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a b s t r a c t 

This paper presents three techniques for scheduling for crude transfer between a port and a refinery on 

a single pipeline in the presence of stringent flow constraints. The three techniques are based on meta- 

heuristics (business rules), mixed integer linear programming and reinforcement learning. In addition to 

comparing the three techniques, we also demonstrate how knowledge gleaned from one technique (in 

our case, the metaheuristics) can be used to design an algorithm based on another technique (in our 

case, reinforcement learning). A novel feature of our approach to reinforcement learning, in particular, 

is the use of low-fidelity, reduced-order simulators for training the scheduler and supporting it with a 

post-processor based either on business rules or on integer programming for ensuring compatibility with 

the constraints. The set of constraints considered here includes temporal restrictions on the use of the 

pipeline, flow constraints in the tanks that feed the column distillation units in the refinery, and the need 

to ensure a certain minimum residence time for crude in a given tank for dewatering. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

In this paper, we present algorithms for scheduling the move- 

ent of crude from an upstream port to a refinery. Crude comes 

n a variety of grades based on criteria such as sulfur and metal 

ontent. The challenge of scheduling the movement in the setting 

f this paper stems from a combination of four factors: the pres- 

nce of a single pipeline serving all individual grades of crude, vol- 

me transfer constraints, particular facets of the production plan, 

nd the allocation of tanks to individual crude grades. Although 

his paper considers a very specific refinery model, the set of chal- 

enges listed here could apply equally to other refineries. There- 

ore, the techniques designed in this paper can be applied or scaled 

eadily to other refineries. 

The problem addressed in the paper can be viewed as a special 

ase of the larger problem of optimizing the operations of a net- 

ork of machines. Unlike more traditional problems which seek to 

aximize the net productivity of the plant or other performance 
∗ Corresponding author. 
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etrics ( Wagle and Paranjape, 2020; Hubbs et al., 2020 ), our prob- 

em primarily concerns feasibility due to the tight volume trans- 

er constraints. Nonetheless, most of the techniques developed in 

his paper would work equally well for more traditional problems 

here the set of feasible solutions affords further scope for opti- 

ization. Our algorithms can function as stand-alone schedulers in 

heir own right or act as high-performance recommender systems 

o human schedulers. 

.1. Literature overview 

The problem considered in the paper shares common ground 

ith well-known problems in decision theory, such as supply 

hain optimization, flow-shop optimization Pinedo (2012) and dy- 

amic resource allocation problems. Applications include man- 

facturing plants, fuel refineries, defence resource allocation 

ertsekas et al. (20 0 0) and even epidemics Brandeau et al. (2003) .

ost of the techniques developed for these problems, especially 

t a theoretically rigorous level, deal with the time of completion 

f a process (the makespan). These problems can also be viewed 

s combinatorial optimization problems, which lead one to explore 

rogramming techniques such as genetic algorithms or linear pro- 

ramming (LP) and their variants. When the plant is poorly char- 

https://doi.org/10.1016/j.compchemeng.2022.107732
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2022.107732&domain=pdf
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cterized or too complex to control analytically or using combina- 

orial optimization techniques, approaches based on approximate 

ynamic programming, or reinforcement learning (RL), can be in- 

oked Zhang and Dietterich (1995, 1996) ; Dalal and Mannor (2015) . 

Although LP-based techniques ( Pinto et al., 20 0 0; Mendez et al., 

006 ) as well as model predictive control (MPC) ( Al-Othman et al., 

0 08; Brandeau et al., 20 03 ) have been applied successfully to 

chedule optimization problems, these techniques rely on know- 

ng the plant model reasonably accurately (if not exactly). In our 

etting, on the contrary, we assume that the plant model is not 

nown and needs to be learned in a suitable sense through trial- 

nd-error. This places our problem firmly in the remit of approxi- 

ate dynamic programming, or reinforcement learning. RL-based 

echniques have been proposed for scheduling problems in the 

ontext of the usual makespan minimization ( Zhang and Dietterich, 

995; 1996 ) and even missile defence systems ( Bertsekas et al., 

0 0 0 ). 

MPC is a widely-used control technique for industrial plant op- 

rations. It consists of two essential elements: a receding horizon 

RH) framework and a solver for the optimal control problem over 

 finite horizon. Traditional MPC uses the resulting control inputs 

n an open-loop fashion. Robustness is derived from the receding 

orizon framework. In contrast, RL provides a closed-loop policy 

or each time instant ( Ernst et al., 2009 ) and derives robustness 

rom exposure to “uncertainties” in the training regime. 

Recent attempts to bring together MPC and learning have in- 

olved either learning an explicit system model that can be ex- 

loited by MPC ( Williams et al., 2017 ), or using MPC to generate

raining sets for neural network-based policy generators which op- 

rate at a fraction of the computational cost of MPC ( Zhang et al.,

016 ). RL techniques can be used to augment typical MPC algo- 

ithms ( Negenborn et al., 2005 ), wherein MPC is used (on an ap-

roximate model) until the value function estimates required by 

L are sufficiently reliable. Thereafter, the computationally simpler 

L-generated policy can replace the one generated by MPC. Alter- 

ately, RL can be used to obtain a policy for the finite-horizon win- 

ow so that the control inputs in each window can be computed 

n a closed-loop manner rather than being computed a priori and 

sed in an open-loop manner ( Wagle and Paranjape, 2020; Hubbs 

t al., 2020 ). 

A related problem is representing information about extraneous 

ariables, such as the production plan, for the purpose of training 

he policy. In this paper, we assume that the extraneous variables 

an be represented in terms of known “primitives.” An alternate 

pproach is to use temporal moments , as illustrated in our prior 

ork ( Wagle and Paranjape, 2020 ), to reduce the dimensionality 

f the training set for learning algorithms. 

.2. Contributions 

In this paper, we develop three families of controllers for opti- 

al scheduling of the flow channels in a refinery characterized by 

 single dominant flow channel between the port and the refinery. 

he three families are based on meta-heuristics (business rules), 

einforcement learning (RL) and mixed-integer linear programming 

MILP). 

A key requirement is that the controller be able to work with a 

arge class of crude receipt schedules and be robust to disruptions 

n crude receipt or downstream processing. We deal with these 

roblems by using a receding horizon framework, and we train our 

L algorithm to work with a large class of production plans which 

an be written as a concatenation of primitive strings. 

Another contribution of our work is the use of domain-driven 

ultimodel framework for deriving the optimal control laws. The 

ultimodel framework consists of nested models, where the in- 

er model is obtained by a simplifying abstraction of the outer 
2 
odel. These abstractions may be spatial, temporal or both. The 

implest model lends itself to RL, especially by providing an ap- 

ropriate state space. Intermediate models are suitable for deriving 

he heuristics and for training the RL agent. The outermost model, 

hich is also the most detailed, is used for deriving an MILP-based 

tandalone optimizer as well as an MILP-based post-processor for 

he RL agent. 

The rest of the paper is organized as follows. We present the 

echnical preliminaries in Section 2 . The multimodel framework is 

resented in Section 3 . The optimizers are presented in Section 4 . 

inally, numerical case studies are presented in Section 5 . 

. Preliminaries: Receding horizon control 

We are interested in sequential decision-making problems over 

ime horizons T � 1 . Let s ∈ S and u ∈ U denote the state and ac- 

ion variables. The spaces S and U are typically subsets of multi- 

imensional real or integer spaces. The class of problems that our 

echniques can address are of the form 

Objective: max 

T ∑ 

k =1 

f ( s [ k ] , u [ k ]) s . t . 

Dynamics: s [ k + 1] = A s [ k ] + σT [ k ] B u [ k ] + d [ k ] (1) 

Control: u = [ u 1 , . . . , u p ] 
� , u i ∈ { 0 , 1 } 

dmissibility: c min ≤ C s + D u ≤ c max 

here T ⊂ R consists of disjoint temporal intervals, d [ ·] denotes 

ully or partially known external signals and σT [ ·] is the indicator 

unction 

T [ t] = 

{
1 , t ∈ T 
0 , otherwise 

he objective function f (·, ·) : S × U → R ≥0 may be nonlinear. 

When information about d [ k ] is available over a finite time 

orizon (i.e., over a horizon h 
 T ), a receding horizon approach 

s a natural way to solve the problem. We iterate over the follow- 

ng steps starting at time t = 0 : 

1. Solve the problem (1) with T set to h . 

2. Take the computed actions for some time τh < h . 

3. Return to the first step. 

It is assumed that, after τh steps, information about d is avail- 

ble for a further h steps. 

Next, we briefly recall the relevant features of mixed-integer 

inear programming (MILP) and reinforcement learning (RL) in the 

ontext of solving Problem (1) with T = h . These approaches yield 

wo different types of solution: 

• The use of MILP leads to an iterative solver which must be run 

at the start of each planning horizon, and as many time as nec- 

essary thereafter. 
• The use of offline RL involves one-off training that results in 

a non-iterative formula (also called a policy) parametrized in 

terms of d [ k 0 : k 0 + h ] (where k 0 denotes the start of the plan-

ning horizon). Depending on how it is employed, this policy 

may be invoked either once or on multiple instances until time 

τh has elapsed; its parameters are then adjusted to account for 

any new information about d . 

.1. Mixed-integer linear programming 

Linear programs and mixed-integer linear programs (MILPs) 

ave long been used in the context of refinery management and 

cheduling optimization ( Koenig, 1963; Baker and Lasdon, 1985; 

ill, 1995; Göthe-Lundgren et al., 2002; Khor and Varvarezos, 

017 ). These include scheduling of crude oil unloading at the 
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ort ( Lee et al., 1996 ), building piecewise linear models for opti- 

al crude blending ( Jia and Ierapetritou, 2003; Gao et al., 2015 ), 

ptimizing energy efficiency ( Wu et al., 2017 ), optimal produc- 

ion planning ( Zhen et al., 2008; Uribe-Rodriguez et al., 2020 ), and 

hort-term logistics optimization ( Taherkhani et al., 2020; Misra 

t al., 2020 ). For a petroleum refinery aiming to optimize crude 

cheduling at a mode level, a zero-one programming technique 

hat corresponds to binary selection of various crude modes can be 

odeled using linear constraints. Other constraints, such as, tank 

apacity constraints, simultaneous inflow/outflow constraints, and 

ontiguity constraints can also be modeled as linear constraints. 

or instance, let s [ t] denote the state of a tank at instant t with a

inimum and maximum capacities being 0 and S max , respectively. 

et r[ t] be the amount of crude received in the tank at time t ,

hile u [ t] is a binary variable, which indicates whether the crude 

s withdrawn at time t with a flow-rate of C units per instant. We 

escribe the tank-state at the next instant as: 

 [ t + 1] = s [ t ] + r[ t ] − C · u [ t ] , 

hich is linear in the decision variable u [ t] , and thus the corre-

ponding capacity constraints, 0 ≤ s [ t + 1] ≤ S max are also linear in

he decision variable u [ t] . Details on linear modeling of other con- 

traints are described later in Section 4.2 in detail. Note that our 

ILP approach assumes a discrete-time representation of the refin- 

ry system. This is in contrast to event-triggered discrete-time for- 

ulation ( Saharidis et al., 2009 ) where time between two events 

s assumed to evolve in a continuous manner. Discrete-time rep- 

esentation of plant dynamics is necessitated by the complexity of 

he underlying system (discussed in detail in Section 3 ), particu- 

arly associated with the inactivity of the shared pipeline for a pro- 

onged duration, availability of the tanks for unloading (due to de- 

atering constraints), minimization of demurrage costs and other 

ydraulic constraints. A suitable choice of the associated objec- 

ive function is to maximize the throughput or minimize the total 

hortfall in production at the CDUs, which can again be modeled 

sing linear functions of the underlying decision variables. Linear 

odeling of constraints and objective function entails use of MILPs 

or optimizing mode level crude scheduling. 

While the problem of optimal scheduling can be addressed 

hrough a suitable MILP formulation, solving large-scale MILPs 

an be computationally prohibitive if not modeled appropri- 

tely ( Kannan and Monma, 1978; Papadimitriou, 1981; Phillips 

t al., 2015 ). The computational complexity of MILPs aris- 

ng from exploring combinatorially many candidate solutions 

an be alleviated through approaches, such as, branch-and- 

ound ( Ross and Soland, 1975 ), or Benders decomposition ( Codato 

nd Fischetti, 2006 ) to some extent; however, carefully formulat- 

ng the underlying model is still the primary source of obtaining 

ignificant computational speed-up ( Trick, 2005; Klotz and New- 

an, 2013 ). In this paper, we develop novel and computationally 

ractable linear formulations of optimal scheduling of refinery op- 

rations purely from an (a) MILP perspective, and (b) reinforce- 

ent learning (RL)-guided MILP framework. We further discuss the 

dvantages and disadvantages of the two approaches. Additionally, 

n MILP formulation for generating optimal production plan that 

akes into account several crude-level constraints is also developed. 

t is shown that while MILP still continues to be the first line of at-

ack for optimal scheduling in refinery systems, several nonlinear 

onstraints and scale of the problem may prohibit the use of MILP 

lgorithms, thus, requiring metaheurisitc approaches, such as, RL 

o guide efficient MILP exploration. 
3 
.2. Reinforcement learning 

Reinforcement learning (RL) techniques are an approximate way 

o solve problems of the form 

ax 

T −1 ∑ 

k =0 

γ k f ( s [ k ] , u [ k ]) , s [ k + 1] = g( s [ k ] , u [ k ]) (2) 

here 0 < γ ≤ 1 is called the discount factor. The dynamics need 

ot be Markov; however, a larger range of techniques apply to 

arkov systems, along with the accompanying theoretical guaran- 

ees. RL techniques attempt to solve the Bellman equation (or its 

ction-value variant) 

 ( s ) = max 
u 

E( f ( s , u ) + γV ( s ′ )) 

here s ′ = g( s , u ) . Here E denotes the expected value in a stochas- 

ic setting, and the actual value in a deterministic setting. The end- 

roduct is a policy π : S → U which yields the optimal control sig- 

al u = π( s ) to be taken at any given state. 

When the system in (2) depends on exogenous signals d , it is 

lear that the policy π also depends on d . This dependence can 

e captured, at least approximately, in a parametrized form which 

e denote as π(· ; d ) . Notice that the policy is trained exactly 

nce with a sufficiently rich combination of ( s , d ); thereafter, in 

 receding-horizon setting, only the parameters for d are adjusted 

hen new information about d becomes available. 

In this paper, we consider the case where the value function as 

ell as the policy are encoded through dedicated neural networks; 

.e., the so-called actor-critic architecture. A schematic is shown in 

ig. 1 . 

.2.1. Simulator-based training 

Simulator-aided training is the primary mode for training a pol- 

cy in an offline setting. Here, the RL agent has access to only a 

imulator, while relevant domain knowledge reflects in the choice 

f the variables that enter the neural network as inputs, as well as 

n the number and structure of hidden layers. 

.2.2. Supervised training 

An alternate approach to train the RL agent, especially in the 

arly stages of training, is to employ meta-heuristics or historical 

erformance data to estimate the state trajectory and the value 

unction for a given sequence of actions. Unlike the schematic of 

ig. 1 , which is relevant to simulator-based training, the policy net- 

ork is trained by directly comparing the computed actions with 

hose taken historically or recommended by the meta-heuristics. 

his “priming” can reduce the time required to train the net- 

ork in a simulator-based model and also bias the network ade- 

uately towards well-accepted (albeit possibly non-optimal) solu- 

ions when there are multiple optimal candidates. 

. Multi-level modeling 

.1. Port-refinery complex 

The port-refinery complex is illustrated in Fig. 2 . It consists of 

anks in the port area (labeled port) and a refinery complex, (la- 

eled refinery), with its tanks and column distillation units (CDUs). 

he port and refinery areas are linked by a single pipeline, denoted 

y PRL. The capacity of each tank is marked in the figure. 

The nomenclature employed for the tanks follows the following 

otation: tank ZGcn is in zone Z (port or refinery) and holds crude 

f grade G. The number cn denotes a unique identifier; in particu- 

ar, for the refinery tanks, c denotes the numerical identifier of the 

DU and n represents the order of the tank. 
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Fig. 1. A schematic of an actor-critic architecture. 

Fig. 2. A schematic map of the port-refinery complex considered in the paper. Additional restrictions (e.g., RN21 and RN22 feeding CDU2 only hold N-type crude) are listed 

in the text.. 
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The refinery processes four grades of crude: L-type, M-type, N- 

ype and O-type. There is further classification within these grades 

or modes) based on the metal content and the specific weight 

f the crudes, but we do not consider these properties here. The 

anks in port and refinery are colored based on the grades that 

hey are allowed to hold. For instance, the tank RL11 to CDU1 is 

nly allowed to hold L-type. 

We note a key constraint regarding the tanks: other than tank 

O23, no tank can be filled and drained simultaneously. 

We measure crude in metric tonnes. Therefore, 1 unit of crude 

quals 10 0 0 metric tonnes. The flow rate of a pipe is measured in

etric tonnes per hour; i.e., units/hr in our notation. The CDUs, 

DU1 and CDU2, are assumed to consume crude at their design 

apacity of 0.22 units/hr and 0.32 units/hr, respectively. In practice, 

he exact capacity can be adjusted based on flow constraints. Here, 

e do not permit as much. 

The port area receives crude from ships, with the exception of 

RL (which is of N-type grade). Crude received from ships is stored 
4 
n a suitable tank, depending on the grade of the crude, and avail- 

ble for transfer to the refinery only after 24 hrs of dewatering. 

RL, on the other hand, is sourced from an upstream provider, al- 

eady dewatered, and can be drawn when needed in packets of 

.45 units. 

PRL transfers crude at a rate of 1.045 units/hr. We split time 

nto 38-hr blocks. PRL is available for our use only during the first 

9.8 hrs of a 38 hr block; for the remaining 18.2 hrs, it is not avail-

ble in any event. With this constraint, we can easily verify that 

he amount of crude transferred by the PRL in a 38 hr block (20.7 

nits) is equal to the amount processed by the two CDUs during 

he same time period. 

This appears to pose a straight-forward replenishment problem 

s far as scheduling is concerned; however, the challenge stems 

rom the processing of L-type crude. Note that RL11, with a capac- 

ty of 14.5 units, is the only tank in the refinery area for holding 

-type. It is economically desirable to process L-type continuously 

ver two successive days; in other words, it is drawn continuously 
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ver 48 hrs with no time for replenishment during this period. 

his is evident in the sample production plan introduced later in 

he paper (see Fig. 6 ). 

.2. Sim3: Master model for flow in the port-refinery complex 

Let t = 0 denote an arbitrary starting time, and let 1 time unit 

orrespond to 15 minutes. Let s (·) [ t] ∈ R denote the level of a tank

t a time instant t . The subscript is matched to the tank identifier 

n Fig. 2 . Let p (·) [ t] ∈ { 0 , 1 } denote whether its outgoing pipe is

pen (1) or closed (0), and let u (·) denote likewise for its incoming 

ipe. 

The dynamics of the flows in the port-refinery complex are de- 

cribed by the following equations: 

Capacity constraints : u (·) = 0 if a tank is almost full 

Capacity constraints : p (·) = 0 if a tank is almost empty 

port tanks : s (·) [ t + 1] = s (·) [ t] + 0 . 33 u (·) − 0 . 26 p (·) 
efinery tanks to CDU1 : s (·) [ t + 1] = s (·) [ t] + 0 . 26 u (·) − 0 . 056 p (·

(3

24 : s RO 24 [ t + 1] = s RO 24 [ t] + 0 . 26 u RO 24 − 0 . 08 p RO 24 (4) 

RO23 : s RO 23 [ t + 1] = s RO 23 [ t] (5) 

+0 . 08(u RO 23 − p RO 24 ) 

N21,RN22 to CDU2 : s (·) [ t + 1] = s (·) [ t] + 0 . 26 u (·) − 0 . 08 p (·) 
Filling and draining : p i u i = 0 , ∀ i 
 = { RO23 } 

p i p j = δi j , ∀ (i, j) ∈ refinery 

PRL on : p i = u j = 1 , 

iff PRL transfers from tank i to j 

here δi j is the Kronecker delta. By almost full , we mean that the 

ank can be filled in less than 15 minutes with the nominal in-flow 

ate, and likewise for almost empty. 

.3. Sim0, Sim1 and Sim2: Abstract models 

An inspection of Sim3 reveals a large action space. If we con- 

train our attention to the PRL alone, it is clear that there are 

9 actions to be chosen in each 38 hour block (4 decision points 

er hour for 19.8 hours). Over 30 calendar days, this translates to 

early 1496 decision points. To simplify the planning problem, we 

ake the following steps: 

1. We redefine the state and action spaces, as explained presently. 

In effect, the action space reduces to calculating just 5 deci- 

sion variables in a 38 hour block. This yields an aggregate crude 

transfer schedule. 

2. We post-process the aggregate transfer schedule using a higher- 

fidelity simulator to ensure that the schedule complies with 

tank capacity constraints at each instant in time. 

In practice, this is achieved using two sets of abstractions. 

1. We group tanks that hold the same grade of crude into zones in 

each area. The capacity of a zone is the sum of the capacities 

of individual tanks. For instance, RO23 and RO24 are grouped 

into the O-type zone, while tanks RL11 (L-type) and RM12 (M- 

type) are single-tank zones. This obvious simplification creates 

the following problem. Consider the N-type zone (RN13 and 

RN14) feeding CDU1. If one of them is full and the other is 

actively feeding CDU1, it might create the false impression of 

spare holding capacity in that zone and lead a controller to er- 

roneously schedule the transfer of N-type crude to CDU1. 
5 
2. We re-calibrate the duration of a time instant, so that instants 

k and k + 1 are separated by 38 hours. We additionally define 

the instant k ′ located 19.8 hrs between k and k + 1 . This means

that there are just 19 planning instants in a 30 day period. This 

simplification also comes with a risk. Continuing with the ex- 

ample of the N-type zone feeding CDU1, suppose now that the 

CDU1 is fed N-type only for the first 18 hours of a 19.8 hour 

sub-block. Had the feeding tank been full at the start of the 

19.8 hr block, it leaves space for nearly 18 units, whereas only 

9 units can be actually transferred in the remaining 1.8 hrs. The 

controller should have some awareness of this “adjusted” spare 

capacity, but it is not obvious how this notion may be formal- 

ized once tanks are replaced with zones. 

By using one or more of these abstractions, we design three 

imulators which are listed in Table 1 . Of these, the governing 

quations for Sim1 and Sim2 are similar to those of Sim3 in 

q. (3) , with the tanks replaced by zones and constraints of the 

orm p (·) u (·) = 0 relaxed for all zones except RL11 and RM12. The 

one-based abstraction is shown schematically in Fig. 3 . 

In Sim0 and Sim1, we have replaced port tanks with an infi- 

ite reservoir. This is done with the assumption that the crude 

eceipt schedule (supplemented by ARL packets) is fundamentally 

dequate for meeting the production schedule. An RL agent trained 

sing Sim0, therefore, needs a post-processor to ensure that tank 

apacities are respected and N-type crude flow is grouped into 

ackets of 4.45 units when ARL is to be drawn. 

The last column of Table 1 lists the primary (but not exclu- 

ive) utility of each specific model or simulator. The RL agent is 

rained using Sim0 and inherits its state and action space. Sim1 is 

sed later to design the heuristic optimizer. Sim2 is used as part 

f the training of the RL agent, in order to evaluate the rewards 

nd penalties accurately, and includes a post-processor to convert 

he actions recommended by the agent (which are based on Sim0) 

nto those required in Sim2 (15 minute slots). Finally, Sim3 is used 

or the final validation of the RL agent, and for designing the MILP 

lgorithm. 

The dynamics for Sim0 are described by the following equa- 

ions, with the understanding that 1 instant lasts 38 hours. 

s [ k ′ ] = clip ( s [ k ] + u [ k : k ′ ] − p [ k : k ′ ]) 
s [ k + 1] = clip ( s [ k ′ ] − p [ k : k ′ ]) (6) 

5 
 

i =1 

u i [ k : k 
′ ] ≤ 20 . 7 (7) 

here s ∈ R 

5 denotes the states of the refinery zones . The con- 

rol input u [ k ] � u [ k : k ′ ] ∈ R 

5 (with components u i [ ·] ) denotes the

mount of crude transferred to each of the five zones on the re- 

nery side, while p [ k : k ′ ] ∈ R 

5 denotes the amount of crude con-

umed by the CDUs during that same period. The ‘clip’ function 

imits the zone levels to between 0 and the maximum limit. 

. Optimization algorithms: Formulation 

In this section, we will present three optimization algorithms. 

he first family consists of an algorithm based on heuristics (also 

eferred to as business rules). The second consists of an algo- 

ithm based on mixed-integer linear programming (MILP), while 

he third consists of algorithms based on reinforcement learning 

RL). 

.1. Heuristics (business rules) 

Business rules may be viewed, generally, as a combination of 

nalytical rules based on simplified models and common-sense 
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Table 1 

Hierarchically-organized list of simulators . 

Model/ Time ticks Port Refinery Utility 

Simulator 

Sim0 38 hrs ∞ Zone Design of RL agent 

Sim1 15 min ∞ Zone Design of heuristics-based optimizer 

Sim2 15 min Zone Tank Evaluation of the RL agent 

Sim3 15 min Tank Tank Design of MILP 

Fig. 3. The equivalent zone-based map of the refinery. We have represented the PRL by dummy nodes in this schematic. The four colors denote L-type (yellow), M-type 

(pink), N-type (green) and O-type (blue) crude.. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Algorithm 1 Business rules for scheduling. 

1: Initialize: bids b ← 0 

2: Compute m 20 , m 

e 
38 

and m 38:76 using (7) 

3: b ← clip ( m 

e 
38 

− s ) , maximumvalues given by (8) 

4: if �b = 

∑ 5 
i =1 b i > 20 . 7 then 

5: Normalize: b ← 20 . 7( b / �b ) ; update �b ← 20 . 7 

6: end if 

7: Compute remaining PRL capacity: σ = 20 . 7 − �b 

8: Compute projected level of each zone: s 38 = s + b − p [ t 0 : t 0 + 

152] 

9: Compute projected spare capacity: e = s max − s 38 

{Allocate some spare capacity to M-type and L-type 

(experience-based heuristic)} 

10: Compute amount to be transferred: a = 

min ( e 38 ,M−type , m 38:76 ,M−type , σ ) 

11: Update: b M−type ← b M−type + a , σ ← σ − a , e 38 ,M−type ← 

e 38 ,M−type − a 

12: Repeat for L-type 

13: While σ > 0 : repeat for other crudes in descending order of 

m 38:76 ;update b and e 

14: If σ > 0 : fill M-type, N-type (CDU1), N-type(CDU2) O-type and 

L-typeuntil full (subject to bounds in (8) or while σ > 0 ; up- 

date b 

{Likely if simulation starts with all tanks close to full:} 

15: If σ > 0 remains: record possible unused capacity 

16: Output: u = b = amounts to be transferred during 19.8 hrs 

17: Create a 15 min-level schedule using Sim1 or Sim2 (see Algo 2) 

T

a

w

ules grounded in experience. Business rules are, by design, effec- 

ive and robust but not always optimal. In our setting, they serve 

wo purposes: (i) they set a baseline for formal optimization algo- 

ithms, and (ii) they can be used for priming the RL algorithms, as 

xplained earlier. 

The business rules employed in the paper are based on Sim0 

nd Sim1: they draw on the state and action spaces of Sim0 and 

rescribe the volume of each crude to be transferred over a 19.8 

r block, and then use Sim1 to order the crude transfer slots and 

acate individual slots to prevent overflows. 

The algorithm based on business rules is detailed in 

lgorithm 1 . We define the following quantities based on the 

roduction demand. Recall that a block of 38 hrs is split into 

52 units of 15 min each; moreover, only the first 79 units are 

vailable for crude transfer. Let t 0 denote the starting time of a 38 

r block. Then, we define: 

m 20 = p [ t 0 : t 0 + 79] 

m 

e 
38 = p [ t 0 : t 0 + 152] + additional terms (8) 

 38:76 = p [ t 0 + 152 : t 0 + 304] 

here “additional terms” are included for L-type and M-type based 

n the following motivation. On any calendar day starting during a 

8 block, the volumes required to meet the requirement for the 

ntire window of production (typically 24 hrs for M-type and 48 

rs for L-type) must be provided before the 19.8 hr slot ends. The 

dditional volume is added to obtain m 

e 
38 

(where the superscript 

e’ stands for extended). We clarify that no such terms are needed 

or N-type and O-type. 

Next, we derive a few upper limits on the amount of crude that 

an be transferred over the 19.8 hrs: 

Necessary for preventing overflows : u i ≤ s i, max + m 20 ,i − s i

Crudes with a single refinery tank : u i ≤ 1 . 045 clip (19 . 8 −
6 
he first bound is applicable to all crudes and intended to prevent 

n overflow. Note that it is only a necessary condition for reasons 

hich will become evident later. 
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Fig. 4. Schematics of the proposed (a) primary, and (b) secondary MILP formulations. The primary MILP works at the zone-level and optimizes the schedule for crude 

transfer through the PRL. The secondary MILP builds upon the solution from primary MILP for optimal tank assignment. 

le holding tank in the refinery area, it is clear that we cannot transfer 

a  the total time during the 19.8 hr block when the i th crude grade is 

p able for transferring that crude. 

own into 15 min slots. We start with L-type, although the high-level 

o  consumption on present day and the future). If feasible, up to 0.261 

u rade is considered. If no grade is feasible, the slot is allowed to remain 

f ransfer block. 

4

ical fashion for scheduling transfer of crude oil in order to maximize 

t e exact MILP formulation, we must also look at the challenges that 

r ral feasibility constraints. The flows in and out of tanks are modeled 

i utes. For a production plan that spans over 30 days, there is a total 

o e first 19.8 hours of a 38-hour block are used for transporting crude 

t to a total of 79 sub-blocks within each 38-hour window, i.e., there is a 

t  by the operator. Recall that the port-refinery complex being addressed 

i re made individually at the tank level during each of the 1501 time 

i ast a total of 1501 × 18 = 27018 binary decision variables. Furthermore, 

m ate of 2 × 30 × 24 × 4 × 18 = 103680 linear constraints (2 for min and 

m r hour, and 18 tanks). Even the simplest of the MILPs comprising of 

n ically intractable, let alone incorporating complex constraints, such as, 

d  prohibitive to formulate MILPs at the tank levels and we, therefore, 

r

r of decision variables and linear constraints (easily by three fold), since 

t aking at the five refinery zones (see Fig. 3 ). However, the number of 

c g constraints at the chosen granularity of fifteen minutes necessitates 

f ally simpler MILPs, each of which can be solved efficiently on simpler 

c  key observation that the original problem is inherently a feasibility 

p  the CDUs. The constraints are decoupled into zone-level constraints 

( y and dewatering constraints on tanks). The advantage is that solving 

t  Sim3) fixes the schedule for crude transfer through PRL (see Fig. 2 ). 

O  remains to address the tank assignment problem with capacity and 

d ization problem would fix the transfer schedule for the L-type mode. 

O to optimize crude unloading at tanks PL01, PL02 and PL03 upon arrival 

a d out of tanks matches the crude receipt schedule and PRL transfer 

s , the problem of assigning tanks for accommodating crude receipt and 

w lting in a set of decoupled and computationally tractable MILPs. Below 

w  in detail. 

4

o obtain optimal schedule for crude transfer through the PRL at the 

z rawal are disregarded at this stage and addressed subsequently through 

s t state of the i th -zone with an overall maximum capacity of S i max 
. The 

s zone is defined as the cumulative capacity of the corresponding tanks. 

F  a) is the cumulative capacity of the tanks PL01, PL02 and PL03 ( Fig. 2 ). 

T efinery side). Let T be the total length of the planning horizon. Binary 

v  CDU2, respectively at time t . Finally, we use binary variables u i [ t] to 

i e t (see Fig. 4 a). (P-MILP) describes the associated MILP for optimizing 
The second constraint above applies only to crudes with a sing

ny volume while its tank is feeding the CDU. If τi ≤ 19 . 8 denote

rocessed by the CDU, it is evident that only 19 . 8 − τi hrs are avail

The crude volumes obtained using Sim0 need to be broken d

rdering can be refined easily (e.g., order the grades as per their

nits of crude are transferred during a 15 min slot; else, the next g

allow. This is repeated every 15 min until the end of the 19.8 hr t

.2. Mixed integer linear programming 

In this section, we formulate a series of MILPs in an hierarch

he total throughput at the CDUs. However, before we lay out th

estrict us to formalize a single MILP in order to incorporate seve

n a discrete-time framework at a temporal resolution of 15 min

f nearly 19 blocks, each amounting to 38 hours. Additionally, th

hrough the pipeline. For the chosen time-resolution, this amounts 

otal of 79 × 19 = 1501 time instants necessitating decision making

n this paper consists of 18 tanks (see Fig. 2 ). If the decisions a

nstants, the simplest of the MILP formulations would require at le

odeling the tank capacity constraints alone introduce an aggreg

ax capacity constraints, 30 days, 24 hours, 4 decision points pe

early 27k decision variables and 100k linear constraints are pract

ewatering and contiguity constraints. Thus, it is computationally

estrict ourselves to the abstraction of Sim3. 

Abstraction at the level of Sim3 significantly reduces the numbe

he Sim3 abstraction works at the zone-level requiring decision m

apacity constraints, along with imposing contiguity and dewaterin

urther decomposition of the optimization problem into hierarchic

ompute resources. The proposed decomposition is based on the

roblem, with an added objective of minimizing the shortfall at

capacity constraints on zones) and tank-level constraints (capacit

he zone-level scheduling problem at the abstraction of Sim2 (or

nce the zone-level crude transfer decisions get locked, it simply

ewatering constraints. For instance, solving the zone-level optim

nce the transfer times for the L-type crude are known, it suffices 

nd withdrawal from them after wards such that the flow in an

chedule for L-type (obtained by solving the zone-level MILP). Thus

ithdrawal can be handled independently for different crudes, resu

e describe the proposed hierarchical nature of MILP formulations

.2.1. Primary MILP 

As discussed previously, the purpose of the primary MILP is t

one-level. The problem of tank assignments for storage and withd

econdary MILPs. To this end, we denote s i [ t] to denote the curren

etup for the primary MILP is shown in Fig. 4 a. The capacity of a 

or instance, the capacity of the L-type zone on the port side ( Fig. 4

here is a total of nine zones (four on the port side, five on the r

ariables v 1 [ t] and v 2 [ t] are used to indicate activity of CDU1 and

ndicate transfer of crude to the corresponding refinery zones at tim
7 
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s

M  1 [ t] 

) 

+ 

( 

T −
T ∑ 

t=1 

v 2 [ t] 

) 

S i max 
, ∀ i ∈ { 1 , . . . , 9 } 

 = s i [ t] + r i [ t] − C PRL ·u i [ t] ∀ i ∈ { 1 , 2 } 
 = s 3 [ t] + r 3 [ t] − C PRL ·(u 3 [ t] + u 4 [ t]) 
 = s 4 [ t] + r 4 [ t] − C PRL ·u 5 [ t] 
1] = s 4+ i [ t] + C PRL ·u i [ t] − C 1 ηi [ t] ·v 1 [ t] ∀ i ∈ { 1 , 2 , 3 } 
1] = s 4+ i [ t] + C PRL ·u i [ t] − C 2 ηi [ t] ·v 2 [ t] ∀ i ∈ { 4 , 5 } 
] = 1 (P-MILP) 

1 ,T −1 } 
u i [ τ ] − ( u i [ t] − u i [ t − 1] ) ≥ 0 , ∀ i ∈ { 1 , . . . , 5 } 

1 ,T −1 } 
− u i [ τ ] − ( u i [ t − 1] − u i [ t] ) ≥ 0 , ∀ i ∈ { 1 , . . . , 5 } 

1 } , ∀ i ∈ { 1 , . . . , 5 } , v 1 [ t] , v 2 [ t] ∈ { 0 , 1 } 
H  CDUs, respectively. We use ηi [ t] to represent (binary) activity of the 

i tes that CDU1 is required to process M-type crude (from zone-2) at 

t decision variables themselves. Similarly, crude incoming schedules are 

s (P-MILP) is to minimize the total shortfall at the CDUs. Since the binary 

v of the CDUs, the total number of events of inactivity is captured in the 

o
 

[ t] are obtained using simple mass-flow balance. Exclusivity constraints 

a ted through the PRL pipeline at any instant. Minimum up/down-time 

c ature ( Kazarlis et al., 1996 ), and provide a simple and interesting way 

t t us suppose that the i th decision variable gets activated at time t , i.e., 

u force the subsequent MUT number of variables to be unity. Thus, if the 

P any time t , then it must continue to do so at least for the remaining 

M terpreted similarly. 

4

 crude transfer through the PRL pipeline at the zone-level. Once the 

o  known, the problem of optimal tank assignment gets decoupled based 

o ndary MILPs is to assign receipt and withdrawal of each crude type to 

t watering constraints. The withdrawal schedule from port tanks should 

b h the PRL obtained by solving the primary MILP. Similarly, the arrival 

s  crude transfer schedule through the PRL. This is depicted in Fig. 4 b for 

t used to indicate whether the crude receipt at time t is being allocated 

t tank is being emptied at time t . The formulation below describes the 

a . 

M

] ≤ S max tank l 
, ∀ l ∈ { 1 , . . . , n i } 

] = s tank l 
[ t] + C in ·e l [ t] − C PRL ·w l [ t] , ∀ l ∈ { 1 , . . . , n i } 

 = δi [ t] , 
∑ n i 

l=1 
w l [ t] = u i [ t] 

 ) − e l [ t] ≥ 0 , ∀ τ ∈ { t, t + 1 , . . . , t + 	 − 1 } , ∀ l 

1 ,T −1 } 
z l [ τ ] − ( z l [ t] − z l [ t − 1] ) ≥ 0 , z l ∈ { e l , w l } 

1 ,T −1 } 
z l [ τ ] − ( z l [ t − 1] − z l [ t] ) ≥ 0 , z l ∈ { e l , w l } 

∈ { 0 , 1 } (S-MILP) 

I m (and not an optimization problem). Consequently, the optimization 

o s associated with the i th crude-type is depicted by n i . The exclusivity 

c le for crude receipt (when δi [ t] = 1 ) and withdrawal (when u i [ t] = 1 ). 

D l th -tank at time t , then there is no withdrawal from it at least for the 

n 	 is chosen to be 96 ( 24 × 4 ). The minimum up/down-time constraints 

e ntiguous with minimal switching between the tanks. 
chedule of crude transfer through the PRL. 

inimize: 

( 

T −
T ∑ 

t=1 

v

s.t., Capacity constraints: 0 ≤ s i [ t] ≤

Mass-balance constraints: 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

s i [ t + 1]
s 3 [ t + 1]
s 4 [ t + 1]
s 4+ i [ t + 

s 4+ i [ t + 

Exclusivity constraints: 
∑ 5 

i =1 
u i [ t

Min. up-time constraints: 

min { t+ MUT −∑ 

τ= t 

Min. down-time constraints: 

min { t+ MDT −∑ 

τ= t 
1 

Integer constraints: u i [ t] ∈ { 0 , 

ere C PRL , C 1 and C 2 represent the flow rates through the PRL and

 

th -zone on a given day. For instance, a value of η2 [ t] = 1 indica

he time instant t . Note that ηi [ t] s are specifications and not the 

pecified by quantities { r i [ t] } . The primary objective of the MILP in 

ariables v 1 [ t] and v 2 [ t] denote the instantaneous status (activity) 

bjective. Capacity constraints are easy to understand; the states s k
re added to ensure that only one kind of crude can be transpor

onstraints are commonly employed in the unit commitment liter

o ensure contiguity of flow. They can be interpreted as follows: Le

 i [ t − 1] = 0 and u i [ t] = 1 , then the minimum up-time constraints 

RL pipeline begins to admit flow to one of the refinery tanks at 

UT time instants. The minimum down-time constraints can be in

.2.2. Secondary MILP 

Solving the primary MILP addresses the optimal scheduling of

ptimal schedules for the transfer of different crude types becomes

n the corresponding crude type. As such, the objective of the seco

he corresponding tanks taking into account their capacities and de

e in accordance with the optimal crude transfer schedule throug

chedule to refinery tanks should match up with the corresponding

he L-type tanks located at the port side. Binary variables e l [ t] are 

o the l th -tank. Similarly, binary variables w l [ t] indicate if the l th -

ssociated secondary MILP for the feasible tank assignment problem

inimize: 0 

s.t., Capacity constraints: 0 ≤ s tank l 
[ t

Mass-balance constraints: s tank l 
[ t + 1

Exclusivity constraints: 
∑ n i 

l=1 
e l [ t]

Dewatering constraints: ( 1 − w l [ τ ]

Min. up-time constraints: 

min { t+ MUT −∑ 

τ= t 

Min. down-time constraints: 

min { t+ MDT −∑ 

τ= t 
1 −

Integer constraints: e l [ t] , w l [ t] 

t is worth noting that the secondary MILP is a feasibility proble

bjective in (10) is simply set to a constant. The number of tank

onstraints ensure that at least one of the tanks is always availab

ewatering constraints ensure that if the crude is received at the 

ext 	 time instants, so as to allow for the removal of water. Here, 

nsure that the assignment generated by the secondary MILP is co
8 
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Fig. 5. Schematic of the proposed MILP framework for generation of optimal production plan. 

4

 plan at the CDUs is known a priori. These production plans are in 

f ry being meeting the monthly targeted production demand. Other key 

f contiguous processing schedule, avoiding processing low-sulphur crude, 

s -type. The program below provides an MILP formulation for generating 

o  schematic of the refinery system with real variables ˜ u i [ d] representing 

t ary variable indicating the crude-type being processed on the d th -day. 

F  N-type, while O-type will be processed by CDU2 on the d th -day. 

M  [ d] 

 ≤ S i max 
, ∀ i ∈ { 1 , . . . , 9 } 

1] = s i [ d] + ̃

 r i [ d] − ˜ u i [ d] ∀ i ∈ { 1 , 2 } 
 1] = s 3 [ d] + ̃

 r 3 [ d] − ( ̃  u 3 [ d] + 

˜ u 4 [ d]) 
 1] = s 4 [ d] + ̃

 r 4 [ d] − ˜ u 5 [ d] 

+ 1] = s 4+ i [ d] + 

˜ u i [ d] − ˜ C 1 ·o i [ d] ∀ i ∈ { 1 , 2 , 3 } 
 1] = s 8 [ d] + 

˜ u 4 [ d] − ˜ C 2 ·(1 − o 3 [ d]) 

 1] = s 9 [ d] + 

˜ u 5 [ d] − ˜ C 2 ·o 3 [ d] 

 

[ d] = 1 

 

[ d] = F [ d] 

 ⇒ 

˜ u i [ d − 1] = 0 , i ∈ { 1 , 2 } 
 1 [ d] + o 3 [ d − 1] − 1 , 1 ≥ o 1 [ d + 1] + o 3 [ d] 

 ⇒ 

˜ u i [ d] = 0 (Sopt-MILP) 

T −1 ,D −1 } 
 

 d 

o l [ τ ] − ( o l [ d] − o l [ d − 1] ) ≥ 0 

T −1 ,D −1 } 
 

 d 

1 − o l [ τ ] − ( o l [ d − 1] − o l [ d] ) ≥ 0 

 ] ∈ { 0 , 1 } 
H ulphur content crude (N-type) is processed the day before low-sulphur 

c s, since processing L-type after N-type reduces the quality of the low- 
.2.3. Optimal production plan 

Through out this paper, we assume that the daily production

act generated carefully keeping in mind several factors, the prima

actors affecting the daily production plan include generating fairly 

uch as the L-type along with a low-sulphur crude type, such as N

ptimal production plan at the abstraction of Sim0. Fig. 5 shows the

he flow values during the d th -day, while o l [ d] , l ∈ { 1 , 2 , 3 } is a bin

or instance, if o 3 [ d] = 1 indicates that CDU1 is required to process

inimize: 
∑ D −1 

d=1 
q

s.t.,Capacity constraints: 0 ≤ s i [ d]

Mass-balance constraints: 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

s i [ d + 

s 3 [ d +
s 4 [ d +
s 4+ i [ d 
s 8 [ d +
s 9 [ d +

Exclusivity constraints: 
∑ 3 

l=1 
o l

PRL constraints: 
∑ 5 

i =1 
˜ u i

Dewatering constraints: o i [ d] = 1

Crude-quality constraints: q [ d] ≥ o

Inflow/outflow constraints: o i [ d] = 1

Min. up-time constraints: 

min { d+ MU∑
τ=

Min. down-time constraints: 

min { d+ MD∑
τ=

Integer constraints: o l [ d ] , q [ d

ere, the binary variable q represents the instance when the high-s

ontent crude (L-type). The objective is to minimize such instance
9 
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s essing of a low-sulphur content crude can precede the processing of a 

h e stored in single tanks on the refinery side, dewatering requirements 

n e for processing until the next day is over. Quantities ˜ r i [ d] ’s denote the 

d rocessing rates at the CDUs. 

4

4

ture as descrived in Lillicrap et al. (2015) and implement it using the 

D ariant of the actor-critic architecture in Fig. 1 . The RL algorithm solves 

f ck. 

 design the input layer of the neural networks that encode the actor as 

w rt of 38 hr block. The input layer consists of the following states: 

ct zones rather than tanks) 

roduced on the current day and over each of the next four days. A 

the day-by-day production plan ( Wagle and Paranjape, 2020 ). 

 during the next 19.8 hrs; these are found by determining the number 

 19.8 hr transfer block. 

 of penalties so that the desired reward is zero. The penalty function is 

a d and squared) are calculated as follows. 

s i [ k ] + u i [ k : k 
′ ] − p i [ k : k 

′ ] − s i, max ) , where the clipping function bounds 

 

[ k : k + 1] − (s i [ k ] + u i [ k : k 
′ ])) , where the clipping function bounds o i −

cess amount transferred is given by l i = clip (u i [ k : k 
′ ] − u i, max [ k : k 

′ ]) , 
 below by zero. 

 the last 18.2 hrs of a 38 hr block. Therefore, the excess needs to be 

c  L-type and M-type arise because of the fact that there is just one tank 

f

r (10) 

I e, M-type, N-type (CDU1), N-type (CDU2) and O-type, respectively. The 

a finite when u i, max = 0 . ∑ 5 
i =1 b i = 1 . Notice that the notion of b here is not the same as that in 

S e interval k : k ′ as 

u (11) 

4

h crude to be transferred during a 19.8 hr block. The ordering of the 

c al 1 min slots) has yet to be solved for. 

ocessing, consider the following pathological case wherein all tanks are 

f ype crude are to be processed by CDU1 and CDU2, respectively, for the 

f would recommend a non-zero top-up only for N-type and O-type. Due 

t evitable that at least one refinery tank would experience an overflow. 

T  while the two CDUs put together consume only 12.13 units during the 

s

lem by permitting fallow slots (i.e., slots where no crude is transferred) 

e st demand or spare capacity. 

m: determine the crude grade to be transferred during any 15 min slot 

s andidate approaches to solve the ordering problem. The first approach, 

b second approach, based on meta-heuristics, is described next. 

contiguous blocks, one for each crude and with the total volume equal 

t e ordered randomly. Thereafter, we run the following steps for each 15 

m e transferred; else, we move to the next crude block. If no crude can 

b cribed in Algorithm 2 . Note that Sim1 and Sim2 can both be used for 

p employed: 
ulphur content crude; however, the reverse is acceptable, i.e., proc

igh-sulphur content crude. Because, L-type and M-type can only b

ecessitate that if crude is received at a given day, it is not availabl

aily receipt of crudes, while ˜ C 1 and 

˜ C 2 represent the daily crude p

.3. Reinforcement learning 

.3.1. Volume of each crude to be transferred 

We use the deep deterministic policy gradient (DDPG) architec

DPG obtained from OpenAI’s Spinning Up repository. 2 . DDPG is a v

or the volume of each crude to be transferred during a 19.8 hr blo

We draw upon the state space of Sim0, presented in Eq. (7) , to

ell the critic. These actor as well as the critic are called at the sta

• Time: day and time (at the start of the 38 hr slot). 
• Current refinery zone levels (recall that Sim0 works with abstra
• Production plan; i.e., the volume of each crude grade to be p

moment-based representation can be used as an alternative to 
• Maximum volumes of L-type and M-type that can be transferred

of hours for which the two grades are not produced during the

The reward structure, in this particular problem, consists purely

 sum-of-squares, and the individual terms (before being normalize

1. Overflow after 19.8 hrs: for each crude, the overflow o i + = clip (

o i + below by zero. 

2. Shortfall over 38 hrs: for each crude, the shortfall o i − = clip (p i
below by zero. 

3. Transferring L-type/M-type beyond permissible limits: the ex

where i ∈ { L − type, M − type } and the clipping function bounds

Notice that no crude is transferred to the refinery tanks during

omputed at the end of 19.8 hours. Moreover, the extra bounds for

or each of these grades in the refinery zone. 

The net step reward is given by 

[ k ] = 

5 ∑ 

i =1 

( (
o i + 

s i, max 

)2 

+ 

(
o i −

s i, max 

)2 
) 

+ 

2 ∑ 

i =1 

(
l i 

0 . 12 + u i, max 

)2 

n the above formula, the numerical labels 1 : 5 correspond to L-typ

dditional 0.5 in the denominator of the last term keeps the term 

The output of the RL algorithm is a vector b ∈ [0 , 1] 5 satisfying 

ection 4.1 . We get the volume of crude to be transferred during th

 [ k : k ′ ] = 20 . 7 b , 

5 ∑ 

i =1 

b i = 1 

.3.2. Post-processing and refinement 

The approach detailed so far only prescribes the volume of eac

rude supply (i.e., the crude grade to be transferred during individu

To appreciate the issues that can arise in the absence of post-pr

ull at the start of a 38 hr block. Suppose that only N-type and O-t

oreseeable future. It is reasonable to expect that the RL algorithm 

o the normalization and multiplication by 20.7 in Eq. (12) , it is in

o see this, note that the PRL can transfer 20.7 units over 19.8 hrs,

ame period. 

While formulating the business heuristics, we avoided this prob

xplicitly. In Algorithm 1 , notice how slots are allocated only again

The objective of a post-processor is to solve the following proble

ubject to an upper limit obtained from Eq. (12) . We consider two c

ased on secondary MILP, has been described in Section 4.2.2 . The 

Meta-heuristics 

We start by creating a nominal schedule which consists of five 

o that obtained from Eq. (12) . These five blocks are assumed to b

in block. we check if crude from the first block in the list can b

e transferred, we declare the slot as fallow. This approach is des

ost-processing. We note the following difference in how they are 
2 https://spinningup.openai.com/en/latest/ 
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Algorithm 2 Post-processing using Sim1/Sim2. 

1: Initialize: k 0 ≤ 5 contiguous crude blocks obtainedfrom Eq. (10) after eliminating crude blockswith near-zero volume 

2: Initialize: state s 

3: Order the blocks randomly: permuted labels = [ r 1 , . . . , r k 0 ] ; volumes = [ vol (r 1 ) , . . . , vol (r k 0 )] 

4: Initialize: v = zero array of size 79 × 2 

5: Initialize: k = 0 (number of 15 min blocks assigned) 

6: while k < 79 and k 0 > 0 : do 

7: Internal initialization: j = 1 ; flag = 0 

8: while flag = 0 do 

9: if Crude from r j blockcan be transferred { depends on whether Sim1 or Sim2 is used} then 

10: v [ k, 1] = r j , v [ k, 2] = min ( vol (r j ) , 0 . 26) ; vol (r j ) ← vol (r j ) − v [ k, 2] 

11: if vol (r j ) = 0 then 

12: Eliminate the block r j ; k 0 ← k 0 − 1 

13: end if 

14: k ← k + 1 , flag = 1 

15: else 

16: j = j + 1 

17: if j > k 0 {no blocks left to check} then 

18: flag = 0 ; k = k + 1 {fallow slot} 

19: end if 

20: end if 

21: end while 

22: Map v [ k ] to u {exact form depends on Sim1/Sim2} 

23: Update Sim1 state: s ← clip ( s + u − p ) 

24: end while 

25: Optional feature: fill fallow slots using the logic of line 14of Algorithm 1. 

26: Output: v = ordered array of crude to be transferred during each 15 min slot 

Fig. 6. The monthly production plan considered in this sequel. J10 is the tenth day, and so on. 

 the refinery zone. For L-type and M-type, an additional constraint that 

esponding tanks. 

 space and it isn’t feeding the CDUs (except RO23, which can be filled 

 a tank to the extent possible before refilling it. However, if necessary, 

an 75% of its capacity and the other tank for the same grade is full, we 

led. 

5

We initialize the tank levels to 60% of their capacity. 

5

im-1, is shown in Fig. 7 . Business rules meet 100% of the production 

r

5

e Gurobi optimizer Bixby (2007) on an i7-7700HQ CPU @ 2.8GHz and 

1 ed by the primary MILP. The computational time required is about five 

m ition method. The solutions generated by the primary MILP are fed to 

t 9 depicts the crude arrival and withdrawal schedule for the tank PO01. 

T ved that both the tank capacity constraints, as well as the dewatering 
• Sim1: crude can be transferred as long as there is free space in

must be port is that CDU1 should not be drawing from the corr
• Sim2: crude can be transferred to a tank as long as it has free

and drained simultaneously). For N-type crude, we try to drain

we use the following logic. If a tank has been drained to less th

start draining the second tank so that the first tank can be refil

. Numerical case studies 

For numerical simulation, we use the production plan in Fig. 6 . 

.1. Business rules 

The actual production over the first 30 days, predicted using S

equirement in Fig. 6 . 

.2. MILP 

The MILPs described in Section 4.2 were implemented using th

6GB RAM. Fig. 8 depicts the optimal PRL transfer schedule generat

inutes and thus illustrates the power of the proposed decompos

he a series of secondary MILPs for optimal tank assignments. Fig. 

he results for other tanks follow a similar trend. It can be obser
11 
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Fig. 7. Production over 15 days for the plan in Fig. 6 . 

Fig. 8. Optimal crude transfer schedule generated by solving the primary MILP. The schedule is fairly contiguous and meets the targeted demand. 

Fig. 9. Illustration of validity of the dewatering constraints for tank PO01. (a) State of the tank at different time points. Each time point depicts a 15-minute window. (b) Red 

and purple bars indicate the instances of crude receipt and withdrawal, respectively. Observe that a receipt event preceding an event of withdrawal must be separated by at 

least 96 time points (1 day). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

12 
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Fig. 10. Optimal daily production plan produced by (Sopt-MILP) . (a) Daily production schedules, (b) Daily targeted crude transfer through PRL ( { ̃ u i } ). The yellow, pink, green 

and blue colors represent the crude types L-type, M-type, N-type and O-type, respectively. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

c lving the secondary MILPs is only about 30 seconds. Thus, the entire 

d pproach for optimizing crude transfer in a refinery system. 

framework for generating optimal production plan using the targeted 

p rated by the (Sopt-MILP) . It can be seen that in the optimal production 

p fore the day L-type is scheduled to be processed, as mandated by the 

c rough PRL, that can further be used to refine the search for the primary 

M roduction plan is only 0.5 seconds. 

5

g reinforcement learning are the Deep Deterministic Policy Gradient 

( or Critic (SAC) as described in Haarnoja et al. (2018) . The DDPG was 

m  noise to the DDPG policy outputs which reduces exponentially as the 

t

ting the rewards. The schedule is post-processed using the Sim2 meta- 

 are replaced with a feasible crude grade. The resulting production is 

an in Fig. 6 . When the upstream refinery tank is empty, production is 

he appointed time. 

ards. This case is split into two, as described below. The rewards are 

s. The rewards are plotted in Fig. 11 c. 

m wherein we shuffle the production schedule. We view the production 

p We shuffle the order in which the concatenation is done. The three 

p roduction plans for CDU2 are complementary: CDU2 processes N-type 

w ives for CDU1 are: (N-type, N-type, N-type), (N-type, N-type, N-type, 

N

 cases is shown in Fig. 12 . We note here that the reward shown in 

F thm 2 . Interestingly, this performs better than when Sim2 is used to 

c feasible solutions that do not register on Sim0. 

ploratory noise performs better than its variations. Notice, for instance, 

t e policy is trained using SAC. However, with a shuffled schedule, the 

p e time required for training is similar (within 10% ) for all four cases. 

T ted in Table 2 . It can be enhanced significantly using an MILP-based 

p

onstraints are being port. The computational time required for so

ecomposition approach presents itself as an extremely tractable a

We further demonstrate the advantages of the proposed MILP 

roduction demand. Fig. 10 a depicts the daily production plan gene

lan, there are no instances of N-type being processed the day be

rude quality constraints. Fig. 10 b shows the daily crude transfer th

ILP. The computation time required for generating the optimnal p

.3. Reinforcement learning 

The two algorithms used in simulation and optimization usin

DDPG) Silver et al. (2014) ; Lillicrap et al. (2015) and the Soft Act

odified to include explicit exploration by the addition of random

raining session progresses. 

We consider three cases for numerical simulation: 

1. Case 1: DDPG on Sim0, with Sim0 additionally used for compu

heuristics in Algo 2 , with the optional feature that fallow slots

shown in Fig. 11 a. Note that production takes place per the pl

stopped, but it does not move to a different crude grade until t

2. Case 2: DDPG on Sim0 with Sim2 used for computing the rew

plotted in Fig. 11 b and Fig. 11 d. 

3. Case 3: SAC on Sim0 with Sim2 used for computing the reward

Case 2 is split further into two, to study a variant of the algorith

lan as a concatenation of “primitive” plans described presently. 

rimitive production considered here are defined for CDU1; the p

hen CDU1 does not; else it processes O-type. The three primit

-type) and (M-type, L-type, L-type, M-type). 

The variation in the rewards during training for each of these

ig. 12 (a) is obtained before the post-processing based on Algori

ompute the rewards which, one would expect, should weed out in

From Fig. 11 , we observe that the base DDPG algorithm with ex

he conspicuous shortfall in production of all but O-type when th

olicy is more robust against changes in the production plan. Th

he performance of each algorithm, in terms of the deficit, is lis

ost-processor, such as the one in Section 4.2.2 . 
13 
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Fig. 11. Production time history over 30 days when the refinery is refilled using RL-based schedule. 

Fig. 12. The variation in the reward during training for each of the four cases listed above. 

14 
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Table 2 

Comparison of RL algorithms . 

Algorithm L-type M-type N-type 3 N-type 4 O-type 

DDPG Sim0 0% −0 . 45% 0% −1 . 52% 0% 

DDPG Sim2 −2 . 45% −5 . 33% −2 . 96% −2 . 98% −3 . 88% 

SAC Sim2 −18 . 97% −10 . 61% −11 . 31% −12 . 94% −5 . 4% 

DDPG Sim2 Shuffled −6 . 12% −9 . 55% −16 . 47% −9 . 53% −8 . 1% 

Fig. 13. Optimal crude transfer schedule generated by the RL algorithm and post-processed using the MILP. The white colored bars indicate fallow slots. 

e RL agorithm can be leveraged to assist the primary MILP for gener- 

a  RL algorithm outputs the amount of crude for each crude-type to be 

t ified to search for schedules, that match the solutions generated by the 

R ated in Fig. 13 . 

6

ues, based on a multimodel framework, for transferring crude to the 

A  models, with each nesting a consequence of spatio-temporal abstrac- 

t ptimizer. For instance, the optimal scheduler based on business rules 

w to be ideally suited for designing the RL algorithm. Sim2 was used for 

p ally, Sim3 was found to be amenable to optimization using MILP. We 

a erated by the business rules and RL. 

allowed us to derive an ideal solution using MILP. Business rules could 

r ged between successive days), but could not address the dewatering 

c P solution and could match it with post-processing using a secondary 

M

tion was perhaps not appropriate for RL given that the set of feasible 

s roduction plan being prescribed a priori. However, we expect the RL 

a aranjape, 2020 ), to solve two follow-on problems which were not ad- 

d e former arises when one considers material properties of individual 

c n plan can be introduced as a solvable variable by demanding that is 

s performance metrics. While RL is well-suited to solving this advanced 

p  a linearized problem) can help pre-train the RL policy. 

A

L. implemented the Reinforcement Learning models. M.B. implemented 

t nd R.L. wrote and revised the paper. S.M. and A-L.B. carried out the 

f

We finally demonstrate how the optimal policy generated by th

ting the optimal schedule for crude transfer through the PRL. The

ransferred during each PRL session. The primary MILP can be mod

L algorithm. The performance of the hybrid approach is demonstr

. Conclusion 

In this paper, we presented three optimum scheduling techniq

ntwerp refinery from the upstream port. We derived four nested

ions. Each of these models presents features that aids a specific o

as derived using Sim1, while the state space of Sim0 was found 

ost-processing the schedules generated using Sim0 and Sim1. Fin

lso developed an MILP-based post-processor for the schedules gen

The problem addressed in the paper could be linearized, which 

eproduce this solution (up to a few units of crude being exchan

onstraint adequately. RL came to within 97% of the baseline MIL

ILP solver. 

It is worth noting, in defence of RL, that the problem formula

olutions was singular for all practical purposes because of the p

rchitecture developed here, and in our prior paper ( Wagle and P

ressed in the paper: crude-blending and production planning. Th

rude such as density, metal content and viscosity. The productio

atisfy a weaker set of constraints and maximize some prescribed 

roblems, solutions found using meta-heuristics or MILP (based on

uthor Contributions 

A.P., M.B., S.M. and A-L.B. conceived the study. A. P., S.W. and R.

he Mixed-Integer Linear Programming models. A.P., M.B., S.W. a
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15 



A .A . Paranjape, M. Baranwal, S. Wagle et al. Computers and Chemical Engineering 160 (2022) 107732 

D

c

i

R

A  

B  

B  

B
B  

C

D  

E  

G  

G  

G

H  

H  

J

K

K  

K

K  

K

L  

L  

M  

M  

N  

P

P  

P

P  

R  

S  

S  

T

T

U  

W

W  

W  

Z  

Z

Z

Z  
eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

eferences 

l-Othman, W.B.E. , Lababidi, H. , Alatiqi, I.M. , Al-Shayji, K. , 2008. Supply chain opti-
mization of petroleum organization under uncertainty in market demands and 

prices. Eur J Oper Res 189 (3), 822–840 . 
aker, T.E. , Lasdon, L.S. , 1985. Successive linear programming at exxon. Manage Sci

31 (3), 264–274 . 
ertsekas, D.P. , Homer, M.L. , Logan, D.A. , Patek, S.D. , Sandell, N.R. , 20 0 0. Missile de-

fense and interceptor allocation by neuro-dynamic programming. IEEE Transac- 
tions on Systems, Man, and Cybernetics - Part A: Systems and Humans 30 (1), 

42–51 . 

ixby, B. , 2007. The gurobi optimizer. Transp. Re-search Part B 41 (2), 159–178 . 
randeau, M.L. , Zaric, G.S. , Richter, A. , 2003. Resource allocation for control of infec-

tious diseases in multiple independent populations: beyond cost-effectiveness 
analysis. J Health Econ 22 (4), 575–598 . 

odato, G. , Fischetti, M. , 2006. Combinatorial benders’ cuts for mixed-integer linear 
programming. Oper Res 54 (4), 756–766 . 

alal, G. , Mannor, S. , 2015. Reinforcement learning for the unit commitment prob-

lem. In: 2015 IEEE eindhoven powertech, pp. 1–6 . 
rnst, D. , Glavic, M. , Capitanescu, F. , Wehenkel, L. , 2009. Reinforcement learning ver-

sus model predictive control: a comparison on a power system problem. IEEE 
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39 (2), 

517–529 . 
ao, X. , Jiang, Y. , Chen, T. , Huang, D. , 2015. Optimizing scheduling of refinery oper-

ations based on piecewise linear models. Computers &amp; Chemical Engineer- 

ing 75, 105–119 . 
ill, G. , 1995. Linear programming as a tool for refinery planning. In: Proceedings of

the 31st Annual Conference of the Operational Research Society of New Zealand, 
Wellington, New Zealand, August, vol. 3, pp. 103–111 . 

öthe-Lundgren, M. , Lundgren, J.T. , Persson, J.A. , 2002. An optimization model for 
refinery production scheduling. Int. J. Prod. Econ. 78 (3), 255–270 . 

aarnoja, T. , Zhou, A. , Abbeel, P. , Levine, S. , 2018. Soft actor-critic: Off-policy max-

imum entropy deep reinforcement learning with a stochastic actor. In: Dy, J., 
Krause, A. (Eds.), Proceedings of the 35th International Conference on Ma- 

chine Learning. In: Proceedings of Machine Learning Research, vol. 80. PMLR, 
pp. 1861–1870 . 

ubbs, C.D. , Li, C. , Sahinidis, N.V. , Grossmann, I.E. , Wassick, J.M. , 2020. A deep rein-
forcement learning approach for chemical production scheduling. Computers & 

Chemical Engineering 141, 106982 . 

ia, Z. , Ierapetritou, M. , 2003. Mixed-integer linear programming model for gasoline 
blending and distribution scheduling. Industrial &amp; Engineering Chemistry 

Research 42 (4), 825–835 . 
annan, R. , Monma, C.L. , 1978. On the computational complexity of integer 

programming problems. In: Optimization and Operations Research. Springer, 
pp. 161–172 . 

azarlis, S.A. , Bakirtzis, A.G. , Petridis, V. , 1996. A genetic algorithm solution to the

unit commitment problem. IEEE Trans. Power Syst. 11 (1), 83–92 . 
hor, C.S. , Varvarezos, D. , 2017. Petroleum refinery optimization. Optimization and 

engineering 18 (4), 943–989 . 
lotz, E. , Newman, A.M. , 2013. Practical guidelines for solving difficult mixed integer

linear programs. Surveys in Operations Research and Management Science 18 
(1–2), 18–32 . 

oenig, W.J. , 1963. The application of computers for refinery simulation (refinery 
planning by linear programming). 6th World Petroleum Congress. OnePetro . 

ee, H. , Pinto, J.M. , Grossmann, I.E. , Park, S. , 1996. Mixed-integer linear program-

ming model for refinery short-term scheduling of crude oil unloading with in- 
ventory management. Industrial &amp; Engineering Chemistry Research 35 (5), 

1630–1641 . 
16 
illicrap, T.P. , Hunt, J.J. , Pritzel, A. , Heess, N. , Erez, T. , Tassa, Y. , Silver, D. , Wierstra, D. ,

2015. Continuous control with deep reinforcement learning. arXiv preprint 
arXiv:1509.02971 . 

endez, C.A. , Grossmann, I.E. , Harjunkoski, I. , Kaboré, P. , 2006. A simultaneous op-

timization approach for off-line blending and scheduling of oil-refinery opera- 
tions. Computers & Chemical Engineering 30 (4), 614–634 . 

isra, S. , Kapadi, M. , Gudi, R.D. , 2020. A multi grid discrete time based framework
for maritime distribution logistics &amp; inventory planning for refinery prod- 

ucts. Computers &amp; Industrial Engineering 146, 106568 . 
egenborn, R.R. , De Schutter, B. , Wiering, M.A. , Hellendoorn, H. , 2005. Learn-

ing-based model predictive control for Markov decision processes. IFAC Pro- 

ceedings Volumes 38 (1), 354–359 . 
apadimitriou, C.H. , 1981. On the complexity of integer programming. Journal of the 

ACM (JACM) 28 (4), 765–768 . 
hillips, A.E. , Waterer, H. , Ehrgott, M. , Ryan, D.M. , 2015. Integer programming meth-

ods for large-scale practical classroom assignment problems. Computers &amp; 
Operations Research 53, 42–53 . 

inedo, M. , 2012. Scheduling - Theory, Algorithm, and Systems, 5th Springer, Cham, 

Switzerland . 
into, J.M. , Joly, M. , Moro, L.F.L. , 20 0 0. Planning and scheduling models for refinery

operation. Comput. Chem. Eng. 24 (9–10), 2259–2276 . 
oss, G.T. , Soland, R.M. , 1975. A branch and bound algorithm for the generalized

assignment problem. Math Program 8 (1), 91–103 . 
aharidis, G.K.D. , Minoux, M. , Dallery, Y. , 2009. Scheduling of loading and unloading

of crude oil in a refinery using event-based discrete time formulation. Comput- 

ers & Chemical Engineering 33 (8), 1413–1426 . 
ilver, D. , Lever, G. , Heess, N. , Degris, T. , Wierstra, D. , Riedmiller, M. , 2014. Deter-

ministic policy gradient algorithms. 31st International Conference on Machine 
Learning, ICML 2014 1 . 

aherkhani, M. , Seifbarghy, M. , Tavakkoli-Moghaddam, R. , Fattahi, P. , 2020. 
Mixed-integer linear programming model for tree-like pipeline scheduling prob- 

lem with intermediate due dates on demands. Operational Research 20 (1), 

399–425 . 
rick, M. , 2005. Formulations and reformulations in integer programming. In: Inter- 

national Conference on Integration of Artificial Intelligence (AI) and Operations 
Research (OR) Techniques in Constraint Programming. Springer, pp. 366–379 . 

ribe-Rodriguez, A. , Castro, P.M. , Gonzalo, G.-G. , Chachuat, B. , 2020. Global op-
timization of large-scale MIQCQPs via cluster decomposition: application to 

short-term planning of an integrated refinery-petrochemical complex. Comput- 

ers &amp; Chemical Engineering 140, 106883 . 
agle, S., Paranjape, A .A ., 2020. Use of simulation-aided reinforcement learning for 

optimal scheduling of operations in industrial plants. In: 2020 Winter Simula- 
tion Conference (WSC), pp. 572–583. doi: 10.1109/WSC48552.2020.9383893 . 

illiams, G. , Wagener, N. , Goldfain, B. , Drews, P. , Rehg, J.M. , Boots, B. ,
Theodorou, E.A. , 2017. Information theoretic MPC for model-based reinforce- 

ment learning. In: 2017 IEEE international conference on robotics and automa- 
tion (ICRA), may 29 th - june 3 rd , singapore, pp. 1714–1721 . 

u, N. , Li, Z. , Qu, T. , 2017. Energy efficiency optimization in scheduling crude oil

operations of refinery based on linear programming. J Clean Prod 166, 49–57 . 
hang, T. , Kahn, G. , Levine, S. , Abbeel, P. , 2016. Learning deep control policies for

autonomous aerial vehicles with MPC-guided policy search. In: 2016 IEEE inter- 
national conference on robotics and automation (ICRA), may 16 th - 21 st , stock- 

holm, sweden, pp. 528–535 . 
hang, W. , Dietterich, T.G. , 1995. A reinforcement learning approach to job-shop 

scheduling. In: Proceedings of the 14 th international joint conference on artifi- 

cial intelligence - volume 2. Morgan Kaufmann Publishers Inc., San Francisco, 
CA , USA , pp. 1114–1120 . 

hang, W. , Dietterich, T.G. , 1996. High-performance job-shop scheduling with a 
time-delay TD λ network. In: Touretzsky, D.S., Mozer, M.C., Hasselmo, M.E. 

(Eds.), Advances in neural information processing systems 8. MIT Press, Cam- 
bridge, MA, pp. 1024–1030 . 

hen, G. , Lixin, T. , Hui, J. , Nannan, X.U. , 2008. An optimization model for the pro-

duction planning of overall refinery. Chin. J. Chem. Eng. 16 (1), 67–70 . 

http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0001
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0001
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0001
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0001
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0001
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0002
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0002
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0002
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0003
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0003
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0003
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0003
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0003
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0003
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0004
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0004
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0005
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0005
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0005
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0005
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0006
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0006
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0006
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0007
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0007
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0007
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0008
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0008
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0008
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0008
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0008
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0009
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0009
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0009
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0009
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0009
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0010
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0010
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0011
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0011
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0011
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0011
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0012
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0012
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0012
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0012
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0012
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0013
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0013
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0013
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0013
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0013
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0013
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0014
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0014
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0014
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0015
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0015
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0015
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0016
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0016
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0016
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0016
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0017
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0017
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0017
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0018
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0018
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0018
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0019
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0019
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0020
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0020
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0020
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0020
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0020
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0021
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0021
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0021
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0021
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0021
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0021
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0021
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0021
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0021
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0022
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0022
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0022
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0022
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0022
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0023
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0023
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0023
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0023
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0024
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0024
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0024
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0024
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0024
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0025
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0025
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0026
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0026
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0026
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0026
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0026
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0027
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0027
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0028
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0028
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0028
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0028
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0029
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0029
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0029
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0030
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0030
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0030
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0030
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0031
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0031
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0031
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0031
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0031
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0031
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0031
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0032
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0032
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0032
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0032
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0032
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0033
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0033
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0034
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0034
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0034
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0034
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0034
https://doi.org/10.1109/WSC48552.2020.9383893
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0036
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0036
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0036
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0036
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0036
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0036
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0036
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0036
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0037
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0037
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0037
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0037
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0038
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0038
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0038
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0038
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0038
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0039
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0039
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0039
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0040
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0040
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0040
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0041
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0041
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0041
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0041
http://refhub.elsevier.com/S0098-1354(22)00073-4/sbref0041

	Optimal schedule generation for single-channel crude transfer using a multi-model approach
	1 Introduction
	1.1 Literature overview
	1.2 Contributions

	2 Preliminaries: Receding horizon control
	2.1 Mixed-integer linear programming
	2.2 Reinforcement learning
	2.2.1 Simulator-based training
	2.2.2 Supervised training


	3 Multi-level modeling
	3.1 Port-refinery complex
	3.2 Sim3: Master model for flow in the port-refinery complex
	3.3 Sim0, Sim1 and Sim2: Abstract models

	4 Optimization algorithms: Formulation
	4.1 Heuristics (business rules)
	4.2 Mixed integer linear programming
	4.2.1 Primary MILP
	4.2.2 Secondary MILP
	4.2.3 Optimal production plan

	4.3 Reinforcement learning
	4.3.1 Volume of each crude to be transferred
	4.3.2 Post-processing and refinement


	5 Numerical case studies
	5.1 Business rules
	5.2 MILP
	5.3 Reinforcement learning

	6 Conclusion
	Author Contributions
	Declaration of Competing Interest
	References


