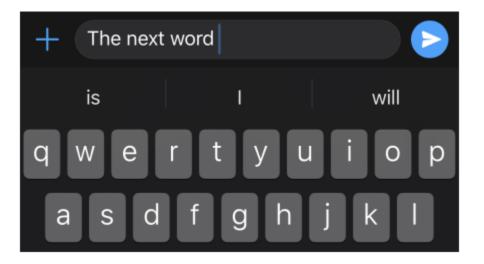
Introduction to Federated Learning

(Reference: Algorithms for Large-scale Distributed Machine Learning and Optimization by Prof. Gauri Joshi, CMU)



- Edge devices: (Il phones or JoT derices collect huge a mounts of data that can be informative for ML models.
- Training data: What every user types on their phone.

• **Q**: How can you utilize the parameter server framework we've explored to effectively train a single machine learning model with data from the edge?

With DW (1) DW (1) JW (2) JW (2) JW (2)

- There are millions of edge clients:
- What are some problems with this strategy?
 - Parameter Server approach requiresprohibilitely large communication bandwidth, W_{t+1} = W_t - N È SW_t^(k) since it exchanges information with millions of edge devices.
 - · Data privacy / sunsitive information
 - . Edge devices may have limited internet connectivity

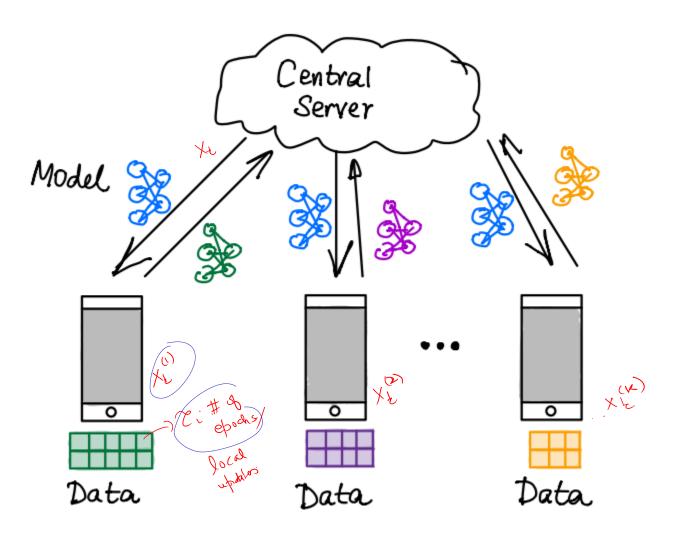
Federated Learning to the rescue!

Key idea: Bring the training to the edge data (McMahan et al. 2016: <u>Communi</u>cationefficient learning of deep networks from decentralized data) = edAvg.

• Already used for next-word prediction on Android cell phones, when the phone is plugged in for charging

https://federated.withgoogle.com/

(Read this comic book)



> Parameter Sevur

Decentralized SGD vs Federated Learning

• Number of workers/servers

Parameter Surver/DSCAD

Tens or hundreds of clients

• Availability of workers

Parameter Server We require the workers to be curailable at all times.

• Data distribution

PS/D-SGD

We require the data distribution to be roughly the mogeneous <u>FL</u> Millions of dients

FL We only work with a handful of clients.

<u>FL</u> Data distribution is heterogeneous.

Worker types: Homogeneous/Heterogeneous

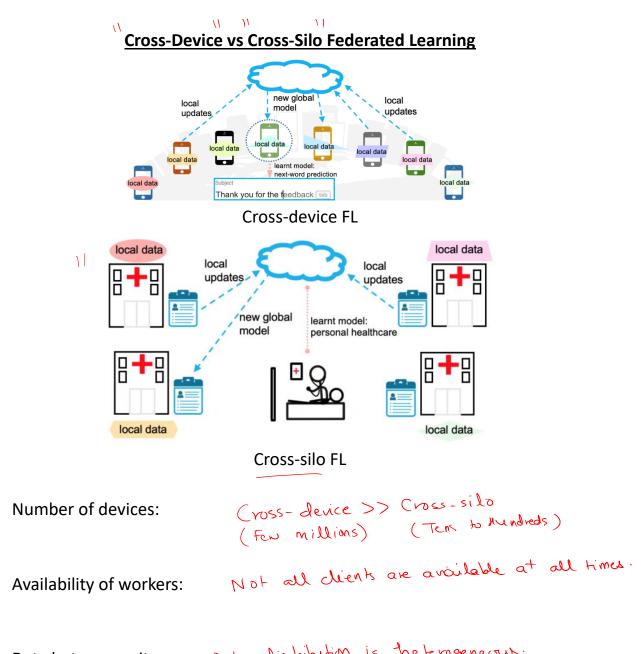
PS/D-SGD: Wients are thomogeneous in terms of compute bower.

• Privacy

PS/<u>D-SU</u>D: Data distribution Can be re-arranged. FL

clients are heterogeneous.

FL Data is private and secure.



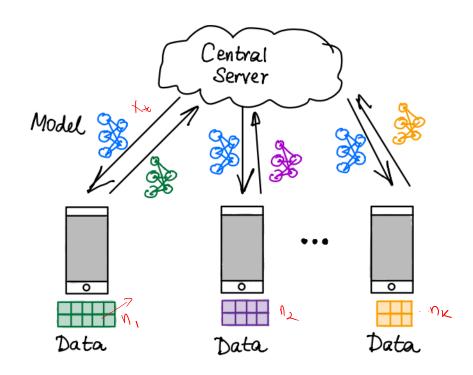
Data heterogeneity: Data distribution

•

۲

- Worker types: Cross-silo -> Homogen eaus Cross-device -> Heterogeneous.
- Privacy constraints: Data is private and secure.

Federated Learning Framework



Notations:

- dients/agents/devices

- Total number of workers: K
- Fraction of workers participating in each communication round: C
- Local mini-batch size: B
- Number of data samples at client $i: n_i$
- Learning rate: η
- Number of local epochs per client: *E*

<u>Q</u>: How many local updates τ_i will be performed at client $i? (\gamma_i = E$

The FedAvg Algorithm

• Local objective function: at the it the client:

$$F_{i}(x) = \frac{1}{n_{i}} \sum_{d=1}^{n_{i}} f_{i}(x, \xi_{j})$$

• <u>Global objective function</u>:

$$F(x) = \sum_{k=1}^{K} \prod_{i=1}^{k} F_{k}(x) = \sum_{k=1}^{K} h_{k} F_{k}(x)$$

$$where f_{k} = \frac{h_{k}}{n}$$

$$Server(Udate:$$
• Initialize the model parameters at xs.
• Initialize the model parameters at xs.
• For each communication round $t = 1, \dots, T$
• Solice a set S_{k} of m dients (from a total of K dientk),
uniformly at random.
• Perform (dient/lpdate (i, X_{k}) at the chosen dient, and
recure $(X_{k+1}^{(k)})$ from client i $\in S_{k}$
• Aggregate the updates : $X_{k+1} \in S_{k}$
• Linitialize the local model $X_{k,0} \in H_{k}$ for X_{k} is a superior X_{k+1} from client i $\in S_{k}$
• Aggregate the local model $X_{k,0} \in H_{k}$ for $X_{k+1} \in S_{k}$
• Initialize the local model $X_{k,0} \in H_{k}$ for $X_{k+1} \in S_{k}$
• Initialize the local model $X_{k,0} \in H_{k}$ for $X_{k+1} \in S_{k}$
• Sample minimize the S_{k} from the local datases D_{k}
and $X_{k+1}^{(i)} \in X_{k+1}^{(i)} - M_{k}(X_{k+1}^{(i)}; \bar{S}_{k})$
• Return $X_{k+1}^{(i)}$

X

Effect of Data Heterogeneity and Client Participation

MNIST (hand-written digit dataset: 97% for 2-NN and 99% for CNN)								
2NN)(II	(IID		——Non-IID ——				
C	$B = \infty$	B = 10	$B = \infty$	B = 10				
0.0	1455	316	4278	3275				
0.1	1474 (1.0×)	$87(3.6\times)$	$1796(2.4 \times)$	$664 (4.9 \times)$				
0.2	1658 (0.9×)	77 (4.1×)	$1528(2.8\times)$	619 (5.3×)				
0.5	— (—)	$75(4.2\times)$	<u> </u>	443 (7.4×)				
$\sqrt{1.0}$	— (—)	$70(4.5\times)$	— (—)	380 (8.6×)				
CNN	E = 5							
0.0	387	50	1181	956				
0.1	339 (1.1×)	$18(2.8\times)$	$1100(1.1\times)$	$206(4.6\times)$				
0.2	337 (1.1×)	$18(2.8\times)$	978 (1.2×)	$200(4.8\times)$				
0.5	$164(2.4\times)$	18 (2.8×) -	_1067 (1.1×)	261 (3.7×)				
1.0	$246(1.6\times)$	$16(3.1\times)$	(-)	97 (9.9×)				
			T · · · · · · · · · · · · · · · · · · ·					

Total number of communication rounds

- IID experiment shuffle and partition the data across 100 clients, each receiving 600 examples
- non-IID experiment the data sorted by labels and divided into 200 shards of size
 300 and each of the 100 clients receives 2 shards (at most 2 digits)

Effect of Number of Local Epochs

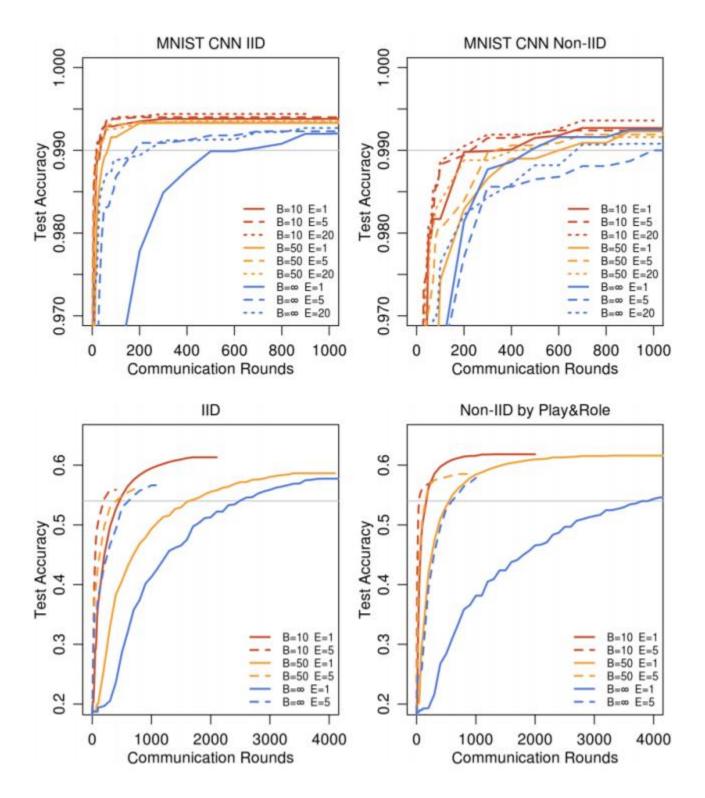
MNIST CNN, 99% ACCURACY							
CNN	E	B	${m u}$	IID	Non-IID		
FedSGD	1	∞	J	,626	483		
FEDAVG	5	∞	5	$179(3.5\times)$	$1000 (0.5 \times)$		
FEDAVG	1	50	12	65 (9.6×)	600 (0.8×)		
FEDAVG	20	∞	20	234 (2.7×)	672 (0.7×)		
FedAvg	1	10	60	34 (18.4×)	350 (1.4×)		
FEDAVG	5	50	60	29 (21.6×)	334(1.4x)		
FedAvg	20	50	240	32 (19.6×)	426 (1.1×)		
FEDAVG	5	10	300	20 (31.3×)	229 $(2.1\times)$		
FEDAVG	20	10	1200	18 (34.8×)	173 (2.8×)		
SHAKESPEARE LSTM, 54% ACCURACY							
LSTM	E	B	\boldsymbol{u}	IID	Non-IID		
FEDSGD	1		1.0	2488	3906		
FEDAVG	1	50	1.5	1635 (1.5×)	549 (7.1×)		
FEDAVG	5	∞	5.0	613 (4.1×)	597 (6.5×)		
FedAvg	1	10	7.4	460 (5.4×)	164 (23.8×)		
FedAvg	5	(50)	7.4	$401 (6.2 \times)$	$152(25.7\times)$		
FedAvg	5	10	37.1	192 (13.0×)	41 (95.3×)		

• As the number of local epochs *E* grows, we need fewer communication rounds to reach target accuracy

 $C_{i} = (E)ni$ (B)

[_

Effect of Batch-Size



Convergence Analysis of FL

Assumptions:

• Lipschitz smoothness of local objective function

$$\|\nabla F_{i}(x) - \nabla F_{i}(y)\| \leq L \|x - y\| \neq i$$

Fit's L- Lipschitz

• Unbiased gradients:

Stochastic gradient
$$g_i(x; \xi)$$
 is an
unbiased estimate of $TF_i(x)$.
 $E_{\xi}[g_i(x; \xi)] = TF_i(x)$.

• Bounded variance:

• Bounded dissimilarity: There exist parameters
$$\underline{\beta}^{2} \ge |\nabla F_{i}(X)||^{2} + \kappa^{2}$$

$$= \underbrace{\mathbb{E}_{3} \left[\|Q_{i}(X;S)\|^{2} \right] \le \beta^{2} ||\nabla F_{i}(X)||^{2} + \kappa^{2}$$

$$= \underbrace{\mathbb{E}_{3} \left[p_{i} \|\nabla F_{i}(X)\|^{2} \right] \le \beta^{2} ||E_{3}[p_{i} \nabla F_{i}(X)]||^{2} + \kappa^{2}$$

$$= \underbrace{\mathbb{E}_{3} \left[p_{i} \|\nabla F_{i}(X)\|^{2} \right] \le \beta^{2} ||E_{3}[p_{i} \nabla F_{i}(X)]||^{2} + \kappa^{2}$$

$$= \underbrace{\mathbb{E}_{3} \left[p_{i} \|\nabla F_{i}(X)\|^{2} \right] \le \beta^{2} ||E_{3}[p_{i} \nabla F_{i}(X)]||^{2} + \kappa^{2}$$

 $\operatorname{Var}\left(\operatorname{gi}(x;\xi)\right) \leq \sigma^{2}$

Convergence of Federated Learning

For the number selected clients m = CK and learning rate $\eta = \sqrt{m/\tau T}$, the optimization error after T communication rounds of federated learning can bounded as

$$\min \mathbb{E}\left[\|\nabla F(\mathbf{x}_t)\|^2\right] \leq O\left(\frac{1+\sigma^2}{\sqrt{m\tau T}}\right) + O\left(\frac{m(\sigma^2+\tau\kappa^2)(\tau-1)}{\tau T}\right)$$

where \mathbf{x}_k denotes the averaged model at the k^{th} iteration.

Let's revisit basic understanding of FL!

Does the convergence between error and communication rounds improve or deteriorate when the parameters of the federated learning system/algorithm are altered in the following manners?

- Increase in fraction of participating clients/workers (C): Better
- Increase in mini-batch size (B): W or se
- Increase in local epochs (E): Better, but if E increases too much,
 then there can be overfitting.
- Higher-data heterogeneity across clients: Wayse
- Increase in dissimilarity parameters β and κ : $\forall \alpha \leq \psi$

Does the anticipated wallclock time per communication round shift when modifying the parameters of the federated learning system/algorithm in the specified manners?

- Increase in fraction of participating clients/workers (C): $\int \sqrt{\sqrt{c}} e^{-\frac{1}{2}} dx$
- Increase in mini-batch size (B): Increase / Decrease depending on the model parameters.
- Increase in local epochs (E): Increase
- Higher-data heterogeneity across clients: Denn't matter
- Increase in dissimilarity parameters β and κ : Doesn't matter

