
Computers and Chemical Engineering 174 (2023) 108242

A
0

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/cace

A scalable optimization framework for refinery operation and management
Mayank Baranwal a,∗, Mayur Selukar a, Rushi Lotti a, Aditya A. Paranjape a, Sushanta Majumder b,
Jerome Rocher c

a TCS Research, Tata Consultancy Services Ltd, India
b Engineering and Industrial Services, Tata Consultancy Services Ltd, India
c Total Energies, France

A R T I C L E I N F O

Keywords:
Process optimization
Refinery scheduling
Mixed-integer linear programs
Crude blending
Throughput maximization

A B S T R A C T

End-to-end refinery management is a complex scheduling problem requiring simultaneous optimization of
coupled subprocesses at several stages. In the specific context of this paper, a planner needs to ascertain (i)
how best to store incoming crude at a port, (ii) schedule its transfer, after dewatering, to downstream refinery
tanks, and (iii) schedule further processing in the crude distillation units (CDUs). The movement and storage
of crude is subjected to various physico-chemical and operational constraints. The resulting optimization
problem is combinatorial in nature and scales exponentially with the number of tanks, types of crude,
and modes of operation. The problem becomes particularly challenging with stochasticity in crude receipt,
requiring the planner to modify their decisions in real-time. In this paper, we develop a scalable, hierarchical
framework to address the end-to-end refinery management for throughput maximization. The framework relies
on an innovative approach to decoupling the decision-making at port and refinery, reducing significantly
the complexity of the overall optimization problem. The proposed approach also results in a significant
improvement over the schedules generated by an expert human planner for throughput maximization. It takes
only a few minutes to execute the entire optimization routine, over a 30 day planning window, on a standard
computer, making it possible to use implement our approach in a time-critical, real-time operational setting.
1. Introduction

In this paper, we describe an optimization framework for refinery
operations, based on combining heuristics and mixed-integer linear pro-
gramming (MILP). The refinery operations considered here essentially
involve moving and blending crude subject to a set of constraints. The
present problem can be viewed as a constrained flow optimization
problem over networks.

The setting for our problem, introduced in a preliminary form in
our prior work (Paranjape et al., 2022) and illustrated in Fig. 1,
can be described as follows. Crude is received at a port and needs to
be transferred to refinery tanks that feed the crude distillation units
(CDUs). Crude may be blended at the port as well as the refinery
tanks. The primary challenge stems from the fact that a single pipeline
connects the port and the refinery. Its maximum transfer rate, after
accounting for temporal operating constraints, matches the maximum
throughput rate of the CDUs. Moreover, the transfer of crude through
the pipeline needs to preserve grade continuity to the extent possible,
i.e., there should be as few switches between crude grades as possi-
ble during an operational window. The setting of the present paper
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builds upon Paranjape et al. (2022) by adding the complexity of crude
blending as well as realistic holding constraints (Hou et al., 2015; Yang
et al., 2017). While MILP can solve the entire problem in principle, it
is computationally burdensome with 60k integer decision variables.
Therefore, following the framework in our prior paper, we adopt a
hierarchical approach which combines heuristics and MILP.

1.1. Overview of the literature

Refinery scheduling problems are primarily based on linear mass
balance equations, with nonlinearities arising on account of chemical
mixing, flow constraints, and the dynamics of chemical processing
units. The decision variables to be solved for could lie in a continuous
field (setting flow rates as functions of time) or in a discrete integral
field (turning flow valves on or off). Typically, decision problems
involve variables of both types. The order of the decision problem
(i.e., the number of decision variables) can be as high as 104, depending
on the temporal discretization applied to the problem.

Refinery scheduling problems have been addressed in the liter-
ature primarily using linear or mixed-integer programming (LP or
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Fig. 1. Overview of the problem.
MILP) (Koenig, 1963; Baker and Lasdon, 1985; Lee et al., 1996; Kall-
rath, 2005). It is generally accepted that, despite the linear mass
balance equations, nonlinear terms are quite fundamental in a refinery
model. Bilinear terms arise frequently to account for blending (Andrade
et al., 2016; Uribe-Rodriguez et al., 2020). Nonlinearities that arise as
part of the processing dynamics can be difficult to model and there
have been attempts to capture these using data-driven approaches (Li
et al., 2016; Boukouvala et al., 2016; Demirhan et al., 2020). Since non-
linearities frequently introduce non-convexity in the problems, convex
relaxation techniques have been concurrently introduced to deal with
them in a computationally efficient manner. These include the use of
McCormick envelopes (Andrade et al., 2016; Uribe-Rodriguez et al.,
2020) for dealing with bilinear terms. Integrated refinery planning
under uncertainties arising from stochasticity in production processes
and demand forecasts, supply chain disruptions and transportation
costs has been discussed extensively (Kallrath, 2002; Shah, 2005; Tong
et al., 2012; Lima et al., 2018).

Nonlinear optimization problems are generally difficult to solve
computationally, and a combination of linear and nonlinear program-
ming has been used traditionally to simplify the computational com-
plexity (Biegler, 2010). MILP using branch and bound and MINLP using
reduced gradient was employed in Pinto et al. (2000) and Neiro and
Pinto (2004). Sequential MILP approximation was employed in Mendez
et al. (2006) to solve the planning problem in the presence of blending-
induced nonlinearities. Heuristic initial guesses, found by solving re-
laxed problems, have been demonstrated in Andrade et al. (2016) for
reducing the complexity of the parent MINLP. In Kolodziej et al.
(2013), a radix-based discretization method was employed to discretize
one variable in the bilinear terms, leading to the creation of effi-
cient MILP relaxations for solving the pooling problem. The model
incorporated inventory, flow, and quality constraints, and despite the
increase in the number of binary variables, it was able to produce
solutions in a shorter amount of time. Recently, a technique which
combines multiparametric disaggregation and optimality-based bound
tightening was demonstrated in Castro (2016) and Zhang et al. (2021)
2

for solving MINLP problems. MINLP problems have also been solved
‘‘directly’’ using commercial solvers such as BARON (Siamizade, 2019)
and ANTIGONE (Li et al., 2016; Boukouvala et al., 2016).

A further fundamental feature of refinery planning is the presence
of multiple time scales (Castro et al., 2018) and spatiotemporal clus-
tering (Uribe-Rodriguez et al., 2020), both of which have been used
fruitfully to simplify the MINLP. For instance, in Uribe-Rodriguez et al.
(2020), the refinery was broken into functional clusters. A MILP relax-
ation technique, followed by optimality-based bound tightening, was
used to solve the optimization problem in each cluster. An associated
challenge is that of uncertainties – these can manifest in terms of
price variations, variations in demand and crude delivery, or processing
unit down times – over short as well as long-time scales. Receding
horizon techniques have been used in Wagle and Paranjape (2020)
and Paranjape et al. (2022) to deal with uncertainties essentially by
periodic replanning using a combination of the most recent information
and updated estimates. Robust optimization approaches have been
employed in Zhang et al. (2021) for dealing with price variations by
including these explicitly in the cost function.

More recently, reinforcement learning (RL) techniques have been
explored to deal with uncertainties inherent in the planning prob-
lem (Hubbs et al., 2020; Paranjape et al., 2022). Policies obtained
using RL are computationally light as far as real-time implementa-
tion is concerned, generalizable, and capable of dealing with hidden
models for external variables such as delays in crude delivery or time-
dependent variation for product demand Wagle and Paranjape (2020).
However, RL requires ample time-consuming training and, moreover,
adequate exposure to a vast range of operating scenarios. Although
training is a one-off exercise in principle, it may need to be carried
out periodically in practice to ensure that the RL algorithm has been
exposed to changes in the dynamics of the plant or the uncertainty
models. In contrast to RL, solutions based on integer programming can
be calculated relatively quickly using any of several well-recognized
solvers such as BARON or ANTIGONE, and these techniques enjoy
wider acceptance in the industry (on par with what might be termed
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as a fully ‘‘explainable solution’’) because of the confidence built over
several decades of deployment.

1.2. Contribution

• Our approach is hierarchical: Decoupling port and refinery sides
by first identifying optimal schedule through PRL (Port-to-Refinery
Pipeline).

• Once decoupled, we handle the port and refinery side separately,
building dewatering constraint, optimal crude blending, tank
switching logic at the refinery side.

• Use of heuristics to handle crude storage at the port side.
• Combination of the simplest of heuristics for crude storage, along

with MILPs for hierarchically handling various hydraulic, physical,
and chemical constraints make this overall approach extremely
scalable (takes less than a minute for total execution) allowing for
real-time manipulation in events of uncertainties in crude-delivery
and/or refinery operations

2. Problem description

Fig. 1 represents a scaled version of a real industrial refinery sys-
tem.1 The refinery system comprises of three key components — (a)
ort, (b) Port-to-Refinery pipeline (PRL), and (c) Refinery. The PRL is a
hared, single pipeline that transfers crude from the port to the refinery
hich is equipped with storage tanks and two crude distillation units

CDUs).
We consider four basic types of crude oil: (a) L-type — low sulphur

nd low metal content, (b) M-type — moderate sulphur and low metal
ontent, (c) N-type — large sulphur and moderate metal content, (d)
-type — large sulphur and large metal content. In addition, the Arab
ight crude, also commonly known as the ARL, is an N-type crude. Each
torage tank is equipped with holding only one type of crude. The crude
rrives at the port in ships, the arrival schedules for which are known
priori.

In addition to an exclusivity constraint that allows each tank to store
nly one type of crude, the storage tanks at the port-side are subjected
o three additional constraints:

• Capacity constraints that limit the amount of crude each tank
can hold.

• Inflow/Outflow constraints that prohibit simultaneous inflow
and outflow to and from the tanks, respectively.

• Dewatering constraints to allow the excess water mixed in the
crude to get separated naturally while the crude is stored in the
tanks. The PRL is allowed to draw crude from a specific tank only
after 24 h have elapsed since the last time the tank was supplied
with crude.

• Exclusion constraints A ship’s contents can be transferred to
multiple port tanks, but not at the same time. The tanker can
only connect to the inlet of one port tank at a time. If one port
tank becomes full while the tanker still has remaining contents,
the excess can be transferred to another available port tank. If no
port tanks are available to receive the ship’s contents, the tanker
must wait, causing demurrage costs for the operator.

Once the crude is sufficiently dewatered, it is ready to be transferred
o the refinery through the PRL. The PRL is a shared pipeline and is
ccessible only during a single block of 19.8 h during a 38 h window.
he restriction of only being able to use the pipeline for 19.8 h out
f every 38 h window is because the same pipeline is shared by
wo separate organizations, one using it for 19.8 h and the other for
8.2 h. While the PRL can draw dewatered crude from multiple tanks

1 Name withheld due to NDA.
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simultaneously, it cannot draw crudes of two different types at the same
instant. The maximum flow rate through the PRL is limited to 1 k m3∕h.

Like the storage tanks at the port, the storage tanks at the refin-
ery site are also subjected to exclusivity, capacity, and simultaneous
inflow/outflow constraints. However, unlike the tanks located near the
port, the refinery-side tanks are not subjected to dewatering constraints;
however, dewatering is recommended for high-quality crude, such as
the L and M-type. Subject to the physical constraints, these tanks supply
crude to the CDUs for further processing. The maximum inflow rates
at CDUs are limited to 0.22 k m3∕h and 0.32 k m3∕h, respectively.
Depending on the availability of various crude types through the course
of a month, the planner comes up with a daily mode-wise schedule for
processing crudes in the CDUs. CDU1 can process crudes of types L,
M and N, while CDU2 is dedicated for processing crudes of types 𝑁
and O. It is also required to process N-type crude on all days. Thus, the
production plan for CDUs is complementary to each other. For instance,
if CDU1 is operating in L-mode (i.e., processing L-type crude) on a given
day, then CDU2 must operate in N-mode. Similarly, if CDU1 operates
in N-mode, then CDU2 must operate in O-mode.

Depending on the mode of operation, each CDU is subjected to
further set of hydraulic constraints, as well as constraints on maximum
sulphur and metal content. The constraints are broadly classified into
two categories — (a) the maximum atmospheric residue yield (AtRes),
and (b) the maximum overhead (OVH). Crudes with different set of
properties but of the same type are often blended to meet the hydraulic
and metal content constraints. In an event where it is impossible to
create a blend that meets the hydraulic constraints, the inflow rate
to CDUs must be reduced to meet these constraints. The reduction in
throughput leads to shortfall in targeted crude production. The primary
objective is to minimize the total shortfall in targeted production over
the period of 30 days. CDU1 is subjected to an additional operational
constraint, which is related to processing low-sulphur crude soon after
processing the high-sulphur crude. Crude with low-sulphur content is
of the finest quality and should not be diluted by letting it to mix with
large sulphur content crude. Consequently, it is not desirable for CDU1
to be operated in L-mode soon after finishing up processing N-type
crude.

Decision variables: Our objective is to minimize the total shortfall
in production at the CDUs for a period of 30 days subjected to various
physical, chemical, and operational constraints. In terms of the known
quantities, the refinery operator has access to the initial states (crude
levels) of all the storage tanks, as well as arrival schedule for different
crude types with heterogeneous set of properties. The decision-making
is done primarily at three stages:

• Allocating crude receipt to storage tanks near the port: The
incoming crude on each day needs to be stored in the correspond-
ing tanks near the port. Depending on the state of each tank,
the operator must choose the right tank to be filled keeping in
mind the aforementioned 24 h dewatering window. The operator
also needs to limit the demurrage cost that is incurred due to the
unavailability of sufficient storage in the tanks located near the
port.

• Scheduling crude transfer through PRL: Depending on the
availability of the crude at port-side storage tanks, active status of
the PRL, states of storage tanks near the refinery, and the crude
demands from the CDUs, the operator needs to schedule transfer
of flow through the PRL. It is also desirable that these transfer
schedules are contiguous to avoid frequent switching across tanks.

• Transferring crude from refinery tanks to CDUs: Depending on
the mode of operation on a given day, the CDUs are supplied
with crudes from the respective tanks. The operator schedules
these transfers subject to crude availability through PRL, mode
of operation at the CDUs, and other hydraulic and metal content
constraints. While blending across crude types is prohibited, it is
possible to downgrade N-type crude by blending it with some
amount of O-type crude in extreme circumstances although it

incurs significant cost to the operator.
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• Optimal production plan: The final set of decision variables are
related to finalizing the production plan (or the mode of operation
of CDUs). Production plan must account for meeting the targeted
demand for each crude-type, as well as operational constraints
and availability of sufficient crude in refinery storage tanks at the
beginning of each day.

. Baseline approach based on business rules

As described earlier, our ultimate objective is to optimize the
hroughput of CDUs. In this section, we assume that a production plan
s available and prescribes the crude being processed on any given
ay and the ideal PRL schedule which, when accompanied by optimal
lending, allows 100 percent of the desired throughput at the CDU.
he business rules presented in this section deal with this decoupled
roblem. The business rules are found by breaking the problem in to 4
eparate parts in the following order: draining one or more port tanks;
illing one or more port tanks; filling one or more refinery tanks, and
raining one or more refinery tanks.

.1. Business rules for the port

We recall the operating schedule for the PRL is available along with
hat of crude receipt and the initial state of the tanks. We use this
nformation to prescribe the ideal drain and fill amount from each tank
nd generate the actual delivery schedule.

1. Draining the port tanks: For every crude type, we are given
the volume of crude to be drained to PRL along with the target
CDU. We start by finding the subsets of tanks available to drain
(𝑇drain) and use an ILP to formulate a blend amongst 𝑇drain; this
blend is then drained as per PRL availability.

2. Filling the port tanks: Once the draining operation for all crude
types is completed, the tank availability is updated and based on
incoming crude, we find tanks available to fill (𝑇f ill). The tank
with the most empty capacity is picked and filled until either the
tank is full or the incoming crude is consumed. This process is
repeated until the incoming crude has been fully consumed.

The algorithm for the port side drain and fill is described in the flow
chart of Fig. 2.

Exceptions may occur due to the constraints on the available tanks
and crude. These may result in an inability to either form an optimal
blend or send the desired amount of a particular blend through the
PRL. In either case the CDUs throughput is reduced, and this in turn
results in lower consumption this deficit is then deducted from future
PRL demand to not have an overflow situation at the CDU/Refinery
side. These reductions may also result in cases where the refinery is
unable to consume the incoming fuel, based on economic factors and
the future drain schedule. In such cases, the remaining excess fuel might
be downgraded to a lower crude grade or some demurrage costs may
be incurred. These exceptions are flagged for manual handling on a
case-by-case basis.

3.2. Business rules for the refinery

The business rules for the refinery are formulated assuming that
the incoming PRL crude schedule, the initial tank levels and the CDU
demand schedule are known. The rules are as follows:

1. Fill the incoming crude in the tanks and if tanks are available to
drain, drain them based on the CDU demand.

2. If more than 2 tanks are available to fill, fill the tank with the
maximum fill volume and move on to other tanks if needed.

3. If more than 2 tanks are available to drain, drain the tank with
4

the maximum drain volume. t
4. If there is no incoming crude, transfer crude between RO24 and
RO23 if RO24 has enough volume to drain and RO23 has enough
space to fill.

he logic for Refinery side is represented in the flowchart of Fig. 3.

. Hierarchical MILP-based framework

We now propose and formulate the hierarchical framework for
ddressing several aspects of refinery management and scheduling. The
pproach aims to first formalize the crude transfer plan through the
RL at a day-level resolution, i.e., in the first pass, the hierarchical
ramework concerns with coarser level decision making disregarding
he details on the exact schedule for crude transfer within each day
nd the properties of the crude blend generated inside the PRL. This
s done to decouple the port and refinery optimization problems, and
ignificantly reduces the complexity of the overall refinery manage-
ent. Post decoupling, the optimization problems at the level of port

nd refinery are nearly identical. The objective in either scenario is to
llocate incoming crude to one of the storage tanks, and depending on
he demand at the outlet, engage tanks for crude withdrawal. This work
escribes scalable MILP formulation for each of these sub-problems,
nvolving crude, tank, and operational-level constraints at required
tages. Below we discuss these formulations in detail.

.1. MILP for optimal production plan generation

As stated earlier, we first aim to decouple the port and refinery
ptimization problems. This is achieved by identifying an optimal crude
ransfer plan from port-side tanks to the PRL and from the refinery-side
anks to the CDUs at a day-level resolution. Consequently, the primary
ecision variables include daily crude transfer plan through the PRL
nd daily mode of operation at the CDUs. i.e., the type of crude to be
rocessed by CDUs on each day.

To leverage a hierarchical approach for generating optimal transfer
nd production plan, we disregard finer level constraints at this stage.
or instance, all tanks tied to storing a specific type of crude are
ombined to form a single zone with a storage capacity of total of all
he tanks in that zone. Thus, at this stage, the optimization routine at
his stage only considers allocating incoming crude to a specific zone,
hich reduces the computational complexity of the overall optimiza-

ion problem. The exact tying of crude to specific tanks is handled
ater in the next step of our hierarchical framework (see Fig. 4 for
etailed schematic). We specify four unique zones corresponding to
toring four different types of crude, in addition to the ARL zone at the
ort side. The maximum and minimum holding capacities of the 𝑖th-
one are depicted by 𝑆max and 𝑆min, respectively. The zones {1, 2, 3, 4}
orrespond to crude-types L, M, 𝑁 and O, respectively. The initial state
f these zones is depicted by 𝑆0, while the daily incoming crude arrival
lan is depicted by 𝑆in. Not all N-type crude is ARL, and thus the binary
nput isARL is used to depict if the incoming N-type crude is indeed of
lass ARL. Recall that ARL is available only in packets of 4.44 k − m3.
e use integer variables 𝑔 ∈ {0, 1,… , 4} to represent the number of

ackets of ARL being transferred through the PRL.
We have a similar nomenclature for zones located at the refinery.

ones {1, 2, 3} at the refinery correspond to crude-types L, M and N,
espectively, while zones {4, 5} correspond to crude-types 𝑁 and O,
espectively. Note that we make a distinction between N-type crude
eing fed to CDU1 and CDU2. The maximum and minimum holding
apacities of the 𝑖th-zone at the refinery are depicted by 𝑄max and 𝑄min,
espectively. The initial state of these zones is depicted by 𝑄0. The
aximum rates at which crude can be fed to the CDU1 and CDU2 are

epresented by 𝐶1 and 𝐶2, respectively.
The PRL is a shared single pipeline which remains active only for

duration of 19.8 h over each period of 38 h. This implies that while

he PRL is active for the first 19.8 h on day 1 of the planning, it is
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Fig. 2. Logic for port side.
only going to be active for the last 10 h on the following day, leading
to non-uniform maximum crude transport capacity denoted by 𝑃max.
While intermixing crude of different types is largely prohibited, it is
still possible (though not preferred) to blend crude of types 𝑁 and
O to avoid shortfall in throughput to the CDUs. We use the decision
variables O2O and O2N to denote how much of crude of type O is
used daily to feed the refinery zones of types 𝑂 and 𝑁 , respectively.
Likewise, decision variables N2O and N2O depict the amount of crude
of type 𝑁 that is fed into O-type zone at the refinery. The amount
of crude transferred through the PRL is represented by the decision
variable 𝑢, where indices {1, 2, 3, 4, 5} correspond to crude types L, M,
5

𝑁 (for CDU1), 𝑁 (for CDU2) and O, respectively. It is also desirable to
ensure continuity of operations, i.e., every time the planner decides to
push a specific crude type through the PRL, it is desirable to transfer
at least 2.22 k m3 of crude before the planner decides to transfer
crude of a different type. We use the binary variable 𝑎 to capture such
contingencies.

The primary objective of our planner is to ascertain the daily mode
of operation of CDUs, i.e., the planner decides on the type of crude that
must be processed on a given day inside CDU1 and CDU2. The decision
variable corresponding to mode of operation of CDU1 is denoted by
𝑤, where modes {1, 2, 3} represent processing of crude types L, M



Computers and Chemical Engineering 174 (2023) 108242M. Baranwal et al.
Fig. 3. Logic for refinery side.
and N, respectively, inside CDU1. The mode of operation of CDU2
is complementary to that of CDU1: it processes O whenever CDU1
processes N, and it processes 𝑁 otherwise.

When processing crude of different types inside the CDU1, adequate
consideration must be considered to avoid degradation of processed
high-quality crude. For instance, the crude type L is a low-sulphur
crude, and it is required to avoid processing high-sulphur crude of
type 𝑁 on the preceding day, since the leftover residue inside CDU1
degrades the overall quality of the incoming L-type crude. The daily
change in mode of operation of CDUs is represented by the binary
decision variable 𝑠, and it is desirable to minimize cumulative mode-
switches subject to operational constraints. Despite the relaxation of
tank and crude blend specific constraints, it may still be not possible
to run the CDUs at maximum throughput for each day. This may also
have to do with the fact that there is insufficient crude available over
a period of 𝐷 days. Any such event of shortfall is represented by
the variable 𝑠𝑓 . Table 1 summarizes all the above input and decision
variables.

The MILP for generating the optimal production and transfer plan
with zone-based mass-balance and contiguity constraints is formulated
6

in (OptPlan-MILP). The objective is to minimize the combination of
total number of mode switches, amount of 𝑁 and O-type crude being
blended with O and N-type crude, respectively, and the total shortfall
in throughput at the CDUs.

The first set of constraints require that on each day 𝑑 the total
amount of crude transferred through the PRL must not exceed the
maximum allowable limit 𝑃max[𝑑]. The second constraint requires that
on each day, CDU1 operates in one of the three modes — L, M or N.
The third set of constraints simply states that the N-type crude can
be sourced from the O-type zone, N-type zone, and ARL, respectively.
Similarly, the O-type crude can be either be sourced from the N-type
zone and O-type zone, respectively.

The fourth and fifth sets of constraints enforce the mass-balance
requirements on each day for the port and refinery zones, respectively.
Note that the mass-balance constraints for the zones located at the re-
finery are modelled through a fictitious shortfall variable 𝑠𝑓 . If the total
shortfall is zero, then the constraints translate to simple mass-balance
constraints, however, introduction of fictitious shortfall variable 𝑠𝑓
allows us to describe mass-balance constraints at maximum throughput
rates 𝐶 and 𝐶 . In an event, where it is impossible to run the CDUs
1 2
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Fig. 4. Schematic of the proposed hierarchical framework. Schedule optimizer is used to generate feasible schedules for mode of operation, as well as flow through the PRL. This
decouples the process optimization for port and refinery tanks. In addition, the crude blend optimizer aims to create a blend at each instant that minimizes the total shortfall in
production. The variables located at the input to various sub-blocks indicate outputs of the previous sub-blocks, and are used to solve the next optimization problem in hierarchy.
Table 1
Description of symbols for OptPlan-MILP.
Symbol Description Type Sub-type Size

𝐷 # of days Input Real Scalar
𝑃max Daily max flow through PRL Input Real 𝐷
𝑆0 Initial qty. of crude at port Input Real 4
𝑆max Max capacity of zone at port Input Real 4
𝑆in Qty. of crude arriving at port Input Real 4 ×𝐷
𝑄0 Initial qty. of crude at refinery Input Real 5
𝑄max Max capacity of zone at refinery Input Real 5
𝑄min Min capacity of zone at refinery Input Real 5
𝐶1 Rate of processing at CDU1 Input Real Scalar
𝐶2 Rate of processing at CDU2 Input Real Scalar
isARL Indicates arrival of ARL at port Input Binary 𝐷
𝑤 Mode of operation of CDU Variable Binary 3 ×𝐷
𝑠 Mode-switch at CDU Variable Binary 𝐷
𝑢 Transfer quantity through PRL Variable Real 5 ×𝐷
𝑎 Min. PRL transfer indicator Variable Binary 5 ×𝐷
𝑔 Packets of ARL Variable Integer ∈ {0, 1,… , 4} 𝐷
O2O Qty. of O-type crude being used as O-type Variable Real 𝐷
N2O Qty. of N-type crude being used as O-type Variable Real 𝐷
O2N Qty. of O-type crude being used as N-type Variable Real 𝐷
N2N Qty. of N-type crude being used as N-type Variable Real 𝐷
𝑠𝑓 Daily shortfall in production Variable Real 5 ×𝐷
at maximum throughput, 𝑠𝑓 assumes non-zero value and can be used
directly to estimate total shortfall in production.

The next set of constraints requires that CDU1 cannot operate in
the mode L immediately after operating in the mode N. The next of
constraints enforce contiguity of mode of operations, i.e., if the CDUs
operate in each mode, they continue to do so for a minimum of MUT
days. The next set of constraints requires to transfer at least 2.22 k m3

crude of a specific type continuously through the PRL. As shown in
Fig. 1, the refinery side is equipped with only one tank each for crude
types L and M. It is desirable that if a crude block is transferred to
one of these tanks, it must be rested at least for a day (dewatering
constraint) before it can be consumed by the CDU1. This is ensured
through the final set of constraint equations in (OptPlan-MILP). Since,
7

𝑢[𝑖, 𝑑] ≥ 0 and 𝑤[𝑖, 𝑑] ∈ {0, 1} for 𝑖 ∈ {1, 2}, the top-2 constraints
among the final set of constraints ensure that whenever 𝑤[𝑖, 𝑑] is 1,
i.e., the CDU1 is being operated in the 𝑖th-mode, there is no flow into
the corresponding refinery tank on the same day. Similarly, the next set
of constraints ensure that whenever 𝑤[𝑖, 𝑑] is 1, there is no flow into the
corresponding refinery tank on the previous day, too, thereby allowing
at least a day for the crude to rest in the refinery tanks (see Box I).

4.2. MILP for optimal crude blending

The (OptPlan-MILP) is concerned with only zone-level decision
making given the mode of operation at the CDUs. These zones are
obtained by merging tanks tied to storing crude of the same type.
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minimize
𝐷
∑

𝑑=1
𝑠[𝑑] +

𝐷
∑

𝑑=1
N2O[𝑑] +

𝐷
∑

𝑑=1
O2N[𝑑] + 20

𝐷
∑

𝑑=1

5
∑

𝑗=1
𝑠𝑓 [𝑗, 𝑑],

s.t.
5
∑

𝑗=1
𝑢[𝑗, 𝑑] ≤ 𝑃max[𝑑]

3
∑

𝑗=1
𝑤[𝑗, 𝑑] = 1

O2N[𝑑] + N2N[𝑑] + 4.44𝑔[𝑑] = 𝑢[3, 𝑑] + 𝑢[4, 𝑑]
N2O[𝑑] + O2O[𝑑] = 𝑢[5, 𝑑]

𝑆min[𝑖] ≤ 𝑆0[𝑖] +
∑𝑑

𝑘=1
{

𝑆in[𝑖, 𝑘] − 𝑢[𝑖, 𝑘]
}

≤ 𝑆max[𝑖], 𝑖 ∈ {1, 2}
𝑆min[3] ≤ 𝑆0[3] +

∑𝑑
𝑘=1

{

(1 − isARL) ⋅ 𝑆in[3, 𝑘] − N2O[𝑘] − O2O[𝑘]
}

≤ 𝑆max[3]
0 ≤

∑𝑑
𝑘=1

{

isARL ⋅ 𝑆in[3, 𝑘] − 4.44𝑔[𝑘]
}

𝑆min[4] ≤ 𝑆0[4] +
∑𝑑

𝑘=1
{

𝑆in[4, 𝑘] − 𝑢[5, 𝑘]
}

≤ 𝑆max[4]

𝑄min[𝑖] ≤ 𝑄0[𝑖] +
∑𝑑

𝑘=1
{

𝑢[𝑖, 𝑘] + 𝑠𝑓 [𝑖, 𝑘] − 𝐶1𝑤[𝑖, 𝑘]
}

≤ 𝑄max[𝑖], 𝑖 ∈ {1, 2, 3}
𝑄min[4] ≤ 𝑄0[4] +

∑𝑑
𝑘=1

{

𝑢[4, 𝑘] + 𝑠𝑓 [4, 𝑘] − 𝐶2(1 −𝑤[3, 𝑘])
}

≤ 𝑄max[4]
𝑄min[5] ≤ 𝑄0[5] +

∑𝑑
𝑘=1

{

𝑢[5, 𝑘] + 𝑠𝑓 [5, 𝑘] − 𝐶2𝑤[3, 𝑘]
}

≤ 𝑄max[5]

𝑠[𝑑] ≥ 𝑤[1, 𝑑] +𝑤[3, 𝑑 + 1] − 1, 𝑑 ∈ {1, 2,… , 𝐷 − 1}
1 ≥ 𝑤[1, 𝑑 + 1] +𝑤[3, 𝑑] − 1, 𝑑 ∈ {1, 2,… , 𝐷 − 1}

(OptPlan-MILP)

∑MUT
𝑘=1 𝑤[3, 𝑘] ≥ MUT ⋅𝑤[3, 1]

∑𝑑+MUT−1
𝑘=𝑑 𝑤[3, 𝑘] ≥ MUT ⋅ (𝑤[3, 𝑑] −𝑤[3, 𝑑 − 1]) , 𝑑 ∈ {2,… , 𝐷 − MUT + 1}

∑MDT
𝑘=1 (1 −𝑤[3, 𝑘]) ≥ MDT ⋅ (1 −𝑤[3, 1])

∑𝑑+MDT−1
𝑘=𝑑 (1 −𝑤[3, 𝑘]) ≥ MDT ⋅ (𝑤[3, 𝑑 − 1] −𝑤[3, 𝑑]) , 𝑑 ∈ {2,… , 𝐷 − MDT + 1}

𝑢[𝑖, 𝑑] −𝑀 ⋅ 𝑎[𝑖, 𝑑] ≤ 0
𝑢[𝑖, 𝑑] ≥ 2.22 ⋅ 𝑎[𝑖, 𝑑]

𝑢[1, 𝑑] −𝑀(1 −𝑤[1, 𝑑]) ≤ 0
𝑢[2, 𝑑] −𝑀(1 −𝑤[2, 𝑑]) ≤ 0

𝑢[1, 𝑑 − 1] −𝑀(1 −𝑤[1, 𝑑]) ≤ 0
𝑢[2, 𝑑 − 1] −𝑀(1 −𝑤[2, 𝑑]) ≤ 0

Box I.
owever, each crude type is further categorized into various sub-types
ith slightly different properties. Consequently, the properties of the

rude of the same type stored across different tanks also differ. These
roperties include the sulphur and metal contents, the overhead (OVH)
ontent and the atmospheric residue yield (AtRes). The properties of the
rude play significant role in determining the throughput at the CDUs.
f the crude blend being processed inside the CDUs does not meet the
ydraulic constraints, OVHmax and AtResmax, the throughput must be
educed resulting in shortfall in production. Additionally, it is required
8

r

that the crude blend meets the mode-level operational constraints
specified in terms of sulphur content (Smax) and metal contents (Nimax,
Vmax, Femax). Given the daily demand of crude of a specific type to be
transferred through the PRL, the task of the planner is to create a crude
blend by drawing crude from multiple tanks of the corresponding zone,
such that the reduction in throughput is minimized.

To this end, we assume that there are 𝑁𝑡 tanks available for the
crude to be drawn from. Their initial level is denoted by 𝑇0, while 𝑇min
epresents their minimum holding capacities. The properties of crude in
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Table 2
Description of symbols for CrudeBlend-MILP.
Symbol Description Type Sub-type Size

Nimax Max Nickel content Input Real Scalar
Vmax Max Vanadium content Input Real Scalar
Femax Max Iron content Input Real Scalar
Smax Max Sulphur content Input Real Scalar
OVHmax Max overhead content Input Real Scalar
AtResmax Max Atm. residue yield Input Real Scalar
𝑁𝑡 # of tanks Input Integer Scalar
𝑇min Min tank levels Input Real 𝑁𝑡
𝑇0 Initial tank levels Input Real 𝑁𝑡
𝑇OVH Overhead content of crude in each tank Input Real 𝑁𝑡
𝑇AtRes Atm. residue yield of crude in each tank Input Real 𝑁𝑡
𝑇Ni Nickel content of crude in each tank Input Real 𝑁𝑡
𝑇V Vanadium content of crude in each tank Input Real 𝑁𝑡
𝑇Fe Iron content of crude in each tank Input Real 𝑁𝑡
𝑇S Sulphur content of crude in each tank Input Real 𝑁𝑡
𝐷0 Total crude demand Input Real Scalar
𝑞OVH Overhead content of the blend Variable Real Scalar
𝑞AtRes Atm. residue yield of the blend Variable Real Scalar
𝑓 Fraction of demand from each tank Variable Real 𝑁𝑡
𝛿 Does blend property exceed max OVH/AtRes? Variable Binary 2
𝜃 Cost of creating blend Variable Real 2
r
p
a

each tank is depicted by the tuple (TAtRes,TOVH,TNi,TV,TFe,TS). We use
0 to depict the total crude demand to be transferred through the PRL
btained by solving the (OptPlan-MILP). The planner must decide on
he fraction 𝑓 of the total demand that is supplied by each of the tanks.
he reduction in throughput can occur due to crude blend exceeding
he CDU (a) OVH or (b) AtRes. We use binary variable 𝛿 to capture
hese events, where the first index corresponds to the OVH event, and
he second index corresponds to the AtRes event. The objective is to
inimize the total cost 𝜃 of creating the crude blend. The cost is zero

f the blend meets the hydraulic limits. In case it is impossible to meet
he hydraulic limits without reducing the throughput, minimizing the
ost is synonymous to penalizing the reduction in throughput. Table 2
ummarizes all the above input and decision variables.

As stated earlier, the objective of (CrudeBlend-MILP) is to minimize
he total cost of creating blend subject to hydraulic and operational
onstraints. The first constraint requires that the sum of all fractions
s unity. The second set of constraints ensure that the tanks cannot be
mptied beyond the minimum holding limits and that the total crude
mount withdrawn from a tank cannot exceed the initial tank level. The
ext set of constraints require that the sulphur and metal content of the
rude blend do not exceed the maximum allowable limit. The next set
f equations update the OVH and AtRes contents of the crude blend.
he next set of constraints require that if the blend OVH content does
ot exceed OVHmax, the cost variable 𝜃[1] is set to zero. In an event
f blend OVH exceeding the OVHmax, the cost variable 𝜃[1] is set to
positive value

(

𝑞OVH−OVHmax
OVHmax

)

, which needs to be minimized. Note
hat the higher the ratio is above the maximum content, the higher is
he cost (𝜃[1]), and thus, even if there are violations to keep the blend
verhead content within the maximum allowable limits imposed by
ydraulic constraints, the optimization will try to keep it as close to the
aximum value as possible. A similar set of constraints are formulated

or the blend AtRes content. It must be noted that the cost variables
𝜃) are nonnegative.

inimize 𝜃[1] + 𝜃[2],

s.t. ∑𝑁𝑡
𝑛=1 𝑓 [𝑛] = 1

𝑇min[𝑛] ≤ 𝑇0[𝑛] −𝐷0 ⋅ 𝑓 [𝑛] ≤ 0

0 ≤
∑𝑁𝑡

𝑛=1 𝑓 [𝑛] ⋅ 𝑇Ni[𝑛] ≤ Nimax

0 ≤
∑𝑁𝑡

𝑛=1 𝑓 [𝑛] ⋅ 𝑇V[𝑛] ≤ Vmax

0 ≤
∑𝑁𝑡 𝑓 [𝑛] ⋅ 𝑇 [𝑛] ≤ Fe
9

𝑛=1 Fe max (
𝑞OVH =
∑𝑁𝑡

𝑛=1 𝑓 [𝑛] ⋅ 𝑇OVH[𝑛]
𝑞AtRes =

∑𝑁𝑡
𝑛=1 𝑓 [𝑛] ⋅ 𝑇AtRes[𝑛]

(CrudeBlend-MILP)

𝜃[1] ≤ 𝑀 ⋅ 𝛿[1]

𝜃[1] +𝑀(1 − 𝛿[1]) ≥
(

𝑞OVH − OVHmax
OVHmax

)

𝜃[1] −𝑀(1 − 𝛿[1]) ≤
(

𝑞OVH − OVHmax
OVHmax

)

𝜃[2] ≤ 𝑀 ⋅ 𝛿[2]

𝜃[2] +𝑀(1 − 𝛿[2]) ≥
(

𝑞AtRes − AtResmax
AtResmax

)

𝜃[2] −𝑀(1 − 𝛿[2]) ≤
(

𝑞AtRes − AtResmax
AtResmax

)

Note that with the proposed hierarchical framework, there is no
need to estimate the blending properties of mixtures travelling through
the system. The properties are always accounted as given parameters,
and the constraints are concerned with keeping the Sulphur and metal
contents below the maximum limits. At the same time that the resulting
blend is forced to meet the hydraulic constraints as much as possible.

4.3. MILP for optimal tank receipt and withdrawal

It is required to process type-N crude daily. This requirement trans-
lates to maintaining adequate supply of type-N crude in the refinery
tanks — RN13 and RN14 (for CDU1), and RN21 and RN22 (for CDU2).
Since the tanks cannot be both filled and emptied at the same time,
adequate supply of crude to the CDUs can only be managed by ensuring
that at any moment, only one of the tanks is used for storage, while the
other tank is used to supply crude to the CDU. When the tank supplying
the crude gets emptied or the tank being used to store crude gets nearly
full, the planner must optimally switch the roles of the two tanks. In
our work, we automate the process of switching the roles of tanks using
another MILP formulation (see (OptAlloc-MILP)).

Let binary variables 𝛿in and 𝛿out represent the events when the first
tank is supplied with the crude type 𝑁 and the crude is withdrawn
from it, respectively. Consequently, (1 − 𝛿in) and (1 − 𝛿out) represent
the corresponding decision variables for the second tank. Let {1,… ,𝐻}
epresent the time-discretization of an entire day allocated towards
rocessing type-N crude. In our implementation, we have worked with
time-step of 3 min, i.e., 𝐻 = 480. We use 𝑟1 and 𝑟2 to represent states

tank levels) of the two tanks. The binary input is indicates whether
PRL
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minimize 0,

s.t. 𝛿in[ℎ] + 𝛿out[ℎ] = 1, ℎ ∈ 1, 2,… ,𝐻

𝑟1[1] = 𝑅1,0 + 𝑓in ⋅ 𝛿in[1] ⋅ isPRL[1] − 𝑓out ⋅ 𝛿out[1]
𝑟1[ℎ] = 𝑟1[ℎ − 1] + 𝑓in ⋅ 𝛿in[ℎ] ⋅ isPRL[ℎ] − 𝑓out ⋅ 𝛿out[ℎ], ℎ ∈ {2,… ,𝐻}
𝑟2[1] = 𝑅2,0 + 𝑓in ⋅ (1 − 𝛿in[1]) ⋅ isPRL[1] − 𝑓out ⋅ (1 − 𝛿out[1])
𝑟2[ℎ] = 𝑟2[ℎ − 1] + 𝑓in ⋅ (1 − 𝛿in[ℎ]) ⋅ isPRL[ℎ] − 𝑓out ⋅ (1 − 𝛿out[ℎ]), ℎ ∈ {2,… ,𝐻}

𝑅1,min ≤ 𝑟1[ℎ] ≤ 𝑅1,max, ℎ ∈ {1,… ,𝐻}
𝑅2,min ≤ 𝑟2[ℎ] ≤ 𝑅2,max, ℎ ∈ {1,… ,𝐻}

(OptAlloc-MILP)

Box II.
Table 3
Description of symbols for OptAlloc-MILP.

Symbol Description Type Sub-type Size

𝐻 # of indices in a day Input Integer Scalar
isPRL Indicates if PRL is active Input Binary 𝐻
𝑅1,0 Tank-1 initial level Input Real Scalar
𝑅2,0 Tank-2 initial level Input Real Scalar
𝑅1,min Tank-1 minimum level Input Real Scalar
𝑅2,min Tank-2 minimum level Input Real Scalar
𝑅1,max Tank-1 maximum level Input Real Scalar
𝑅2,max Tank-2 maximum level Input Real Scalar
𝑓in Flowrate into tanks Input Real scalar
𝑓out Flowrate out of tanks Input Real scalar
𝑟1 Tank-1 level Variable Real 𝐻
𝑟2 Tank-2 level Variable Real 𝐻
𝛿in Indicates if tank-1 is fed Variable Binary 𝐻
𝛿out Indicates if tank-1 is emptied Variable Binary 𝐻

the PRL is active at a given time instant and supplies the N-type crude.
The various input and decision variables are summarized in Table 3.

(OptAlloc-MILP) describes the MILP formulation for the optimal
tank receipt and withdrawal for the N-type crude. Interestingly, opti-
mizing tank allocation (for receipt and withdrawal) is largely a satis-
fiability problem, the objective function is simply set to 0. The first
constraint ensures that a tank cannot be simultaneously filled and
emptied. The next set of constraints impose mass-balance requirements
on the tank levels, while the last set of constraints require that the tank
levels are within the required minimum and maximum tank capacities
(see Box II).

A note on feasibility: Before decomposing the original optimiza-
ion problem into smaller sub-problems, we conduct a preliminary
easibility check. This includes:

(1) For a 30-day period, the sum of total supply for each crude type
specifically for types L and M) and the current tank holding must not
xceed the total demand for corresponding crude types. This can be
nsured in a constant time (non-negligible).

(2) There are additional instances of potential infeasibilities that
rise when enforcing a maximum sulphur/metal content for a potential
lend, especially when all incoming crude has a higher sulphur/metal
ontent than the allowable threshold. In these cases, it is advised to
ncrease the threshold beyond the normal value.

(3) Finally, there is a possibility of encountering infeasibility when
ither the incoming crude cannot be accommodated or the required
emand cannot be met. In the former situation, this would lead to
dditional demurrage costs, while in the latter case, introducing a
10
fictitious shortfall variable enables us to ensure the solution remains
feasible.

It is important to emphasize that the problem of maximizing
throughput is always feasible, provided that the constraints on tank
holding capacity and the sulphur and metal content of crude blend
are satisfied. The other requirements, such as hydraulic constraints,
availability of shared pipeline, continuous supply of sufficient crude
to meet refinery demand, and dewatering constraints, only impact the
total throughput to the refineries. Hence, aside from the basic feasibility
check, our approach always provides a solution that is feasible, and its
quality is determined by the total shortfall in production.

5. Experiments

We now benchmark the proposed hierarchical framework on the
refinery system shown in Fig. 1. As stated previously, the refinery
system is a scaled version of a real industrial refinery, subjected to
various physico-chemical, hydraulic and operational constraints (de-
scribed in detail in Section 2). The section also lists the numerical
values of different problem parameters, such as the maximum flow-rate
through PRL, incoming flow-rate at the port, and maximum flow-rates
at the CDUs (see Table 4). The capacities of individual tanks have
been depicted in Fig. 1. The hierarchical framework is implemented
in Python using Gurobi (Gurobi Optimization, LLC, 2022) on a 16 GB
Core-i7 2.8 GHz CPU.

For evaluation, we consider a realistic scenario for a 30-day period,
and compare the performance of the proposed hierarchical method
against the business rules adopted by the expert human operator. Both
the incoming crude schedule, as well as the initial tank levels and the
properties of the starting crude blend in these tanks is directly adopted
from the historic data. The arrival schedule and the corresponding
crude properties are shown in Tables 5 and 6, respectively. Recall that
the L and M-type crude are processed only inside CDU1, and hence
the overhead (OVH) and the atmospheric residue yield (AtRes) values
are depicted only for CDU1. Moreover, there are no constraints on the
metal content for processing the L-type crude. Likewise, the M and N-
type crude do not have any constraints on the sulphur content. O-type
is the lowest grade crude and there are no constraints on the sulphur
and metal content. However, in the absence of availability of sufficient
N-type crude, it is possible to blend small quantities of O-type crude
with N-type crude (see (OptPlan-MILP)) to an extent that it does not
violate the metallicity constraints required for processing the N-type
crude (see Table 7). .

Subject to various operational, hydraulic and physico-chemical con-
straints, and the incoming crude arrival schedule, we generate solutions
using both the business rules (see Fig. 5a) and the proposed hierarchical
framework (Figs. 5b and c). Recall that the primary objective is to
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Table 4
Refinery management: Problem parameters.
Parameter Description Value

OVH1max Maximum Overhead (CDU1) 250
OVH2max Maximum Overhead (CDU2) 279.17
AtRes1max Maximum Atmospheric Residue Yield (CDU1) 420.83
AtRes2max Maximum Atmospheric Residue Yield (CDU2) 650
Smax-(L) Maximum Sulphur content (L-type) 1.05
(Nimax ,Vamax , Femax)-(M) Maximum metal content (M-type) (10, 14, 8)
(Nimax ,Vamax , Femax)-(N) Maximum metal content (N-type) (20, 60, 10)
𝐶1 Maximum flow-rate into CDU1 0.22 km3∕h
𝐶2 Maximum flow-rate into CDU2 0.32 km3∕h
𝐶PRL Maximum flow-rate through PRL 1 km3∕h
𝐶in Maximum flow-rate into port tanks 1.33 km3∕h
Fig. 5. Comparison of (a) business rules, and (b) the proposed hierarchical method for minimizing the total shortfall in production. (c) The daily production plan generated by
the hierarchical framework satisfies all the mode-specific operational constraints. The proposed framework results in an improvement of ∼ 91.83% in throughput maximization over
the business rules.
11
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Table 5
Daily arrival schedule.

Day Crude Quantity (km3) Day Crude Quantity (km3)

1 – – 16 L-2 16.7
2 L-1 22.2 17 ARL 17.8
3 M-1 11.1 18 – –
4 ARL 17.8 19 M-1 11.1
5 O-1 11.1 20 O-1 24.4
6 – – 21 N-2 24.4
7 N-1 22.2 22 – –
8 – – 23 ARL 17.8
9 ARL 17.8 24 – –
10 O-1 24.4 25 ARL 17.8
11 M-2 11.1 26 O-1 24.4
12 – – 27 M-2 22.2
13 ARL 17.8 28 ARL 17.8
14 L-2 16.7 29 – –
15 O-1 11.1 30 – –

Table 6
Properties of incoming crude.

Crude 𝑇OVH1 𝑇AtRes1 𝑇OVH2 𝑇AtRes2 (S, Ni, Va, Fe)

L-1 167 423 – – (1.0, –, –, –)
L-2 139 142 – – (0.64, –, –, –)
L-3 258 277 – – (0.57, –, –, –)
M-1 292 222 – – (–, 2.6, 4.8, 6.9)
M-2 187 399 – – (–, 10.1, 17.5, 2)
N-1 26 485 37.7 703.25 (–, 7.3, 22.3, 12.1)
N-2 131 494 190 716.3 (–, 9.6, 41.9, 2)
ARL 142 450 205.9 652.5 (–, 11.6, 33.9, 2)
O-1 133 499 192.8 723.6 (–, 29.8, 107.2, 8.1)
O-2 262 332 379.9 481.4 (–, 8.8, 26.1, 3.1)

minimize the total shortfall in crude production. The business rules
(also used by the expert human operator) result in a total shortfall of
22.52 km3 over a period of 30 days. On the other hand, the proposed
hierarchical framework is capable of reducing the shortfall to just
1.84 km3 over the same period, resulting in an improvement of nearly
91.83% over the baseline method for throughput maximization. In ad-
dition, the total runtime for the proposed hierarchical MILP framework
is only 57 s, making it extremely scalable and amenable to real-time
scheduling. The planning resolution is set at three minutes. This means
that each day is divided into 480 intervals of three minutes each.
Decisions such as which crude oil should be stored in which tank, which
crude oil should be transferred through the PRL to which refinery tank,
and what type of blend should be made at a given time, are updated at
a resolution of three minutes.

Besides the constraints on processing of crude in CDUs and storing
hem in tanks, not every schedule is operationally feasible. For instance,
n L-type mode of operation should not be preceded by N-type mode
f operation. Fig. 5c shows the daily mode of operation for the two
DUs. It can be observed that the schedules are contiguous and all L-
ype mode of operations are preceded by M-type mode of operation.
he schedules for CDU1 and CDU2 are complementary to each other,
s mandated by the problem specifications. Fig. 6 depicts the daily
low (in km3) of crude of different types through the pipeline PRL. As
xpected, the net flow amount varies daily due to the unequal daily
aximum flow capacities through the PRL. This heterogeneity is a

esult of the PRL’s availability for flow transfer being limited to only
he first 19.8 h of every 38 h window.

We have also validated our approach on other realistic test scenar-
os, and obtained very similar analysis. While the detailed results have
een excluded from the main text for brevity, we have included them
n the accompanying supplementary information. The results across ten
12
challenging test scenarios are summarized in Table 8. Our algorithm
demonstrates a substantial reduction in shortfall, with scenarios A3 and
A5 showing no shortfall at all. Additionally, the average shortfall reduc-
tion across all scenarios is remarkably high at 94.30%, considering the
revenue gained by maximizing throughput. It can also be noted that,
using our approach, the net shortfall in other test scenarios (with the
exception of scenarios A4 and A10) is almost insignificant. If one takes
a close look, the arrival schedule in scenario A4 (presented in the sup-
plementary material) does not feature any crude arrival events during
days 17–23, which may have resulted in a shortage of N-type crude
over the 30-day period. Similarly, the arrival events of M-type crude
are very limited in scenario A10, leading to non-negligible shortfall in
production of M-type crude. Even with the difficulties posed by the
demanding crude delivery schedule, our framework still significantly
outperforms the schedule generated by the human expert in terms of
throughput maximization.

6. Conclusion & future work

We propose a scalable framework for scheduling of complex oper-
ations in a refinery system subjected to various constraints. The entire
problem of refinery management is decomposed into three smaller
sub-problems, each of which are handled using efficient MILP-based
framework. This hierarchical approach allows the problem to be solved
very efficiently (in less than a minute) and produce results that sig-
nificantly outperform the schedules generated by a human expert on
the same realistic scenario. In future, we look to expand the scope
of this work to address refinery management under stochasticity in
crude arrival schedule using robust optimization framework (Bertsimas
et al., 2011). In addition, a refinery may be under maintenance due
to unforeseen circumstances leading to disruption in handling of crude
as suggested otherwise by the MILP framework. Since the framework
is amenable to real-time planning, we look to test the efficacy of
our framework in dealing with such extreme situations. Finally, we
would like to incorporate events of scheduled maintenance into our
optimization framework itself.
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Fig. 6. Amount of crude in km3 pushed through PRL for each crude-type. Colours yellow, pink, green, lime-green and blue depict crude of types L, M, N(CDU1), N(CDU2) and
O, respectively.
Table 7
Initial tank level and blend properties.
Tank Initial level (km3) 𝑇OVH1 𝑇AtRes1 𝑇OVH2 𝑇AtRes2 S (Ni, Va, Fe)

PL01 11.0 51.6 55.4 – – 0.11 –
PL02 3.6 129 138.5 – – 0.28 –
PL03 10.8 116.9 296.1 – – 0.7 –
PM01 10.1 137.4 238 – – – (1.5, 2.58, 0)
PM02 10.1 87.6 66.6 – – – (.78, 1.44, 2.07)
PM03 8.9 20.5 383.2 29.8 555.6 – (5.77, 17.62, 9.56)
PN01 21.6 12.7 237.6 18.5 344.6 – (3.58, 10.93, 5.93)
PN02 16.2 87.6 66.6 – – – (.78, 1.44, 2.07)
PO01 21.6 53.2 199.6 77.1 289.4 – (11.92, 42.88, 3.24)
PO02 8.6 133 499 192.8 723.6 – (29.8, 107.2, 8.1)
RL11 3.6 51.6 55.4 – – 0.11 –
RM12 5.8 37.4 79.8 – – – (2.02, 3.5, .4)
RN13 5.8 8.06 150.4 – – – (2.26, 6.91, 3.75)
RN14 5.8 131 166 – – – (4.4, 13.05, 1.55)
RN21 3.7 – – 82.4 261 – (4.64, 13.56, 0.8)
RN22 2.3 – – 18.8 351.6 – (3.65, 11.15, 6.05)
RO24 11.6 – – 192.6 722.5 – –
RO23 7.3 – – 190.0 240.7 – –
.

Table 8
Comparison between ours and the expert operator’s schemes for reduction in shortfall

Scenario Shortfall (Ours)
(km3)

Shortfall (Expert)
(km3)

(

Expert − Ours
Expert

)

× 100%

A1 1.84 22.52 91.83
A2 0.29 57.83 99.50
A3 0 42.85 100.0
A4 21.77 90.27 75.88
A5 0 74.03 100.0
A6 0.29 44.75 99.35
A7 0.29 33.63 99.14
A8 0.29 38.61 99.25
A9 0.49 38.81 98.74
A10 13.47 64.99 79.27
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