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Abstract

Development of new methods for analysis of protein-protein interactions (PPIs) at
molecular and nanometer scales gives insights into intracellular signaling pathways and
will improve understanding of protein functions, as well as other nanoscale structures of
biological and abiological origins. Recent advances in computational tools, particularly
the ones involving modern deep learning algorithms, have been shown to complement
experimental approaches for describing and rationalizing PPIs. However, most of the
existing works on PPI predictions use protein-sequence information, and thus have
difficulties in accounting for the three-dimensional organization of the protein chains. In
this study, we address this problem and describe a PPI analysis method based on a
graph attention network, named Struct2Graph, for identifying PPIs directly from the
structural data of folded protein globules. Our method is capable of predicting the PPI
with an accuracy of 98.89% on the balanced set consisting of an equal number of
positive and negative pairs. On the unbalanced set with the ratio of 1:10 between
positive and negative pairs, Struct2Graph achieves a five-fold cross validation average
accuracy of 99.42%. Moreover, unsupervised prediction of the interaction sites by
Struct2Graph for phenol-soluble modulins are found to be in concordance with the
previously reported binding sites for this family.
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Author summary

PPIs are the central part of signal transduction, metabolic regulation, environmental
sensing, and cellular organization. Despite their success, most strategies to decode PPIs
use sequence based approaches do not generalize to broader classes of chemical
compounds of similar scale as proteins that are equally capable of forming complexes
with proteins that are not based on amino acids, and thus lack of an equivalent
sequence-based representation. Here, we address the problem of prediction of PPIs
using a first of its kind, 3D structure based graph attention network (available at
https://github.com/baranwa2/Struct2Graph). Despite its excellent prediction
performance, the novel mutual attention mechanism provides insights into likely
interaction sites through its knowledge selection process in a completely unsupervised
manner.

Introduction 1

Protein–protein interactions (PPIs) are fundamental to many biological processes. 2

Analysis of the human proteome suggests that the majority of proteins function not 3

alone but rather as part of multi-unit complexes [1]. Indeed, PPIs are the central part 4

of signal transduction, metabolic regulation, environmental sensing, and cellular 5

organization [2]. In these processes, PPIs can alter enzyme kinetics, facilitate substrate 6

channeling, form new binding sites, render a protein inactive, or modify the specificity 7

of a protein with respect to a substrate [3]. Due to the ubiquitous presence of PPIs in 8

living systems, being able to characterize these interactions promises to further our 9

understanding of cellular processes [4] and provide an indispensable tool for disease 10

treatment and drug discovery [5, 6]. PPI and their mathematical description are also 11

essential for creation of protein analogs from other nanoscale building blocks, including 12

but not limited to, lipids [7], sugars [8], polymers [9], nanoscale conjugates [10], and 13

inorganic nanoparticles [11,12]. 14

A number of strategies have been employed to decode PPIs. Traditionally, high 15

throughput experimental techniques such as two-hybrid screens [13], tandem-affinity 16

purification [14], and mass spectrometry [15] have been applied to create protein 17

interaction networks. Concerns about insufficient accuracy [16], low experimental 18

throughput [17] and high cost [18] of these methods, however, have motivated 19

computational approaches that can complement traditional and robotic experimental 20

protocols. Computational methods can predict whether proteins will interact based on 21

data for the proteins’ genetic context, amino acid sequences, or structural information. 22

Genomics analyses consider factors such as gene fusion [19], conservation across 23

common species (phylogenetic profiling) [20], and evolutionary history [21] when 24

determining if a pair of proteins interact. 25

Typical computational techniques for PPI analysis use the amino acid sequences of 26

the two proteins to determine whether interactions occur. A number of features such as 27

frequency of common sub-sequences [22] and auto-covariance [23] have been proposed to 28

convert sequences of different lengths into a uniformly sized representation. Sequence 29

based methods have recently been able to leverage protein databases and machine 30

learning techniques to make high accuracy predictions. Three-dimensional (3D) 31

structure of protein-protein complexes from sequence can be predicted by CO-threading 32

algorithm, (COTH) that recognizing templates of protein complexes from solved 33

complex structural databases. COTH aligns amino acid chain sequences using scoring 34

functions and structural information [24]. The DeepPPI model [25] predicts interactions 35

using an artificial neural network, which takes as input a feature vector that captures 36

the composition, distribution, and order of the sequence. DeepFE [26] uses natural 37
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language processing algorithms on amino acid sequences to create low dimensional 38

embeddings of the sequence suitable as inputs for neural network analysis. DeepFE, in 39

particular, has been shown to be quite effective, and achieves prediction accuracy of 40

94.78% and 98.77% on S. cerevisiae and human datasets, respectively. 41

Despite their success, the above sequence based approaches do not generalize to 42

broader classes of chemical compounds of similar scale as proteins that are equally 43

capable of forming complexes with proteins that are not based on amino acids, and thus 44

lack of an equivalent sequence-based representation. While the interaction of proteins 45

with DNA can be accurately predicted [27], the supramolecular complexes with high 46

molecular weight lipids [7], sugars [8], polymers [9], dendrimers [28] and inorganic 47

nanoparticles [11, 12] that receive much attention in nanomedicine and nanodiagnostics, 48

cannot [29–35]. As a consequence, computational approaches that take into account the 49

structure of proteins and their variable counterparts are preferred for interaction 50

prediction tasks, as these methods are not protein-specific. Some methods predicting 51

interactions using the 3D structure of the proteins [36,37] use a knowledge-based 52

approach to assess the structural similarity of candidate proteins to a template protein 53

complex. As this methodology requires detailed information on the larger complex, 54

template-free docking approaches [38] analyze the unbound protein components and 55

identify the most promising interactions from a large set of potential interaction sites. 56

While docking methods have shown success for some proteins, they face difficulty with 57

proteins undergoing conformational changes during interaction [39]. Many of these 58

structural approaches have also served as the basis for machine learning models. Zhang 59

et al. developed PrePPI [40] which uses amino acid sequence, and phylogenetic features 60

as inputs to a naive Bayes classifier. Northey et al. developed IntPred [41] which 61

segments proteins into a group of patches that incorporates 3D structural information 62

into a feature set to predict interaction with a multi-layer perception network. 63

Recently, [42] integrated 3D structures into a deep learning framework which uses a 64

graph convolutional network to determine which amino acids will be part of an 65

interacting protein interface. However, these models are trained on carefully curated 66

interaction databases consisting of information not only on the binary interactions 67

between proteins, but also on the corresponding interfacing sites or atoms. 68

In this work, we make the first step toward generalized method to assess 69

supramolecular interactions of proteins with other nanostructures by determining the 70

probability of formation of protein-protein complexes not based on amino-acid amino 71

sequence but rather on nanoscale representation of proteins from crystallographic data. 72

We developed a mutual graph attention network and a corresponding computational 73

tool, Struct2Graph, to predict PPIs solely from 3D structural information. Instead of 74

using several protein specific features, such as, hydrophobicity, solvent accessible surface 75

area (SASA), charge, frequency of ngrams, etc., Struct2Graph uses a graph based 76

representation of a protein globule obtained using only the 3D positions of atoms. This 77

graph based interpretation allows for neural message passing [43] for efficient 78

representation learning of proteins. Struct2Graph builds upon our prior work on 79

metabolic pathway prediction [44], where it is shown that an equivalent graph-based 80

structural representation of small molecules and peptides coupled with graph 81

convolutional network, significantly outperforms other classifiers that involve computing 82

various biochemical features as inputs. This approach also leverages generalization of 83

graph theory to describe complex nanoscale assemblies similar to PPI [45]. 84

Beyond its performance, characterized by high accuracy of PPI predictions, 85

Struct2Graph offers a number of advantages. Struct2Graph only requires the 3D 86

structure of individual proteins. In contrast to many other machine learning 87

frameworks, genetic knowledge or sequence information is not required. Furthermore, 88

while in this paper we focus on protein interactions, by using only the positions of 89
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atoms in our analysis, this framework can be generalized to other molecular structures 90

where 3D information is available. Moreover, Struct2Graph is also able to provide 91

insight into the nature of the protein interactions. Through its attention mechanism, 92

the model is able to suggest likely interaction sites. Unlike other models, Struct2Graph 93

is able to produce this data in an unsupervised manner and thus does not require 94

protein complex information which are often unavailable. The key contributions of the 95

proposed work can be summarized as: 96

� GCN framework for PPI prediction: Struct2Graph uses a multi-layer graph 97

convolutional network (GCN) for PPI prediction from the structural data of 98

folded protein globules. The proposed approach is general and can be applied to 99

other nanoscale structures where 3D information is available. 100

� Curation of PPI database: A large PPI database comprising of only 101

direct/physical interaction of non-homologous protein pairs is curated, along with 102

information on the corresponding PDB files. Special emphasis is based on 103

curation of PDB files based on the length of the chain ID and highest resolution 104

within each PDB file to ensure capturing of the most complete structure 105

information of the protein of interest. 106

� State-of-the-art prediction performance: Our method is capable of correctly 107

predicting the PPIs with an accuracy of 98.89% on the balanced set consisting of 108

an equal number of positive and negative pairs. On the unbalanced set with the 109

ratio of 1:10 between positive and negative pairs, Struct2Graph achieves a 110

five-fold cross validation average accuracy of 99.42%. Struct2Graph outperforms 111

not only the classical feature-based machine learning approaches, but also other 112

modern deep-learning approaches, such as Deep-PPI and DeepFE-PPI that use 113

sequence information and feature selection for PPI prediction. 114

� Unsupervised Prediction of interaction sites: The novel mutual attention 115

mechanism provides insights into likely interaction sites through its knowledge 116

selection process in an unsupervised manner. The interaction sites predicted by 117

Struct2Graph for staphylococcal phenol-soluble modulins are found to be in 118

concordance with the previously reported binding sites for this family. It must be 119

noted that none of the constituent proteins (i.e., toll-like receptor 4 (TLR-4), 120

phenol soluble modulin α1 (PSMα1), and high mobility group box-1 (HMGB1)) 121

used to validate unsupervised prediction of interaction sites, were included in the 122

training set. 123

Materials and methods 124

PPI Database 125

Struct2Graph focuses on structure-based predictions and interaction sites of the protein 126

pairs. Our PPI database is therefore produced based on only direct/physical interactions 127

of proteins. To build a large physical interaction database, comprising of only 128

heterologous pairs, we searched all possible databases available (STRING, BioGRID, 129

IntAct, MINT, BIND, DIP, HPRD, APID, OpenWetWare). Not all PPI databases use 130

the same publications and same ontologies to report the interactions. Consequently, it is 131

not surprising that each database reports PPI differently. Therefore, only up to a 75% 132

concordance between all PPI databases is achieved [46]. For Struct2Graph, two of the 133

largest compiled databases, IntAct [47] and STRING [48] are chosen for further analysis, 134

and results are compared to each other to find the true interactions. Only concordant 135

matches between these two databases are chosen. Struct2Graph database is compiled 136
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from commonly used organisms (Saccharomyces cerevisiae, Homo sapiens, Escherichia 137

coli, Caenorhabditis elegans and Staphylococcus aureus) PPIs. For these organisms, 138

IntAct provides 427,503 PPIs, and STRING provides 852,327 binding PPIs. 139

STRING distinguishes the type of interactions as “activation”, “binding”, 140

“catalysis”, “expression”, “inhibition” and “reaction”. IntAct, on the other hand, 141

describe the type of interactions as “association”, “physical association”, “direct 142

association/interaction”, and “colocalization”. Only “direct association/interactions” 143

from IntAct and “binding” from STRING were considered as physical interactions. We 144

only choose concordant pairs of physical interactions from both databases. Therefore, 145

extracting only concordant, physical interaction data from the rest of the interactions 146

reduces the actual number of PPIs to 12,676 pairs for IntAct and 446,548 pairs for 147

STRING. Negative PPI is extracted from the work that derives negative interaction 148

from large-scale two-hybrid experiments [49]. Structure information for Struct2Graph is 149

obtained from PDB files. Hence, we only used the pairs which have associated PDB 150

files. This reduces the total number of pairs to 117,933 pairs (5580 positive and 112,353 151

negatives). Some proteins are well-studied as they are in the scope of current medical 152

and biotechnological interest. As a result, there is more than one cross-reference to 153

PDB files since various structures are accessible for these proteins. To find the proteins 154

matched with PDB files, all proteins from the database are matched with UniProt 155

accession numbers (UniProt Acc) and mapped with PDB files in UniProt [50]. 156

Unfortunately, not all proteins are crystallized fully in each PDB file, and random 157

choice of PDB file may cause incomplete information of the binding site of the protein. 158

Therefore, we curated the PDB files based on the length of the chain ID and highest 159

resolution within each PDB file to ensure that we capture the most complete structure 160

information of the protein of interest. The chain length and the resolution of each 161

protein’s crystal structure were obtained from the RCSB website [51]. The complete set 162

of negative pairs was reduced to 5580 pairs to create a balanced training sample with an 163

equal number of positive and negative pairs. For this curated database consisting of 164

only heterologous pairs, we defined two classes, “0” for non-interacting (negative) pairs 165

and “1” for interacting (positive) pairs. 166

Mutual graph attention network for protein-protein pairs 167

We present a novel multi-layer mutual graph attention network (GAN) based 168

architecture for PPI prediction task, summarized in Fig 1. We refer to this architecture 169

as Struct2Graph, since the inputs to the proposed GAN are coarse grained structural 170

descriptors of a query protein-protein pair. Struct2Graph outputs the probability of 171

interaction between the query proteins. Struct2Graph uses two graph convolutional 172

networks (GCNs) with weight sharing, and a mutual attention network to extract 173

relevant geometric features related to query protein pairs. These extracted features are 174

then concatenated and fed to a feedforward neural network (FNN) coupled with a 175

SoftMax function, which finally outputs a probability of the two classes - ‘0’ 176

(non-interacting pairs) and ‘1’ (interacting pairs). This section first describes the 177

preprocessing and fingerprinting procedure specifying how spatial information on 178

protein pairs are converted into corresponding protein graphs, and then elaborates on 179

different components of the Struct2Graph deep learning architecture. 180

Protein structure graph 181

The purpose of the graph construction step is to capture the salient geometry of the 182

proteins in a way that is amenable to further dimensionality reduction by the neural 183

network. There are many possible ways of constructing a graph from spatial coordinates 184

of individual atoms, and each captures a different level of detail about the geometry of 185
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Fig 1. Struct2Graph schematic. Struct2Graph graph convolutional network (GCN) for incorporating mutual attention
for PPI prediction. The GCN classifies whether or not a protein pair (X(1) and X(2) on far left) interacts and predicts the
interaction sites (on far right).

the protein. We first aggregate atoms into the amino acids that they constitute and 186

define the position of an amino acid to be the average of the positions of its constituent 187

atoms. These amino acids form the vertices of the protein graph. An edge is placed 188

between two vertices if the distance between them is less than some threshold. In this 189

work, we use a threshold of 9.5Å for creating a protein graph from the mean positions of 190

amino acids. This threshold was obtained empirically so as to render the underlying 191

graph fully connected. Note that while we use amino acids as constituent vertices of the 192

protein graphs, the approach can be easily extended to multiresolution representation, 193

where a vertex represents two or more amino acids. The coarse-grained representation 194

opens up new possibilities for studying other nanoscale materials, such as, lipids and 195

polysaccharides, since, lowering the level of representation from all-atom to 196

submolecular can be easily generalized to other non-protein entities. Graphs with 197

greater structural refinement can also be obtained by using functional groups as of 198

amino acids. Moreover, this geometric construction of protein graphs ensures that 199

salient geometric features, such as spatial proximity of non-adjacent amino acids along 200

the polypeptide chain are captured. A sequence based representation of proteins might 201

not capture this geometrical structure as well (see Fig 2). 202

The graph construction approach converts spatial information associated with a 203

protein into an equivalent protein graph object G = (V, E), where V is the set of vertices 204

and E is the set of edges between them. In the context of protein graph in Fig 2, vi ∈ V 205

is the ith amino acid and eij ∈ E represents an edge between ith and jth amino acids, 206

satisfying their proximity within the specified threshold of 9.5Å. These graph objects 207

must be embedded into real-valued vector space in order to employ our machine 208

learning framework. We use 1-neighborhood subgraphs [44] induced by the neighboring 209

vertices and edges at 1-hop distance from a vertex. A dictionary of all unique subgraphs 210

is constructed by scanning all protein graphs in the training database. Thus, each 211

vertex within a protein is equivalently represented by an element in the dictionary. 212

Graph convolutional network acting on protein graphs 213

A graph convolutional network (GCN) maps graphs to real-valued embedding vectors in 214

such a way that the geometry of the embedding vectors reflects similarities between the 215
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Fig 2. Protein and protein graph. Illustration of extracted protein structure graph
(right) from the corresponding PDB description of a peptide segment (left) of the S.
cerevisiae alpha-factor receptor. The graph is extracted by thresholding the distances
between amino acids. The helical structure of the protein (left) gets captured in the
corresponding protein graph (right) where, for example, amino acid 4 is linked with
amino acid 7.

graphs. The embedding portion of the GCN works as follows. To each vertex vi ∈ V , we 216

associate a d-dimensional feature vector, which encodes the 1-neighborhood subgraph 217

induced by the neighboring vertices and edges at 1-hop distance from a vertex. This is 218

in contrast to explicit inclusion of amino acid specific features, such as, hydrophobicity, 219

solvent accessible surface area (SASA), charge, etc. In our encoding, similar to other 220

studies [44,52], each element of the dictionary of subgraphs is assigned a random 221

unit-norm vector. 222

Each layer of the GCN updates all vertex features by first replacing each vertex 223

feature by a normalized average over vertex features of all 1-hop neighboring vertices. 224

This is followed by an affine transformation given by the trained weight matrices and 225

bias parameters. In order to impart expressivity to the GCN architecture, each 226

coordinate of the resulting affine transformed embedding vector is passed through a 227

nonlinear activation function, such as, rectified linear unit (ReLU) or sigmoid 228

activations. This process is repeated for all the subsequent layers, and the output of the 229

final layer is the newly transformed embedding (feature) vector that is propagated 230

further to the mutual attention network. Here, the number of layers is a 231

hyperparameter, while the weight matrices are learned from the training data in order 232

to optimize performance of the entire system on the interaction prediction task. 233

More concisely, given input protein graphs G(1),G(2) with adjacency matrices 234

A(1), A(2) consisting of N1, N2 vertices (amino acids), and quantities X
(1)
0 ∈ RN1×d, 235

X
(2)
0 ∈ RN2×d representing the d-dimensional embedding of the vertex subgraphs of the 236

query protein-protein pair, respectively, an l-layer GCN updates vertex embeddings 237

using the following update rule: 238

X
(m)
t+1 = ReLU

(
Ã(m)X

(m)
t Wt

)
, for all t ∈ {0, · · · , l − 1}, (1)

where Ã(m) =
(
D̂(m)

)− 1
2

Â(m)
(
D̂(m)

)− 1
2

denotes the normalized adjacency matrices, 239

and m ∈ {1, 2}. Here, Â(m) = A(m) + I and D̂(m) is the degree matrix of Â(m). 240
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Parameters Wt denote the weight matrix associated with the tth-layer of the GCN. The 241

feature embeddings X
(1)
l ∈ RN1×d and X

(2)
l ∈ RN2×d produced by the final layer of 242

GCN are fed to a mutual attention network and hereafter denoted as h(1) and h(2), 243

respectively, for notational convenience. 244

Mutual attention network for PPI prediction 245

The purpose of the proposed mutual attention network is two fold: (a) extract relevant 246

features for the query protein-protein pair that mutually contribute towards prediction 247

of physical interaction of proteins, (b) combine embedding matrices of dissimilar 248

dimensions N1 × d and N2 × d to produce a representative single output embedding 249

vector of dimension (2d). Attention mechanisms were originally introduced for 250

interpreting sequence-to-sequence translation models by allowing the models to attend 251

differently to different parts of the encoded inputs. Since then, it has been adapted in 252

other fields of deep learning, such as, computer vision [53], and bioinformatics [52]. 253

The mutual attention mechanism proposed in this work computes attention weights 254

[αij ] ∈ RN1×N2 and context vectors s(1) ∈ Rd, s(2) ∈ Rd from the GCN-transformed 255

hidden embeddings h(1) and h(2). The attention weights are computed as: 256

αij = wᵀ tanh
(
Uh

(1)
i + V h

(2)
i

)
, (2)

where U, V ∈ Rd×d and w ∈ Rd are parameters of the mutual attention network that
are trained in an end-to-end fashion along with the weights of the GCN. These
attention weights are then translated to context vectors s(1), s(2) using the following
knowledge selection procedure:

β
(1)
i =

1

N2

N2∑
j=1

αij , β
(2)
j =

1

N1

N1∑
i=1

αij

p
(1)
i =

exp
(
β
(1)
i

)
∑N1

k=1 exp
(
β
(1)
k

) , p
(2)
j =

exp
(
β
(2)
j

)
∑N2

k=1 exp
(
β
(2)
k

) .
s(1) =

N1∑
i=1

p
(1)
i h

(1)
i , s(2) =

N2∑
j=1

p
(2)
j h

(2)
j (3)

Here p
(1)
i and p

(2)
j denote the relative weights of the amino acids i and j of the query 257

protein-protein pair that contribute towards interaction prediction. Those vertices 258

whose learned attention weights are large are likely to represent potential interaction 259

sites between the query proteins. 260

The context vectors s(1) and s(2) are then concatenated into a single context vector 261

of dimensions 2d, which is used as input to a single-layer, fully connected feedforward 262

neural network (FNN) represented by f(·) to produce a two-dimensional output vector. 263

The FNN is parameterized by another weight matrix to be learned in an end-to-end 264

manner. A final SoftMax layer is applied to produce a probability, one for each of the 265

possible classes: 0 or 1, as shown in Equation (4). This output represents the classifier’s 266

prediction of the probability that the two input proteins interact. 267

yout = SoftMax
(
f
(
concat

[
s(1), s(2)

]))
(4)

Results 268

As part of our assessment, we compare the performance of Struct2Graph for PPI 269

predictions against a number of recent machine learning models. These methods 270
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include: (a) DeepFE model [26], where we train the natural language processing 271

network on the same database used in the original publication and feed the embeddings 272

into a fully connected feedforward neural network. (b) DeepPPI [25], where we extract 273

1164 sequence features related to the amino acid composition, distribution, and order. A 274

separate neural network is used for each protein in the protein-protein pair and their 275

outputs are concatenated into a final network for classification. Furthermore, as was 276

done in the original publication [25], we implement these features into a number of 277

traditional machine learning models [54], such as (c) Gaussian naive Bayes 278

(GaussianNB) classifier, (d) Quadratic discriminant analysis (QDA), (e) k-nearest 279

neighbor (k-NN) classifier, (f) Decision tree (DT) classifier, (g) Random forest (RF) 280

classifier, (h) Adaboost classifier, and (i) Support vector classifier (SVC). All models are 281

implemented in Python 3.6.5 on an Intel i7-7700HQ CPU with 2.8GHz x64-based 282

processor. For common machine learning classifiers, such as, GaussianNB, QDA, SVC, 283

RF, DT, k-NN and Adaboost, we use the readily available implementation in the 284

scikit-learn [54] module. Deep learning classifiers, in particular, DeepPPI [55] and 285

DeepFE-PPI [56] are implemented in Keras [57], while Struct2Graph is implemented in 286

PyTorch [58]. 287

For Struct2Graph, the hyperparameters of the models are tuned in order to achieve 288

the reported accuracies. The tuning is obtained by performing grid search over the set 289

of possible hyperparameter settings. The hyperparameters of our Struct2Graph 290

implementation are as follows: optimizer: Adam optimizer [59] with learning rate 291

λ = 10−3 and rate-decay of 0.5 per 10 epochs; total epochs: 50; number of GCN 292

layers: l = 2; GCN embedding dimension: d = 20; loss function: binary 293

cross-entropy. For other competing methods, we use the tuned hyperparameters that 294

are adopted from the original publications. 295

Performance on balanced database 296

Table 1 summarizes the comparisons of Struct2Graph and various machine learning 297

models for PPI prediction for a five-fold stratified cross validation study. In the cross 298

validation, the 11360 pairs (5580 positive and 5580 negatives) are randomly partitioned 299

into five subsamples of equal size. Of these five subsamples, a single subsample is 300

retained as the validation data for testing various machine learning models, and the 301

remaining four subsamples are used as training data. In order to reduce the training 302

time with our Struct2Graph model, 800 pairs are randomly sampled with replacement 303

among the 9088 pairs (80%) in each epoch, and the performance on the randomly 304

chosen 800 pairs is used to update the parameters of the neural network. This 305

modification not only reduces the training time considerably, but also injects noise into 306

the training data to avoid any potential overfitting. 307

The performance is reported for various measures, such as, accuracy, precision, recall, 308

specificity or the true negative rate, Matthews correlation coefficient (MCC), F1-score, 309

area under the receiver operating characteristic curve (ROC-AUC), and negative 310

predictive value (NPV) (see Tables 1-5). For a balanced training set (Table 1), 311

Struct2Graph outperforms any other existing machine learning models in the literature 312

for all the measures (except for the recall and NPV scores) with an average accuracy 313

and precision of 98.89% and 99.50%, respectively. This is despite the fact that we 314

significantly downsample the number of pairs in each epoch during the training process 315

of the proposed Struct2Graph model. 316

Note from Table 1 that while QDA outperforms Struct2Graph in terms of recall and 317

NPV scores, it does very poorly in terms of other measures indicating that the QDA 318

classifier largely predicts positive interactions resulting in low false negative counts. 319

Another observation is that the performance of Struct2Graph is only slightly better 320

than that of another deep learning PPI model, DeepFE-PPI for this balanced training 321
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set. However, as discussed below, DeepFE-PPI does not perform as well for unbalanced 322

training set, where positive interactions are underrepresented among all interactions, a 323

case that often arises in practice. 324

Table 1. Five-fold cross-validation performance analysis of several machine learning
methods on balanced dataset (1:1). Note that the proposed Struct2Graph method
outperforms all other methods on the majority of metrics.

Method
Performance (%) on Balanced training set - 1:1

Accuracy Precision Recall Specificity

GaussianNB 72.14±2.91 98.41±0.51 45.05±6.10 99.24±0.30
QDA 78.66±3.44 70.43±3.41 99.42±0.40 57.90±7.12
k−NN 94.19±0.56 99.49±0.08 88.83±1.10 99.54±0.07
Decision Trees 96.20±0.43 97.59±0.28 94.75±0.99 97.66±0.29
Random Forest 98.86±0.29 99.45±0.19 98.27±0.49 99.45±0.19
Adaboost 97.85±0.26 98.76±0.18 96.92±0.51 98.78±0.18
SVC 98.49±0.33 99.44±0.18 97.53±0.61 99.45±0.18
DeepPPI 97.22±0.44 98.26±0.82 96.14±0.88 98.29±0.83
DeepFE-PPI 98.64±0.32 99.16±0.28 98.12±0.51 99.17±0.28
Struct2Graph 98.89±0.24 99.50±0.36 98.37±0.34 99.45±0.42
Method MCC F1-score ROC-AUC NPV

GaussianNB 52.69±4.38 61.53±6.00 72.15±2.91 64.46± 2.37
QDA 63.06±5.23 82.40±2.27 78.66±3.43 99.05±0.58
k−NN 88.89±1.02 93.86±0.63 94.19±0.56 89.92±0.89
Decision Trees 92.45±0.84 96.15±0.46 96.20±0.43 95.23±0.61
Random Forest 97.74±0.58 98.86±0.30 98.86±0.29 98.30±0.46
Adaboost 95.72±0.52 97.83±0.27 97.85±0.26 96.94±0.50
SVC 97.01±0.66 98.48±0.34 98.49±0.33 97.58±0.59
DeepPPI 94.47±0.87 97.19±0.44 99.28±0.11 96.23±0.81
DeepFE-PPI 97.29±0.64 98.64±0.32 99.52±0.09 98.14±0.50
Struct2Graph 97.79±0.49 98.94±0.20 99.55±0.16 98.24±0.42

Performance on unbalanced databases 325

In most practical scenarios, the number of negative pairs is expected to be larger than 326

positive pairs, since only a small fraction of protein pairs interact within all possible 327

pairs. We thus evaluate the performance of the deep learning models, Deep-PPI and 328

DeepFE-PPI against the proposed Struct2Graph model on various unbalanced training 329

sets, where the number of negative pairs outnumber the positive pairs. These results are 330

summarized in Tables 2-5 for several databases with varying ratios of positive to 331

negative pairs: (a) 1:2 (2790 positive and 5580 negative), (b) 1:3 (1860 positive and 332

5580 negative), (c) 1:5 (1136 positive and 5580 negative), and (d) 1:10 (558 positive and 333

5580 negative). Note that the positive pairs for unbalanced databases are selected 334

randomly from the set of curated positive pairs. Struct2Graph again outperforms its 335

deep-learning counterparts consistently for this unbalanced case. Struct2Graph 336

improvement increases when the ratio between positive and negative pairs becomes 337

increasingly skewed. For instance, when the ratio of positive and negative pairs is 1:10, 338

the precision and recall statistics for the Struct2Graph model are 97.54% and 96.43%, 339

respectively, which are higher by 0.98% and 2.14%, respectively than the performance of 340

the next best deep-learning model, DeepFE-PPI. 341
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Table 2. Five-fold cross-validation performance analysis of deep-learning based
machine learning methods on unbalanced dataset (1:2).

Method
Performance (%) on Balanced training set - 1:2

Accuracy Precision Recall Specificity

DeepPPI 97.40±0.44 98.64±0.61 93.52±1.64 99.35±0.30
DeepFE-PPI 98.91±0.09 99.00±0.32 97.71±0.33 99.51±0.16
Struct2Graph 99.03±0.24 99.13±0.25 98.11±0.58 99.53±0.13
Method MCC F1-score ROC-AUC NPV

DeepPPI 94.16±0.97 96.00±0.72 99.19±0.21 96.85±0.76
DeepFE-PPI 97.54±0.20 98.35±0.13 99.56±0.08 99.86±0.16
Struct2Graph 97.87±0.51 98.62±0.32 99.47±0.20 98.97±0.34

Table 3. Five-fold cross-validation performance analysis of deep-learning based
machine learning methods on unbalanced dataset (1:3).

Method
Performance (%) on Balanced training set - 1:3

Accuracy Precision Recall Specificity

DeepPPI 98.19±0.58 98.73±0.40 93.98±2.43 99.59±0.13
DeepFE-PPI 98.96±0.27 98.30±0.46 97.52±0.88 99.44±0.15
Struct2Graph 99.30±0.22 99.17±0.44 98.19±1.09 99.71±0.13
Method MCC F1-score ROC-AUC NPV

DeepPPI 95.15± 1.55 96.28± 1.24 99.27±0.14 98.03±0.78
DeepFE-PPI 97.21±0.72 97.90±0.55 99.51±0.11 99.18±0.29
Struct2Graph 98.20±0.56 98.67±0.41 99.49±0.21 99.33±0.38

Table 4. Five-fold cross-validation performance analysis of deep-learning based
machine learning methods on unbalanced dataset (1:5).

Method
Performance (%) on Balanced training set - 1:5

Accuracy Precision Recall Specificity

DeepPPI 97.78±0.45 98.33±0.39 88.20±2.74 99.70±0.07
DeepFE-PPI 98.97±0.27 98.19±0.49 95.60±1.52 99.65±0.10
Struct2Graph 99.13±0.18 98.49±0.85 96.63±0.93 99.68±0.19

Method MCC F1-score ROC-AUC NPV

DeepPPI 91.87±1.68 92.97±1.53 98.69±0.50 97.69±0.52
DeepFE-PPI 96.28±1.00 96.87±0.85 99.56±0.25 99.12±0.30
Struct2Graph 97.03±0.56 97.55±0.45 99.17±0.25 99.26±0.23

Discussion 342

Struct2Graph can predict PPIs solely from 3D structural information and outperforms 343

other existing machine learning models with an average accuracy (98.89%) and precision 344

(99.50%). The success of Struct2Graph is attributed to the use of structural 3D 345

information embedded in the form of a graph, which describes chemical interactions 346

better than sequence-based approaches. In addition to these predictions, Struct2Graph 347

can further identify likely interaction sites of the specific protein-protein complex. This 348

is achieved by considering the probability tuples {(pi, pj)} of different amino acids 349
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Table 5. Five-fold cross-validation performance analysis of deep-learning based
machine learning methods on unbalanced dataset (1:10).

Method
Performance (%) on Balanced training set - 1:10

Accuracy Precision Recall Specificity

DeepPPI 98.24±0.49 95.83±2.60 84.33±4.23 99.63±0.23
DeepFE-PPI 99.17±0.33 96.56±1.09 94.19±2.87 99.67±0.10
Struct2Graph 99.42±0.14 97.54±1.28 96.43±2.49 99.73±0.16
Method MCC F1-score ROC-AUC NPV

DeepPPI 88.95±3.14 89.66±2.94 97.18±1.24 98.45±0.41
DeepFE-PPI 94.91±2.07 95.35±1.90 99.48±0.32 99.42±0.29
Struct2Graph 96.65±1.12 96.96±1.07 99.45±0.70 99.63±0.22

during the knowledge selection process described in Equation (3). These probabilities 350

capture the relative importance of amino acids and how they interact, and thus reflect 351

the contributions of different amino acids towards interaction prediction. Amino acids 352

with large relative probabilities are likely to participate in the interaction process as 353

potential interaction sites. 354

We validated the results of Struct2Graph prediction for interaction sites of protein 355

pairs with the literature [60]. Staphylococcus aureus is a Gram-positive bacteria and one 356

of the most common causes of human bacterial infections worldwide. Phenol-soluble 357

modulins (PSMs), short, amphipathic, α-helical peptides [61], play a crucial role in S. 358

aureus virulence [62]. S. aureus has seven PSMs (PSMα1−α4, PSMβ1−β2, and δ-toxin) 359

which have multiple functions including, cytolysis, biofilm structuring, and inflammatory 360

activation via cytokine release and chemotaxis. Specifically, PSMs trigger release of high 361

mobility group box-1 protein (HMGB1). Toll-like receptor-4 (TLR4) interacts with 362

HMGB1 activating nuclear factor NF-κB and the production of proinflammatory 363

cytokines [63]. However, S. aureus PSMsα1−α3 significantly inhibit HMGB1-mediated 364

phosphorylation of NF-κB by competing with HMGB1 via interactions with the same 365

surrounding residues of TLR4 domain [60]. As such, the specific interacting residues for 366

these pairs (HMGB1:TLR4 and HMGB1:PSMα1) have been well described [60]. 367

Struct2Graph identifies 20 residues between sites 82 and 375 on TLR4 (PDB ID: 368

3FXI) as the likely interaction site of HMGB1 (PDB ID: 2LY4) with 9 of the top 10 369

predictions falling between residues 328 and 352. While Struct2Graph includes some 370

lower-numbered residues in its prediction of the interaction site of HMGB1 on TLR4, 371

the suggested interaction site shares overlap with the reported domain of residues 372

336-477, especially with Glu336, Arg355, Phe377. The predicted top 20 interaction 373

residues on HMGB1 match the indicated residues between sites 16 and 88, with 9 of the 374

top 10 predictions falling between residues 36 and 83. Consistent with the competitive 375

binding of HMGB1 and PSMα1 with TLR4, Struct2Graph reveals PSMα1 (PDB ID: 376

5KHB) is interacting within the same domain of HMGB1 as TLR4. Fig 3 shows the 377

residues predicted to be essential and highlights how Struct2Graph predicts a similar 378

site for both interactions. Moreover, Struct2Graph and previously reported MD 379

simulations show PSMα1 shares interactions at Gly2 and Val10 within the range of 380

indicated residues 2-17. These results underscore that Struct2Graph is capable of 381

identifying residues critical to protein interactions without any training data on the 382

specific nature of these interactions. A complete summary of the residues identified by 383

Struct2Graph learning for these interactions is reported in the supporting information. 384

It must be noted that TLR4, PSMα1 and HMGB1 were not included in the training set. 385

Struct2Graph not only accurately predicts their (binary) interactions, but also correctly 386
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elucidates the likely interaction sites. 387

Fig 3. Predicted interaction sites for haemoglobin protein. A comparison of
Struct2Graph predicted interaction sites for HMGB1 (left)interacting with TLR4 (top
right) and PSM−α1(bottom right) interacting with TLR4. The residues predicted to be
most important for interactions are shown in red. Arrows indicate predicted interaction
sites.

Conclusion 388

Struct2Graph, a GCN-based mutual attention classifier, to accurately predict 389

interactions between query proteins exclusively from 3D structural data is proposed. It 390

is worth noting that Struct2Graph does not directly use descriptors, such as sequence 391

information, hydrophobicity, surface charge and solvent accessible surface area, and thus 392

can be generalized to a broader class of nanoscale structures that can be represented in 393

similar fashion. This study demonstrates that a relatively low-dimensional feature 394

embedding learned from graph structures of individual proteins outperforms other 395

modern machine learning classifiers based on global protein features. Our GCN-based 396

classifier achieves state-of-the-art performance on both balanced and unbalanced 397

datasets. 398

Moreover, the mutual attention mechanism provides insights into likely interaction 399

sites through its knowledge selection process in a completely unsupervised manner. The 400

interaction sites predicted by Struct2Graph for PSMs are in consensus with the 401

previously reported binding sites for this family. This connection between the 402

unsupervised discovery of interaction sites and graph representation of proteins is 403

possible thanks to the somewhat limited type of atoms and bond patterns that 404

commonly occur in such molecules, which makes it possible to characterize properties on 405

local atomistic arrangements. Overall, the proposed framework is quite general and, 406
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while subject to availability of corresponding training data, can be made to predict 407

other kinds of complex sets of collective supramolecular interactions between proteins 408

and nanoscale species of different chemical composition. 409

Supporting information 410

S1 File. — Supporting Information.pdf Detailed information on 411

interaction sites. File containing information on Struct2Graph attention-based 412

ranking of the amino acid residues for HMGB1-TLR4 and HMGB1-PSMs-α1 413

interactions. 414
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