 1 ([14]). Suppose there exists a positive definite func-
tion V for system (1) such that V̇ (x(t)) ≤ −a(V (x(t)))p −
b(V (x(t)))q with a, b > 0, 0 < p < 1 and q > 1. Then,
the origin of (1) is FxTS with settling time function satisfying
T ≤ 1

a(1−p) + 1
b(q−1) .

C. Overview of graph theory
This subsection presents some Lemmas from graph theory

and other inequalities that will be useful later.

Lemma 2 ([15]). Let ti ≥ 0 for i ∈ {1, 2, · · · , N}, then:∑N

i=1
tpi ≥

(∑N

i=1
ti

)p
, 0 < p ≤ 1, (2a)∑N

i=1
tpi ≥ N

1−p
(∑N

i=1
ti

)p
, p > 1. (2b)

Lemma 3. 1Let G be a graph consisting of N nodes and xi ∈
Rd for i ∈ {1, 2, · · · , N} and Ni denotes the in-neighbors of
node i. Then,

∑N
i=1

∑
j∈Ni sign(xi − xj) = 0.

Lemma 4. 1Let w : Rd → Rd be an odd function, i.e., w(x) =
−w(−x) for all x ∈ Rd and let the graph G = (A,V) be
undirected. Let {xi} and {ei} be the sets of vectors with i ∈ V
and xij , xi−xj and eij , ei−ej . Then, the following holds∑N

i,j=1
aije

T
i w(xij) =

1

2

∑N

i,j=1
aije

T
ijw(xij). (3)

1 The proof is a simple consequence of the fact that the function sign(x)
is odd symmetric about zero.

Lemma 5 ([16]). Let G = (A,V) be an undirected, connected
graph. Let LA = [lij ] ∈ RN×N be its Laplacian matrix

defined as lij =


N∑

k=1,k 6=i
aik, i = j

−aij , i 6= j

. Then, Laplacian LA

has following properties:
1) LA1N = 0N and Λ2(LA) > 0.
2) xTLAx = 0.5

∑N
i,j=1 aij(xj − xi)2.

D. Problem formulation
This work concerns with finding optimal power dispatch

from a network of N generators in a smart grid, under load
balance (equality) and generation (inequality) constraints. Let
Ci(·) be the cost associated with power generation for the ith
generator. The traditional ED problem is described as [5]:

min
{Pi}

N∑
i=1

αiP
2
i + βiPi + γi︸ ︷︷ ︸
Ci(Pi)

,

subject to
N∑
i=1

Pi =

m∑
j=1

PLj = Ptot, (4)

Pmin
i ≤ Pi ≤ Pmax

i ,

where Pi, Pmin
i and Pmax

i denote the power dispatched, mini-
mum generation capability and maximum generation capabil-
ity of the ith generator, respectively. Ptot is the total power
demanded by a network of m loads, whereas PLj indicates
power requirement from the jth load. Here, αi, βi, γi > 0
are the cost coefficients associated with the ith generator. The
equality constraint ensures that the total power generated by
all the sources meets the total load power requirement.

E. Optimal solution without generation constraints
To gain relevant insights into the role of incremental cost,

we first consider the problem of ED without generation
constraints. The Lagrangian L(·) associated with ED problem
in this case can be formulated as:

L({Pi}, λ) =
∑N

i=1
Ci(Pi) + λ

(
Ptot −

∑N

i=1
Pi

)
, (5)

where λ is the incremental cost or the Lagrange multiplier
associated with the equality constraint. Let {P ∗i } and λ∗

denote the optimal dispatch and incremental cost, respectively.
Then the first-order condition of optimality yields:

P ∗i =
λ∗ − βi

2αi
≥ 0, i = 1, 2, . . . , N. (6)

The optimal incremental cost λ∗ can be obtained from the
equality constraint as:

λ∗ =

(
Ptot +

∑N

i=1

βi
2αi

)/(∑N

i=1

1

2αi

)
. (7)

In a distributed setting, different sources seek to estimate
optimal incremental cost λ∗. Once the optimal incremental
cost is known, optimal power dispatch for each generator can
be obtained using (6).

F. Optimal solution with generation constraints
When generation limits are considered, then the optimal

dispatch {P ∗i } and incremental cost λ∗ satisfy the following
relationship : 2αiP

∗
i + βi = λ∗, for Pmin

i < P ∗i < Pmax
i ,

2αiP
∗
i + βi < λ∗, for P ∗i = Pmax

i ,

2αiP
∗
i + βi > λ∗, for P ∗i = Pmin

i .

(8)



If Pmax
i → ∞ and Pmin

i → 0 for all i, i.e., if there are
no generation constraints, then the optimal incremental cost
satisfies the equality constraint in (8), which is identical to
(6) for the uncapacitated case. However, in the presence of
generation constraints, (6) does not provide the correct optimal
solution for (4). However, optimal incremental costs for the
uncapacitated ED problem and (4) are related as follows. Let
Θ be the set of generators for which saturated optimal dispatch
values, i.e., P ∗i = Pmin

i or P ∗i = Pmax
i for all i ∈ Θ. Then,

from (8), it follows that:
λ∗ = 2αiP

∗
i + βi, i /∈ Θ,

⇒ λ∗ = λ̃∗ +

∑
i∈Θ

(
λ̃∗−2αiPi−βi

2αi

)
∑
i/∈Θ

1
2αi

, (9)

where λ̃∗ =
Ptot +

∑N
i=1

βi
2αi∑N

i=1
1

2αi

is the incremental cost for a

related ED problem without generation constraints (7) (see,
e.g., [5], [6] for more details). This relationship between λ̃∗

and λ∗ is utilized in the main algorithm proposed in the paper
to address the ED problem with generation constraints.

III. DISTRIBUTED FXTS ALGORITHM

A. Without generation constraints
We first present our main results on solving distributed ED

problem without generation constraints in a fixed time. The ap-
proach is based on designing a fixed-time consensus protocol
on incremental costs {λi}, such that for the average consensus,
(6) is satisfied. Any node at which several components of the
power system, such as generator and loads are connected, is
referred as a bus in electrical parlance. To this end, we make
the following assumptions on the communication topology.
Assumption 1. Communication topology between the gener-
ator buses A(t) is connected and undirected for all t ≥ 0.
Assumption 2. Each generator bus can exchange information
only with its neighboring bus.

The active power Pi for the ith generator is updated as:
Ṗi(t) = p

∑
j∈Ni(t)

(
sgn(λj(t)− λi(t)) + sgnµ1(λj(t)− λi(t))

+ sgnµ2(λj(t)− λi(t))
)

+ ωi(t), (10)

with p > 0, 0 < µ1 < 1, µ2 > 1 and Pi(0) =
∑m
k=1 dikPLk .

Constants µ1, µ2 are chosen such that the functions sgnµ1(·)
and sgnµ2(·) are odd in their arguments. The function ωi :
R+ → R models the uncertainty arising at the ith bus during
computation of active power dispatch using (10). We make the
following assumption on the noise ωi.
Assumption 3. Additive noise ωi is zero-mean and uniformly
bounded for each i = {1, 2, . . . , N}.

Note that the communication topology is allowed to vary
with time, and thus the neighborhood set Ni(·) is a function
of time. It is assumed that there are m load buses in the power
system, and the quantity PLk denotes the power demanded by
the kth load bus, and dik represents the binary association
between the generator bus i and the load bus k, defined as:

dik =

{
1, if buses i and k are neighbors,
0, otherwise.

Remark 1. Inclusion of {dik} ensures that any load bus
is required to communicate its power demand only with its

nearest generator bus, i.e.,
∑N
i=1 dik = 1 for all k. Therefore,∑N

i=1

∑m
k=1 dikPLk = Ptot. Furthermore, from (10), Assump-

tion 2 and Lemma 3, it can be shown that

E

[
N∑
i=1

Ṗi(t)

]
= 0 ⇒ E

[
N∑
i=1

Pi(t)

]
=

N∑
i=1

Pi(0) , Ptot.

Thus the update law (10) ensures that the load balance
constraint is satisfied at all times.

In what follows, we omit the time-variable t. The incremen-
tal cost associated with generator bus i is updated as:

λ̇i
2αi

= Ṗi + sgnν1
(
Pi −

λi − βi
2αi

)
+ sgnν2

(
Pi −

λi − βi
2αi

)
= p

N∑
j=1

aij
[
sgn(λj−λi) + sgnµ1(λj−λi) + sgnµ2(λj−λi)

]
+sgnν1

(
Pi−

λi − βi
2αi

)
+ sgnν2

(
Pi−

λi − βi
2αi

)
+ωi, (11)

where 0 < ν1 < 1 and ν2 > 1. As before, constants ν1, ν2 are
chosen such that the functions sgnν1(·) and sgnν2(·) are odd
in their arguments. Note that the update laws (10) and (11) for
scheduled dispatch values and incremental costs only require
information from the local bus and its neighboring buses. Thus,
the proposed approach is fully distributed. We now show that
under the proposed update laws, {λi} and {Pi} converge to
their optimal values in a fixed-time even in the presence of
additive uncertainty ωi.

Theorem 1. Let the update equations for scheduled dispatch
and incremental costs be given by (10)-(11). Then, there exists

T1 <∞ such that for all t ≥ T1, Pi(t) =
λi(t)− βi

2αi
, for all

λi(0) ∈ R, i ∈ {1, 2, · · · , N}.

Proof. Let ei = Pi − λi−βi
2αi

for all i ∈ {1, . . . , N} and V =
1

2

∑N
i=1 e

2
i whose time derivative along (10)-(11) reads

V̇ =

N∑
i=1

ei

(
Ṗi −

λ̇i
2αi

)
= −

N∑
i=1

|ei|1+ν1 −
N∑
i=1

|ei|1+ν2

(2)
≤ −

(∑N

i=1
|ei|2

) 1+ν1
2

− 1

N
ν2−1

2

(∑N

i=1
|ei|2

) 1+ν2
2

= −2
1+ν1

2 V
1+ν1

2 − 2
1+ν2

2

N
ν2−1

2

V
1+ν2

2 .

Hence, per Lemma 1, there exists T1 <∞ satisfying

T1 ≤
2

2
1+ν1

2 (1− ν1)
+

2N
ν2−1

2

2
1+ν2

2 (ν2 − 1)
, (12)

such that for all t ≥ T1, V (t) = 0, i.e., Pi(t) = λi(t)−βi
2αi

for
all i ∈ {1, 2, · · · , N}, independent of {λi(0)}. �

The following theorem shows that the buses reach consensus
on the incremental costs {λi} in a fixed-time in the presence of
additive uncertainty ωi, resulting in generator powers attaining
their optimal values, per discussion in Section II-E.

Theorem 2 (Fixed-time consensus). Let p ≥
2∆
√

Nαmax
Λ2(LA)αmin

, where αmax = maxi αi, αmin = mini αi,

Γ = 1
/∑N

i=1
1

2αi
and ∆ = supt≥0 maxi |ωi(t) −



Γ
2αiN

∑N
j=1 ωj(t)|. Then, under the effect of update laws

described by (10)-(11), there exists T2 <∞, such that for all
t ≥ T1 + T2, λi(t) = λj(t) for all i 6= j, i, j ∈ {1, . . . , N},
where T1 satisfies (12). Consequently, under the effect of
update laws (10)-(11), Pi converge to the optimal solution
of (4) without generation constraints within a fixed time
t ≤ T1 + T2, even in the presence of additive uncertainty ωi.

Proof. From Theorem 1, we obtain that for any t ≥ T1,
Pi(t) = λi(t)−βi

2αi
for all i = 1, . . . , N . Thus, (11) reduces

to
λ̇i

2αi
= p

∑
j∈Ni

(sgn(λj − λi) + sgnµ1(λj − λi)

+ sgnµ2(λj − λi)) + ωi, for all t ≥ T1. (13)

In what follows, we will only consider trajectories of λi(t)
for t ≥ T1. Let λ̄ denote the average of {λi} weighted by
the inverse of the corresponding cost coefficients {αi}, i.e.,

λ̄ =
Γ

N

∑N
i=1

λi
2αi

, where Γ = 1
/∑N

i=1
1

2αi
. From Lemma 3

and (13), it follows that ˙̄λ = Γ
N

∑N
i=1

λ̇i
2αi

= Γ
N

∑N
i=1 ωi.

We now show that λi(t) = λ̄ for all t ≥ T1 + T2, where
T2 < ∞. To this end, we define the consensus error λ̃i =
λi − λ̄, and consider the candidate Lyapunov function V =
1
2

∑N
i=1

1
2αi

λ̃2
i . Its time derivative along (13) reads

V̇ =
∑N

i=1
λ̃ip

∑N

j=1
aij
(
sgn(λj − λi) + sgnµ1(λj − λi)

+ sgnµ2(λj − λi)
)

+
∑N

i=1
λ̃i

(
ωi −

Γ

2αiN

∑N

j=1
ωj

)
= V̇1 + V̇2,

where V̇1 = p
∑N
i,j=1 λ̃iaij(sgn(λj − λi) + sgnµ1(λj − λi) +

sgnµ2(λj−λi)) and V̇2 =
∑N
i=1 λ̃i(ωi−

Γ
2αiN

∑N
j=1 ωj). Since

ωi and αi are bounded, we can bound V̇2 as

V̇2 ≤
N∑
i=1

|λ̃i|.

∣∣∣∣∣∣ωi − Γ

2αiN

N∑
j=1

ωj

∣∣∣∣∣∣ ≤ ∆

N∑
i=1

|λ̃i| = ∆‖λ̃‖1,

where ∆ = supt≥0 maxi |ωi(t)− Γ
2αiN

∑N
j=1 ωj(t)| and λ̃ =[

λ̃1 · · · λ̃N
]T

. Hence, we have that

V̇2 ≤ ∆‖λ̃‖1 ≤ ∆
√
N‖λ̃‖2 ≤ 2∆

√
NαmaxV

1
2 , (14)

where αmax = maxi αi. Now, consider the term V̇1. Note that
λi − λj = λ̃i − λ̃j and denote λ̃ij = λ̃i − λ̃j . Thus, the term
V̇1 can be rewritten as:

V̇1 = p
∑N

i,j=1
λ̃iaij(sgn(λ̃ji) + sgnµ1(λ̃ji) + sgnµ2(λ̃ji))

(3)
=
p

2

∑N

i,j=1
λ̃ijaij(sgn(λ̃ji) + sgnµ1(λ̃ji) + sgnµ2(λ̃ji))

(2)
≤ −p

2

(∑N

i,j=1
aij λ̃

2
ij

)1
2

− p

2

(∑N

i,j=1
aij λ̃

2
ij

)1+µ1
2

− p

2Nµ2−1

(∑N

i,j=1
aij λ̃

2
ij

)1+µ2
2

(15)

Note that
∑N
i=1 λ̃i = 0 and

∑N
i,j=1 aij λ̃

2
ij = 2λ̃LAλ̃. More-

over, from Lemma 5, we conclude that

4αminΛ2(LA)V ≤ 2Λ2(LA)λ̃T λ̃ ≤ 2λ̃LAλ̃,

where αmin = mini αi. Thus, (15) can be rewritten as:

V̇1 ≤ −p(αminΛ2(LA)V )
1
2 − p2µ1(αminΛ2(LA)V )

1+µ1
2

− p2µ2

Nµ2−1
(αminΛ2(LA)V )

1+µ2
2 . (16)

On combining (14) and (16), V̇ can be bounded as:

V̇ ≤ −
(
p
√

Λ2(LA)αmin − 2∆
√
Nαmax

)
V

1
2

− p2µ1(Λ2(LA)αmin)
1+µ1

2︸ ︷︷ ︸
c1

V
1+µ1

2

− p2µ2

Nµ2−1
(Λ2(LA)αmin)

1+µ2
2︸ ︷︷ ︸

c2

V
1+µ2

2 .

Thus, with p ≥ 2∆
√

Nαmax
Λ2(LA)αmin

, we obtain that V̇ ≤

−c1V
1+µ1

2 − c2V
1+µ2

2 . Hence, per Lemma 1, we conclude
that there exists T2 satisfying T2 ≤ 2

c1(1−µ1) + 2
c2(µ2−1) , such

that V (t) = 0 for all t ≥ T1+T2, or equivalently, λi = λj = λ̄
for all t ≥ T1 + T2 and i, j ∈ {1, . . . , N}. �

Remark 2. From Theorems 1 and 2, it follows that (6)-(7)
are satisfied for all t ≥ T1 + T2. Thus, the update laws (10)-
(11) solve the ED problem without generation constraints in
a fixed-time T̄ = T1 + T2. Moreover, Theorem 2 guarantees
robustness to the additive disturbance {ωi}.

There may exist communication link failures or additions
among generator buses, which results in a time-varying com-
munication topology. We model the underlying graph G(t) =
(A(t),V) through a switching signal χ(t) : R+ → Ψ as
G(t) = Gχ(t) := (Aχ(t),V), where Ψ = {1, 2, . . . , R}
is a finite set consisting of index numbers associated to
specific adjacency matrices A(t) = [aij(t)] ∈ {A1, . . . , AR}.
Here, the function χ is a piecewise constant, right-continuous
function of time. Let t0, t1, . . . be the switching time sequence
characterized by changes in information flow. For any time
t ∈ [ti, ti+1), the topology with adjacency matrix Aχ(t) is
active. The corollary below explores the impact of switching
on the fixed-time convergence guarantees.

Corollary 1 (Time-varying topology). Let the underlying
topology for any time interval [ti, ti+1) be connected. Then for
the switching topology scenario defined by χ(t), Theorems 1
and 2 continue to hold for the ED problem without generation
constraints.

Proof. Note that V in the proof of Theorem 2 is a common
Lyapunov function for (10)-(11), under an arbitrary commuta-
tion among the set of connected graphs. Only place where
the underlying network topology shows up explicitly is in
(16), and consequently in the expression for the settling time
in Theorem 2. Let Λ∗2 denote the minimum of the second
smallest eigenvalues of all graph Laplacians of the associated
adjacency matrices, i.e., Λ∗2 = min

t
Λ2(LA(t)). Since Ψ is a

finite set, the minimum exists. Moreover, the underlying graph
is always assumed to be connected, and thus Λ∗2 > 0. Thus,
the inequality in (16) holds with Λ2(LA) replaced by Λ∗2,
and thus Theorem 2 holds with suitably modified settling-time
coefficients c1 and c2. �



A note on discrete-time implementation: Continuous-time
algorithms offer effective insights into designing accelerated
schemes for distributed optimization. However, sampling and
acquisition constraints render implementation of continuous-
time algorithms impractical. This note explores discrete analog
of (10)-(11), such that the resulting discrete-time dynamics of
scheduled power dispatch and incremental costs are practically
fixed-time stable. The origin of a discrete-time dynamical
system with state variable x(·) is globally practically fixed-
time stable if for every ε > 0 there exists Nε ∈ N such
that any solution x(·, x0) satisfies ‖x(k, x0)‖ ≤ ε for k ≥
Nε independently of x0 [17]. Consider the continuous-time
dynamical system of the form, ż = −|z|z, where z ∈ R. The
semi-implicit Euler-discretization scheme with step-size h > 0
given by

z(k+1)−z(k)

h
= −|z(k)|z(k+1) ⇒ z(k+1) =

z(k)

1 + h|z(k)| ,

renders origin practically fixed-time stable, since |z(1)| ≤ h−1

independently of z0 , z(0), and |z(k)| ≤ (kh)−1. The general
idea of attack for consistent discretization is to hybridize a
fixed-time consensus scheme on incremental cost (11) with
a discrete-time update equation on scheduled power dispatch,
such that similar to (10), the following two conditions are
satisfied: (1)

∑N
i=1 Pi(k) = Ptot, and (2) origin of discrete-

time dynamical system with state-variable zi(k) , Pi(k) −
(λi(k)− βi)/(2αi) is practically fixed-time stable for all i ∈
{1, . . . , N}. To this end, we consider the following discrete-
time update-laws for {λi} and {Pi}:

λi(k + 1)

2αi
= (Wk)iλ(k)− λi(k) + Pi(k) +

βi
2αi

−
Pi(k)−

(
λi(k)−βi

2αi

)
1 + h

∣∣∣Pi(k)−
(
λi(k)−βi

2αi

)∣∣∣ , (17a)

Pi(k + 1) = −ck(LA)iλ(k) + Pi(k), (17b)

where Wk , I − ckLA, ck = 1/Λ(k−1)modK+2, and K is the
number of non-zero distinct eigenvalues of LA. It is easy to
observe that

∑N
i=1 Pi(k) = Ptot with Pi(0) =

∑m
j=1 dijPLj ,

and zi(k + 1) = zi(k)/(1 + h|zi(k)|), i.e., |zi(k)| ≤ ε after
1/(hε) iterations. Moreover, the consensus on incremental cost
variables occurs in finite iterations per FACA [13]. Note that
FACA is invoked again for calculating optimal dispatch in the
constrained ED problem as a discrete analog for fixed-time
average consensus (see step 6 in Algorithm 1). Note that the
discrete consensus scheme is adopted from FACA, and is not a
direct discretization of (10)-(11). Thus, the discretized scheme
does not account for robustness to additive disturbances and
time-varying topology. A detailed investigation into direct
discretization scheme is beyond the scope of the current work.

B. With generation constraints

Since (9) captures the relationship between incremental
costs of the constrained and the unconstrained ED problems,
(4) can also be solved in a fixed-time using Algorithm 1.
First, the unconstrained ED problem is solved (Step 1). Then,
exploiting the relationship between incremental costs of the
constrained and the unconstrained ED problems, the set Θ is
updated an incremental fashion. If the constraints are inactive
for a given generator, the optimal incremental cost is related
to optimal dispatch through equality constraint, otherwise the
dispatch values are saturated at the generation limits (Step 4).

Steps 5-6 aim to compute the numerator and denominator
terms in (9). Since, both the numerator and denominator terms
involve summation, this can be done by running fixed-time
average consensus for the tuple {(yi, zi)}. The update law (13)
with αi = 0.5 for all i simply defines the fixed-time average
consensus scheme. Incremental costs and dispatch values are
then updated in Steps 7-8.
Algorithm 1 Distributed Fixed-time Algorithm for ED
Input: cost-coefficients {αi, βi, γi}, load-demands {PLk}
Output: Optimal incremental cost & dispatch (λ∗, {P ∗i })

Initialization: Θ = ∅
1: Run (10)-(11) to solve unconstrained ED and find(

λ̄∗, {P ∗i }
)
. Set (λ, {Pi})←

(
λ̄∗, {P ∗i }

)
2: while Generation constraint violations do
3: Ω , {i /∈ Θ : (Pi < Pmin

i )∧(Pi > Pmax
i )}, Θ← Θ∪Ω

4: Calculate optimal dispatch using

Pi ←

{
λ−βi
2αi

, i /∈ Θ,

Pmin
i or Pmax

i , i ∈ Θ.
(18)

5: (yi(0), zi(0))←


(
λ−2αiPi−βi

2αi
, 0
)
, i ∈ Θ,(

0, 1
2αi

)
, i /∈ Θ.

6: Run (13) with αi = 0.5 on {yi, zi} to obtain (yc, zc)
7: λ← λ+ yc/zc
8: Calculate optimal dispatch using (18)
9: end while

10: return (λ, {Pi})

Remark 3. Steps 6 and 7 in the algorithm are related to
(9), where it follows that yc = (1/N)

∑
i∈Θ yi(0) and zc =

(1/N)
∑
i/∈Θ zi(0). In addition, since the number of generator

buses are finite, it follows that the number of times the While-
loop gets called is also finite. Thus, the entire algorithm gets
executed within a fixed-time.

IV. CASE STUDIES

We now present numerical examples involving IEEE test
cases. Simulation parameters in Theorems 1-2 are chosen as:
µ1 = ν1 = 0.8, µ2 = ν2 = 1.2, p = 1485 for IEEE-57 bus
case. Unless stated otherwise, solid lines in all the example
scenarios indicate true power dispatch from generators while
dotted lines indicate optimal dispatch values.
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Fig. 1. Generator power Pi for 57 bus example with generation
constraints and switching topology for various initial conditions Pi(0).

A. Switching communication topology
This case study concerns with ED problem for a 57-bus

system with 7 generator buses, and further incorporates switch-
ing communication topology between generator buses. In



particular, the communication topology between the generator
buses in the specified 57-bus system is switched randomly in
every 0.0025 seconds between randomly generated connected
graphs. The parameters for cost functions are adopted from
[18]. Figure 1 shows the convergence behavior of generator
power dispatch under switching communication topology for
various initial conditions.

B. Time-varying demand and uncertain information
In this case study, a zero mean Gaussian communication

disturbance is considered with variance of 0.01. Additionally,
the net load demand in the beginning is 141.13 MW, which
then alternates between 69.83 MW and 212.81 MW at time
instants 0.66s, 1.1s, 1.31s and 1.75s. Figure 2 shows the
scheduled power dispatch from generators as the net load is
varied with time. It can be seen that the generators rapidly
adjust to variability in total load demand, and converge to
optimal dispatch values in a fixed time.
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Fig. 2. Generator power Pi for 57 bus example with generation
constraints, communication disturbance and time varying load.

C. Convergence performance comparison
In this case study, we evaluate the performance of the

discretized implementation of our fixed-time ED algorithm
against the ICC algorithm [7]. For ease of illustration, the
two algorithms are evaluated on the IEEE-30 bus network
comprising of six generators. Figure 3 shows the performance
of the two algorithms for a net load demand of 250 MW, under
a constant step-size of 0.1s for discretized implementation. As
can be seen in Figure 3, the ICC algorithm requires nearly
5000 iterations for convergence, while the proposed fixed-
time ED algorithm converges under 20 iterations. This super-
accelerated convergence of our method is observed despite it
being a fully distributed algorithm, whereas the ICC algorithm
assumes a single leader node that aggregates information from
every other node in the network. These results are consistent
with the convergence behavior observed in [5], where both
ICC algorithm, as well as a finite-time ED algorithms require
more than 100s (step-size 0.01s) for convergence.

V. CONCLUSION

A novel, fixed-time convergent, distributed algorithm for
solving constrained economic dispatch problem subject to
communication uncertainties and time-varying topology is pro-
posed. The algorithm is evaluated on standard IEEE test cases
for several challenging scenarios ranging from unconstrained
ED problem to constrained ED problem with time-varying
load and communication topology, and it shown that algorithm
exhibits accelerated convergence behavior. A discretization

Fig. 3. Generator power Pis for the incremental cost consensus (ICC)
algorithm, and our fixed-time ED algorithm for IEEE-30 bus.

scheme is also suggested that renders the discrete-time im-
plementation of the proposed continuous algorithm practically
fixed-time convergent.
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