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A B S T R A C T

We present a novel Maximum Entropy Principle (MEP)-based modeling and algorithmic approach, for a large
class of routing and scheduling problems including the Capacitated Vehicle Routing Problem (CVRP), the
Vehicle Routing Problem with soft time-windows (VRPTW) and the Close-Enough Traveling Salesman Problem
(CETSP). The MEP models routing and scheduling as ‘equivalent’ partitioning or clustering problems with side-
constraints, and employs tools from statistical physics for assigning resources (routes/vehicles) to each node
such that the resource allocation results in feasible, sub-optimal routes. The MEP can flexibly incorporate side-
constraints related to minimum tour-lengths, capacities, schedules and reachability (like CETSP). Analytically,
our model results in a second-order non-linear system of complex implicit equations. We show that an iterative
approach effectively solves these equations, is equivalent to a gradient descent and converges to a local
minimum. Despite the non-linear optimization model, the algorithm converges to an integer optimal solution.
Computationally, we compare our approach to Simulated Annealing (SA), the CMT-14 benchmarks for VRP and
benchmarks for CETSP. Our approach consistently outperforms SA for multiple variants of routing problems,
specifically, the CVRP, VRPTW and CETSP. On the CMT-14 benchmark instances, our approach finds the
optimal (when verifiable) number of vehicles, with a cumulative tour distance within 6.2% on average, and
in comparable computation times of the best-known solutions (over all approaches for each instance). We
also demonstrate the efficacy of our approach on benchmark instances of the CETSP and discuss our results.
This demonstrates the potential of our MEP approach to be further embedded into hybridization heuristics for
further improved results.
1. Introduction

Recent emphasis on building smart urban infrastructures has mo-
tivated the development of new and efficient paradigms of power
and communication networks, transportation systems and supply chain
integration in cities. Disruptive urban service innovations such as Uber,
Lyft, Grubhub, UberEats, and the potential of modes such as drones and
UAVs in cities and warehouses, all involve route planning and schedul-
ing. Due to the on-demand and large-scale nature of services, such
problems have to be solved repeatedly and at large scales. We consider
problems at the core of these service delivery settings — the Traveling
Salesman Problem (TSP), the TSP with time-windows, the Vehicle
Routing Problem (VRP), the Close-Enough Traveling Salesman Problem
(CETSP) and their numerous variants. Applications of these important
and impactful problems also extend widely, including to printed cir-
cuit boards (Matai, Singh, & Mittal, 2010), overhauling gas turbine
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engines (Plante, Lowe, & Chandrasekaran, 1987), X-ray crystallogra-
phy (Bland & Shallcross, 1987), aerial reconnaissance (Ryan, Bailey,
Moore, & Carlton, 1998), and warehouse material handling (Ratliff &
Rosenthal, 1983).

Most research in vehicle routing and variants focuses on a specific
variant, such as the capacitated vehicle routing problem (CVRP) or
the vehicle routing problem with time-windows (VRPTW) and often,
a heuristic (or an exact method) is designed to take into account the
specific criteria and structure associated with that problem variant. Due
to problem complexity and size, heuristics have been more successful
than exact methods (Laporte, Ropke, & Vidal, 2014). More recently, a
few works such as Pisinger and Ropke (2007) and Ropke and Pisinger
(2006) have built more general, ‘‘out-of-the-box’’ unified heuristics that
can solve several problem types. Because transportation, warehous-
ing and delivery businesses need to solve multiple variants of VRP
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problems, potentially all simultaneously, and in near-real-time, general
heuristics that are quick and possess a common underlying structure
that can be modified for multiple variants become significantly rele-
vant. Our work in this paper focuses on one such promising heuristic
approach, for the TSP, the multiple TSP (𝑚TSP), the VRP, the close-
enough TSP (CETSP) and the 𝑚CETSP (CETSP with 𝑚 vehicles). Observe
hat CETSP and variants are particularly challenging as there are a
ontinuum of possible edges between a pair of customer locations.

Our heuristic, which we call the Maximum Entropy Principle (MEP)
euristic, mimics approaches from statistical physics, used to explain
ombinatorial phenomena in nature. This is analogous to the free energy
rinciple, that determines the most probable ensemble property (such as
nergy) over a large number of possible atomic configurations (Reichl,
998). It is also analogous to theMaximum Entropy Principle (MEP) from
tatistical learning (Jaynes, 1957), with its solution strategy designed
o avoid poor local optima. One special case of MEP algorithm, called
eterministic annealing (DA) was initially developed for clustering and
acility location problems in the context of data compression in the
arly 1990s (Rose, 1990). While developed for facility location or
lustering, the DA has been effective for minimum distortion prob-
ems (Rose, 1998), routing in multi-agent networks (Kale & Salapaka,
012), location optimization (Salapaka, Khalak, & Dahleh, 2003), and
overage control (Xu, Salapaka, & Beck, 2014).

In this work, we extend this MEP modeling framework towards
ultiple variants of vehicle routing problems. We demonstrate the

ersatility and flexibility of our approach in simultaneously handling
ultiple constraints, such as multiple vehicles, capacity constraints,

cheduling constraints, and proximity or close-enough constraints. The
entral concept is to view routing (and scheduling) problems as par-
itioning or clustering location problems with scheduling captured as
routing’ in a different dimension (see Section 3.3.2). This unified
iewpoint is enabled by introducing an ordered set of ‘facilities’ whose
ardinality is initially equal to the number of customer locations. An
dditional set of constraints that reflect problem objectives, such as
inding minimum tour-length routes are imposed on these ‘facilities’.
his results in each facility being allocated to a distinct customer

ocation, and consequently the order of the set of facilities specifies
he tour, i.e., the order in which different customer locations are vis-
ted. Additional constraints model other variants of routing problems.

e next build efficient solution algorithms that can be employed to
olve any of these variants, as follows. We first pose an optimization
roblem where the cost function reflects the appropriate minimum
our length (or other relevant objective) for a given configuration of
ecision variables. Then we determine a probability distribution to the
pace of decision variables that maximizes its Shannon entropy under
he constraint that the expected value of the cost function is within

threshold value. The algorithm is iterative, where the threshold
alues are successively decreased (similar to an annealing process) as
he corresponding distributions are hardened; that is, the distribution
ecomes binary, with value 1 at a specific configuration of decision
ariables and 0 at all other configurations. This configuration serves as
solution.

In Rose (1990), a DA algorithm was developed for solving a baseline
ersion of TSP problems. In our work we significantly extend this
ethodology to a host of routing and scheduling variants. We exploit

he MEP framework’s ability to avoid poor local minima in a resource
llocation problem, and thus the algorithm serves as a natural tool for
ubsequent adaptation to variants of routing problems. Specifically, we
how that our approach enables solutions to multiple variants of the
RP. We also demonstrate significant improvement over heuristics such
s basic simulated annealing (often by as much as 100%) and the ca-
ability for simultaneously incorporating vehicle capacity constraints,
our-length constraints on individual vehicles, topological constraints
n vehicles’ tours, scheduling and close-enough constraints.

For clarity, we first differentiate the MEP method from the well-
2

nown Simulated Annealing (SA) metaheuristic. Both approaches begin
terations from a high temperature with an initial set of solutions,
nd explore solutions according to a non-greedy gradient descent step.
owever, the MEP method (and DA that it builds on) chooses the solu-

ion in the next step deterministically, compared to SA that chooses the
ext solution probabilistically (Toth & Vigo, 2002). The ‘probabilities’
n this method are associations and not randomized, as we discuss in
ater sections. We will refer to our approach in this paper as the MEP
pproach rather than DA to distinguish from the original DA approach
s well as from SA.

Our objectives are to present fundamental methodological advances
or the MEP-type approaches, the theoretical foundations that make
hese possible, and demonstrate that these improve upon previous
mplementations of the DA-type or Elastic Net (EN) approaches. We
lso show that this approach belongs to the class of unified or flexible
lgorithms to which recent literature in vehicle routing and scheduling
roblems has been gravitating. Our work indicates the promise of this
ethod, and its future potential to be embedded into adaptive or
yper heuristics enhanced through hybridization techniques (see Burke
t al. (2010) and Pisinger and Ropke (2007)) in future work, to be
ompetitive with best-known solutions in the literature.

The key contribution of this paper is the extension of the MEP-
ased approach to multiple classes of routing problems, as we describe
n Section 3. Below we propose our solution approach to each of the
roblem types. For the sake of brevity, the analysis of our MEP-based
pproach to routing (and scheduling) problems is discussed in detail
n the context of the Vehicle Routing Problem (VRP). Derivations of
pdate equations for other variants follow similar lines and are omitted.

The contributions of our work are as follows.

1. We expand the existing capabilities of MEP-type methods to larger
classes of routing problems. Past applications of DA have been
for TSPs and 𝑚TSPs (Dueck & Scheur, 1990; Durbin, Szeliski, &
Yuille, 1989; Rose, 1990; Vakhutinsky & Golden, 1994). In this
work, we extend the MEP framework to a much broader class of
VRP and CETSP problems, by incorporating a variety of capacity
and topological constraints.

2. Our approach improves algorithmically upon existing DA-type ap-
proaches in the literature for this class of problems. An important
aspect for these approaches (including the DA-based Elastic
Net approach) is an appropriate way to choose hyperparameter
values; poor choices for these often lead to unsatisfactory local
minima (Stone, 1992). We alleviate this dependence on hyper-
parameter tuning seen in past works, by deriving a principled
approach to parametric variations of the corresponding Lagrange
multipliers.

3. We prove analytically that our approach is efficient. Our principled
algorithmic approach can be characterized as a form of gradient
descent step, allowing us to extend the EN-type approach to
much broader classes of routing problems.

4. We present computational results on benchmark instances and real-
world instances. Our computational results on a real-world
dataset demonstrate that the solutions generated by our ap-
proach improve upon solutions used by the last-mile carrier who
provided us data. We also compare our results with benchmark
datasets to show that this class of methods can result in solutions
within 6.2% on average of the best-of-best known CMT-14
instances for VRPs. We also identify problem characteristics for
CETSPs, for which MEP methods can result in better solutions
than other methods.

utline
In Section 2, we discuss existing literature. In Section 3, we model

nd formulate the basic routing problem (TSP) and multiple variants.
e introduce the basic MEP solution approach and extensions for the

arious variants in Section 4. We discuss computational experiments
n Section 5, analyze the algorithm’s performance in Section 6 and
onclude in Section 7.
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2. Literature review

The study of vehicle routing problems and the vast number of
closely related classes of problems such as the TSP, 𝑚TSP, VRP with
time-windows (VRPTW) enjoys a rich history that is too vast to fully
enumerate. We refer the interested reader to the books (Labadie, Prins,
& Prodhon, 2016; Toth & Vigo, 2002, 2014) for a detailed description
of nearly all the literature on TSPs and VRPs; and limit our discussion
to a broad overview. We discuss in some more detail the Determin-
istic Annealing class, which is a precursor to our MEP approach, and
relevant near-enough solution methods.

Methods for TSP and VRP problems and variants are broadly clas-
sified into exact (Poggi & Uchoa, 2014) and heuristic approaches (La-
porte et al., 2014). Exact methods do not always scale tractably beyond
100–200 customers, motivating efficient and reasonably fast heuristics.
In this paper we restrict our discussion to heuristic approaches (Basuki,
Hidayat, Aji, et al., 2019; Mastan, Balakrishnan, & Sankar Sekhar Raju,
2019; Stodola, Michenka, Nohel, & Rybanskỳ, 2020; Yang, You, Liu, &
an, 2020; Zhang, Yang, Zhang, & Gen, 2020).

Heuristic approaches have historically begun with construction
euristics, among which the Clarke and Wright savings heuristic (Ba-
uki et al., 2019; Clarke & Wright, 1964; Nelson, Nygard, Griffin, &
hreve, 1985; Paessens, 1988) and petal algorithms (Foster & Ryan,
976; Renaud, Boctor, & Laporte, 1996; Ryan, Hjorring, & Glover,
993) have stood the test of time. Among improvement heuristics,
-opt exchanges (Helsgaun, 2000; Lin & Kernighan, 1973), 𝑏-cyclic,
-transfer moves (Thompson & Psaraftis, 1993) or destroy and re-
air schemes (Shaw, 1997) have demonstrated the most success. The
ield has, over time, converged to metaheuristic-type approaches that
an embed multiple heuristics and use them in combination with
ach other (Laporte et al., 2014). Such metaheuristics include: (i)
ocal search methods such as simulated annealing (Osman, 1993),
eterministic annealing (Dueck, 1993; Dueck & Scheur, 1990; Li,
olden, & Wasil, 2005), iterated local search (Chen, Huang, & Dong,
010; Subramanian, Uchoa, & Ochi, 2013), variable neighborhood
earch (Kytojoki, Nuorito, Nuorito, Braysy, & Gendreau, 2007) and
ii) population-based heuristics such as tabu search (Zachariadis &
iranoudis, 2010), genetic algorithms (Nagata & Braysy, 2009; Prins,
004; Vidal, Craininc, Gendreau, Lahrichi, & Rei, 2012), ant colony
lgorithms (Reimann, Doerner, & Hartl, 2004), scatter search and path
elinking (Tarantilis, Anagnostopoulou, & Repoussis, 2013) and learn-
ng mechanisms (Creput, Hajjam, Koukam, & Kuhn, 2012). In the past
ecade, these algorithms have been combined and hybridized in many
ays to leverage strengths of multiple methods, amplifying their power.
or example, Adaptive Large Neighborhood Search (ALNS) (Pisinger
Ropke, 2007) has emerged as an intelligent and successful way to

ybridize over very large neighborhoods using multiple improvement
euristics and explore the solution space in novel ways. Other success-
ul hybridizations have been meta-meta hybridizations (e.g. Tarantilis
t al. (2013)) and combining population-based search with local search
e.g. Kytojoki et al. (2007)).

More recently, heuristic methods have expanded towards incorpo-
ating multiple variants, referred to as attributes (Vidal, Crainic, Gen-
erau, & Prins, 2013). Fuel consumption, time-windows, heterogeneous
ehicles, and time-dependent travel times are some such attributes.
uch methods are referred to as unified algorithms or flexible methods.
xamples include the Unified Hybrid Genetic Search (UHGS) of Vidal,
rainic, Genderau, and Prins (2014), which is highly flexible and

ncorporates problem-specific attributes modularly; Subramanian et al.
2013) which combines multiple depots, heterogeneous fleet and pick-
ps and deliveries; and the ALNS of Pisinger and Ropke (2007). Vidal
t al. (2014) also emphasize the importance of parameter tuning and
alibration in such flexible or unified methods to achieve improved
olutions by using adaptive heuristics or hyper-heuristics (Burke et al.,
3

010; Pisinger & Ropke, 2007).
We focus on the class of methods called DA or EN methods. The DA
ethod (Dueck, 1993; Dueck & Scheur, 1990) or the EN method (Li

t al., 2005; Vakhutinsky & Golden, 1994) used an approach based
n the work in Durbin et al. (1989) on Elastic Net for the TSP.
hile the geometry of the EN method is governed by well-established

heories from statistical physics, a fundamental drawback of these
orks exploring this method is the lack of a principled way to choose
arameter values which often leads to unsatisfactory solutions in lo-
al minima (Stone, 1992). Their approach uses some form of Gibbs
istributions, as our approach does; however, the functional form is
ifferent, and more importantly, the parameter corresponding to tour-
ength penalty is kept constant in their implementations. Because these
lexible methods are also sensitive to hyperparameter tuning, solutions
hat are not comparable to other methods often result. In this paper,
e alleviate this dependence on hyperparameter tuning by deriving
principled approach to parametric variations of the corresponding

agrange multipliers, allowing us to extend the EN approach to a
uch broader class of VRPs, bringing it towards the class of unified

lgorithms. We show that as we change the annealing parameter, we
eed to keep updating the parameter corresponding to tour-length so
hat the tour-length does not abruptly change to some meaningless
alue. While there is literature on parameter tuning in ENs, in this
ork, we propose a principled way to optimally vary this secondary
agrange multiplier as the annealing parameter is varied.

The close-enough routing problem has also in recent times received
ignificant attention in the literature. Motivated by the optimal robot
outing problem and wireless meter reading problems, this variant finds
outes that can reach near enough to locations for the purposes of
econnaissance, meter reading, etc. The authors of Behdani and Smith
2014), Carrabs, Cerrone, Cerulli, and Gaudioso (2017), Carrabs, Cer-
one, Cerulli, and Golden (2020), Gulczynski, Heath, and Price (2006),
ennell (2009) and Shuttleworth, Golden, Smith, and Wasil (2008)

tudy this problem in detail, and in Mennell (2009) discuss the struc-
ure of the close-enough TSP and VRP problems in significant detail.
he CETSP adds considerable additional challenges because there is a
ignificant increase in the number of edges in terms of the number of
oints that the vehicle can touch in order to ‘visit’ the customer. Many
ormulations for this problem impose a requirement of uniform radii
or all customer locations. Many existing heuristics, including those
roposed in Pisinger and Ropke (2007) and Ropke and Pisinger (2006),
o not address the CETSP variant in their current form. Instead, special
ormulations have been developed to address this problem, often with
ultiple phases (Dong, Yang, & Chen, 2007; Gulczynski et al., 2006;
ennell, 2009; Yuan, Orlowska, & Sadiz, 2007).

. Problem definition and formulations

We begin by formulating the VRP and its variants with appropriate
onstraints to reflect routing, capacitated partitioning and scheduling
omponents. These constrained optimization problems are combinato-
ially hard and thus, cannot be solved efficiently using exact methods.
he MEP framework described later in Section 4 augments the various
onstraints to the corresponding objective functions through Lagrange
ultipliers. For ease of illustration, we present the VRP and its variants

n increasing order of problem complexity. This is also in congruence
ith how the MEP framework is successively modified to address these
ariants. The overarching theme is to view these variants as adapta-
ions of the basic facility location problem. The nature of coupling
etween these facilities is exploited in our framework to model various
onstraints.

otations
Capital letters such as 𝑋, 𝑌 denote matrices; and lower case bold

etters (𝐱, 𝐲) denote column vectors. Script letters ( ,) represent sets.
‖𝐱‖ denotes the 𝐿2-norm of 𝐱. R,N denote the set of real and natural
numbers, respectively. The set of customer locations is denoted by  =
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Table 1
Notation used in Sections 3 and 4.
Symbol Notation Role

𝑛 Number of customers Input
𝑚 Number of vehicles Input
[

𝑡𝑖,start , 𝑡𝑖,end
]

Pickup and delivery time-window for the 𝑖th customer Input
𝑋 = {𝐱𝑖} Spatial coordinates of customers Input
Cap𝑖 Capacity requirement of the 𝑖th-customer Input
 = {𝐲𝐣} Set of clusters with 𝐲𝑗 indicating location of centroid for 𝑗th cluster Variable
 = {𝑣𝑖𝑗} Set of associations with 𝑣𝑖𝑗 indicating association b/w 𝑖th customer and 𝑗th cluster Variable
{𝜎𝑖}𝑛𝑖=1 Permutation of customer indices {1,2,. . . ,n} representing an ordering Variable
 Set of partition indices Variable
𝐷( , ,) Cumulative distance function parameterized by  , , Variable
𝑑(𝐱𝑖 , 𝐲𝑗 ) Squared Euclidean distance b/w customer location 𝐱𝑖 and cluster 𝐲𝑗 Variable
𝑃 ( , ,) Probability of choosing an instance ( , ,) Variable
𝑝(𝑗|𝑖) Probability that location 𝑖 is associated with cluster 𝑗 Variable
𝐹 (⋅) Free-energy functional Variable
𝛽 Lagrange multiplier/inverse temperature Variable
𝜃 Secondary Lagrange multiplier Variable
Fig. 1. Schematic of (a) Single-depot VRP with 𝑛 = 9 customer locations, represented as black dots. (b) Single-depot VRPTW. (c) Single vehicle returning CETSP, where each
location 𝐱𝑖 has a radius 𝜌𝑖 within which a vehicle can ‘visit’ the customer. The orange dots indicate the visit points 𝒓𝑗 within the allowable radius 𝜌𝑖 for each customer 𝑖.
{𝐱𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛}, where 𝑛 ∈ N is the number of customers. Variants such
as the vehicle routing problem often require the location of a depot
(or warehouse), which we denote by 𝜶. For variants such as the close-
enough routing problems, a customer located at 𝐱𝑖 is considered visited
if the salesman (or vehicle) arrives anywhere within a pre-specified
radius 𝜌𝑖. The distance between any two locations 𝑖 and 𝑗 is denoted by
𝑑(𝐱𝑖, 𝐱𝑗 ) and is assumed squared-Euclidean, i.e., 𝑑(𝐱𝑖, 𝐱𝑗 ) = ‖𝐱𝑖 − 𝐱𝑗‖22,
a choice of distance function common to many networks and vehicle
routing problems. A routing sequence that visits all the customer lo-
cations (and/or depot location) exactly once is referred as a tour. A
tour is defined by the sequence (𝜎1,… , 𝜎𝑛+1) (or (𝜎1,… , 𝜎𝑛) depending
upon whether or not the starting and end locations coincide), where
𝜎𝑖 ∈ {1,… , 𝑛} denotes the index of the 𝑖th location in the tour. Note that
𝜎𝑖 ≠ 𝜎𝑗 when 𝑖 ≠ 𝑗 and 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and that 𝜎𝑛+1 = 𝜎1. Therefore each
tour is fully specified by an index vector (ordered set) 𝜎 = (𝜎1,… , 𝜎𝑛).
Note that we may refer to the agents serving a customer as salesmen or
vehicles depending on the context. For the convenience of the reader,
we present this and other notation that we use in this paper to describe
and formulate the variants of routing problems, in Table 1. We now
formally introduce the variants of routing problem in increasing order
of scale and complexity.

3.1. The Traveling Salesman Problem (TSP)

We begin by introducing the most basic version of routing problems
— the traveling salesman problem (TSP). Let  ≜

{

𝐱𝑖 = (𝑥(1)𝑖 , 𝑥(2)𝑖 ) ∶

𝐱𝑖 ∈ R2, 1 ≤ 𝑖 ≤ 𝑛
}

be a given set of 𝑛 customer locations. The objective
of the TSP (see Fig. 1a) is to find a closed tour connecting all these cus-
tomer locations such that each location is visited exactly once and the
total tour-length is minimized. The salesman must return to the starting
4

customer location at the end of the tour. The TSP is mathematically
formulated in the MEP framework as:

min
𝜎

𝑛
∑

𝑖=1
𝑑(𝐱𝜎𝑖 , 𝐱𝜎𝑖+1 ), s.t. 𝜎𝑛+1 = 𝜎1. (1)

By definition as described in the notations section, (1) ensures that
𝜎𝑙 ≠ 𝜎𝑘∀𝑘, 𝑙 ∈  . Here, 𝑑(⋅, ⋅) captures the squared-Euclidean distance
between two customer locations.

In practical settings, customer locations may not be known pre-
cisely, however, each customer’s location may be identified in terms
of a probability distribution over a set of locations. We refer to this
variant of TSP by the Robust Traveling Salesman Problem (Robust-
TSP). Specifically, in Robust-TSP, the location of each customer 𝑖
is uncertain and lies in the set {𝐱𝑙𝑖} with corresponding probability
distribution {𝜁𝑙𝑖} for 1 ≤ 𝑙𝑖 ≤ 𝐿𝑖. We present the Robust-TSP according
to the MEP framework, with a single vehicle, here for clarity. The goal
is to minimize the cumulative distance function given by

𝐷RTSP({𝐲𝐣}, {𝑣𝑖𝑗}) =
𝑛
∑

𝑖,𝑗=1
𝑣𝑖𝑗

𝐿𝑖
∑

𝑙𝑖=1
𝜁𝑙𝑖𝑑(𝐱𝑙𝑖 , 𝐲𝑗 ) + 𝜃

𝑛
∑

𝑗=1
𝑑(𝐲𝑗 , 𝐲𝑗+1),

with 𝐲𝑛+1 = 𝐲1 and
𝑛
∑

𝑗=1
𝑣𝑖𝑗 = 1, (2)

where 𝜃 is the secondary Lagrange multiplier.

3.2. Close-Enough TSP (CETSP)

The CETSP occurs commonly in wireless networks, aerial drone (au-
tomated vehicle) reconnaissance, sensing networks, mission planning,
and wireless electric meter reading. In a CETSP, along with the set of
customer locations {𝑖}, we are also given a corresponding set of radii
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{𝜌𝑖} within which each location must be visited (see Fig. 1c). That is, in
a CETSP a location 𝑥𝑖 is called ‘covered’ if some point 𝑟𝑗 in the specified
circle surrounding it is visited, and not necessarily the exact location.
The parameter 𝜌𝑖 may reflect the range of a wireless device located at
𝑖.

Due to the radius associated with each location, the CETSP does not
efine a specific edge (and corresponding distance) between a pair of
ustomer locations; rather, there is a continuum of (infinite) possible
dges between a pair of customer locations. Let {𝒓𝑗 ∶ 1 ≤ 𝑗 ≤ 𝑛} denote
he set of locations visited by a vehicle, corresponding to the location 𝑥𝑖
equired to be ‘covered’. Consequently, one can define the CETSP tour
y the sequence of locations actually visited, (𝒓1, 𝒓2,… , 𝒓𝑛). The CETSP
s written as

min
{𝑣𝑖𝑗},{𝒓𝑗}

𝑛
∑

𝑗=1

{ 𝑛
∑

𝑖=1
𝑣𝑖𝑗𝑑𝐶𝐸 (𝐱𝑖, 𝒓𝑗 ) + 𝑑(𝒓𝑗 , 𝒓𝑗+1)

}

; 𝒓𝑛+1 = 𝒓1

.t. 𝑣𝑖𝑗 ∈ {0, 1},
𝑛
∑

𝑖=1
𝑣𝑖𝑗 = 1,∀ 𝑗;

𝑛
∑

𝑗=1
𝑣𝑖𝑗 = 1,∀ 𝑖

here 𝑑𝐶𝐸 (𝐱𝑖, 𝒓𝑗 ) =
{

0 if‖𝒓𝑗 − 𝐱𝑖‖ < 𝜌𝑖
∞ else . (3)

Here 𝑣𝑖𝑗 captures the association of customer location 𝐱𝑖 with par-
ition 𝐫𝑗 , with 𝑗 indicating the order of visit. The first term in the
bjective function captures the cost incurred in allocating facilities to
ustomer locations, while the second term corresponds to minimum
our-length constraint associated with the sequence (𝐫1,… , 𝐫𝑛+1). Note
hat this variant also can be modeled as a multi-vehicle problem. In
uch a case, we would denote 𝑘 as the index for the vehicle and 𝑟𝑗𝑘 as
he location at which vehicle 𝑘 visits the 𝑗th customer. The formulation
ould be modified to ensure that each customer is visited by exactly
ne vehicle at the point 𝑟𝑗𝑘, and that the vehicle tours partition the
ustomers into sets covered by each vehicle.

.3. The Vehicle Routing Problem (VRP)

The Vehicle Routing Problem (VRP) addresses the optimal design of
outes to serve a set of customers at locations  = {𝐱𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛}, using
fleet of 𝑚 vehicles whose routes should begin and end at common

epot. The solution is required to provide an assignment of customers
o vehicles, with each customer visited once and exactly once, and to
ind the order in which customers are visited by each vehicle, with
inimum tour cost. In a VRP, each vehicle starts at a depot location
, serves a subset of customers and returns to the depot. We write the
bjective function of the (uncapacitated) VRP mathematically in the
EP framework as

min
𝜎

{𝛾𝑘𝑗 }

{ 𝑛−1
∑

𝑖=1
𝑑(𝐱𝜎𝑖 , 𝐱𝜎𝑖+1 ) + 𝑑(𝐱𝜎1 ,𝜶) + 𝑑(𝐱𝜎𝑛 ,𝜶)

+
𝑚−1
∑

𝑗=1
𝛾𝑘𝑗

[

−𝑑(𝐱𝜎𝑘𝑗 , 𝐱𝜎𝑘𝑗+1 ) + 𝑑(𝐱𝜎𝑘𝑗 ,𝜶) + 𝑑(𝐱𝜎𝑘𝑗+1 ,𝜶)
]

}

(4)

s.t.
∑

𝑘𝑗

𝛾𝑘𝑗 = 1, 𝛾𝑘𝑗 ∈ {0, 1}, 1 ≤ 𝑘𝑗 ≤ 𝑛 − 1,∀𝑗 (5)

here 𝑑(𝐱𝜎𝑎 ,𝜶) refers to the distance between customer location 𝐱𝜎𝑎 and
epot location 𝜶 (see Fig. 1a). The variable 𝛾𝑘𝑗 takes on value 1 if the
dge corresponding to the locations (𝜎𝑘𝑗 , 𝜎𝑘𝑗+1) is removed and instead,
he vehicle returns from that customer to the depot. In the objective (4),
he first term refers to the cost related to successively visited customers,
nd the second and third terms to the cost of traveling from the depot
o the first customer and from the last customer back to the depot, for
ach vehicle; giving rise to 𝑚 disjoint tours. Feasible solutions to the
RP are illustrated in Fig. 1a.
5

a

.3.1. Capacitated VRP (CVRP)
A CVRP configures multiple vehicles to cover all customer locations,

uch that each customer location is visited exactly once by one vehi-
le/salesman and the sum of capacities of customers served in each
ehicle’s route is less than or equal to the maximum capacity of the
ehicle. Each vehicle begins from and returns to the common depot.
et Cap𝑖 represent the set of capacity requirements of the customers
≤ 𝑖 ≤ 𝑛 and Cap𝑗,max denote the maximum carrying capacity of

he vehicles 1 ≤ 𝑗 ≤ 𝑚. The CVRP can then be expressed as the
apacitated version of (5) with the additional constraint that the sum of
ll customer capacity requirements being served by a vehicle should not
xceed {Cap𝑗,max}, i.e., if 𝑣𝑖𝑗 denotes the association of the 𝑖th-customer
ith the 𝑗th-vehicle, then ∑𝑛

𝑖=1 𝑣𝑖𝑗Cap𝑖 ≤ Cap𝑗,max for all 1 ≤ 𝑗 ≤ 𝑚.

.3.2. VRP with Time-Windows (VRPTW)
The VRPTW (Baranwal, Parekh, Marla, Salapaka, & Beck, 2016;

ordeau, Laporte, & Mercier, 2001; Dror, 1994) is a constrained version
f the VRP, where time-windows {[𝑡𝑖,start, 𝑡𝑖,end]} are associated with the
ossible service times of each shipment 𝑖, requiring that the vehicle
ust reach and serve the shipment within the specified time windows

see Fig. 1b). These problems arise in city logistics, telecommunica-
ions, military applications, last mile delivery problems, liner shipping
nd inter-city logistics. In the MEP framework, the objective for the
ulti-vehicle VRPTW is formulated with soft penalty constraints as

min
𝜎

{𝛾𝑘𝑗 }

{ 𝑛−1
∑

𝑖=1
𝑑(𝐱𝜎𝑖 , 𝐱𝜎𝑖+1 ) + 𝑑(𝐱𝜎1 ,𝜶) + 𝑑(𝐱𝜎𝑛 ,𝜶)

+
𝑚−1
∑

𝑗=1
𝛾𝑘𝑗

[

−𝑑(𝐱𝜎𝑘𝑗 , 𝐱𝜎𝑘𝑗+1 ) + 𝑑(𝐱𝜎𝑘𝑗 ,𝜶) + 𝑑(𝐱𝜎𝑘𝑗+1 ,𝜶)
]

}

(6)

here 𝐱𝑖 ≜
(

𝑥(1)𝑖 , 𝑥(2)𝑖 , 0.5𝜂(𝑡𝑖,start + 𝑡𝑖,end)
)𝑇

, is a softened location
f the 𝑖th customer. That is, this formulation expands the definition
f the ‘location’ of a customer to be the spatial location as well as
he mid-point of the customer’s pickup and delivery time-window. The
arameter 𝜂 captures the relative penalty between distance-based opti-
ization (routing) and time-window specific optimization (scheduling
roblems), and is described in detail for the multiple vehicles case, in
ection 4.7.

. The MEP modeling framework for the VRP and its variants

We begin by introducing the Maximum Entropy Principle (MEP)
ramework, its ability to find high quality solutions to non-convex/
ombinatorial optimization problems, and how it can be transformed
o address VRP and its variants. The MEP views a typical vehicle
outing problem as an abstraction of a combination of problems — (i)
clustering or partitioning problem based on spatial coordinates and

apacities of customers, (ii) a routing problem within each cluster,
nd (iii) a routing problem connecting each cluster to the depot, on
Cartesian plane. This view provides the advantage of casting a large

lass of routing (or scheduling) problems as variants of the VRP or its
ore problem, the TSP. Below we first describe the MEP framework and
ur solution algorithm for the VRP and its variants in terms of these
onstituent component problems. Fig. 2 represents the overall solution
ethodology adopted in this work and prescribes the order in which

ariants of VRP with increasing complexity are successively addressed
sing the proposed MEP framework.

The MEP approach describes the VRP as a problem layered upon the
SP, where the loop that connects all customer locations in the TSP is
artitioned into pieces and assigned to each vehicle; and each partition
s connected to the depot at the beginning and end. The MEP views the
ehicle routing problem as an abstraction of a combination of problems
(i) a clustering or partitioning problem based on spatial coordinates
nd capacities of customers, (ii) a routing problem within each cluster,

nd (iii) a routing problem connecting each cluster to the depot, on a
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Fig. 2. Overview of MEP methodology for solving VRP and its variants — the blue colored textboxes represent the solution approach, while green colored textboxes depict the
problems being solved.
Cartesian plane. This view provides the advantage of casting a large
class of routing (or scheduling) problems as variants of the VRP or its
core problem, the TSP. We first describe the MEP framework and our
solution algorithm for the basic vehicle routing problem in terms of
these constituent component problems.

For ease of exposition, we first describe our solution approach to
the uncapacitated variant of the vehicle routing problem, i.e., each
vehicle can serve any number of customers with the common objective
of minimizing the cumulative travel distance/time over all vehicles. We
then extend the approach to consider capacitated variants of the vehicle
routing problem. In order to characterize a solution of an uncapacitated
vehicle routing problem (henceforth referred to as VRP), we need
to consider the following three elements corresponding to the three
problems mentioned in the preceding paragraph: (i) a set of vehicles
(clusters), (ii) associations of customers to these clusters, and (iii) a
set of breakpoints that separate the clusters of each vehicle. The last
element, i.e., the partition set or the set of breakpoints is used to create
a fragmentation of a single route into multiple sub-routes, and is a
characteristic of our proposed methodology. Let us suppose we desire
to cover an entire set of customers with just three vehicles. If we first
consider a single route that connects all the customers in some order
and later fragment the route at indices 𝑘1 and 𝑘2, then the route gets
partitioned into three smaller sub-routes, each considered to be served
by a separate vehicle. Our goal is to obtain an optimal combination of
these three elements such that the total cost of travel is minimized.

Accordingly, a configuration of a VRP is defined by the 3-tuple
( , ,).  captures the set of clusters or ‘partitions’ that can serve
the set of customers, and  captures the set of associations of customers
with each ‘cluster’ or vehicle.  captures the indices of facilities where
one vehicle’s customers stop and another vehicle’s begin. Specifically,
the partition set  ≜ {𝑘1, 𝑘2,… , 𝑘𝑚−1} describes the set of indices where
partitions occur if there are no links between clusters 𝐲𝑘𝑙 and 𝐲𝑘𝑙+1 for
all 1 ≤ 𝑙 ≤ 𝑚 − 1. The objective ‘distance’ function for VRP associated
with the instance ( , ,) is defined as:

𝐷( , ,) = 𝐷1( ,) +𝐷2() +𝐷3( ,), (7)

Here, 𝐷1( ,) comprises the clustering or partitioning component
(number of vehicles/facilities and associating customers to each ve-
hicle’s cluster); 𝐷2() comprises the routing component, solved for
each vehicle; and 𝐷3( ,) comprises the partitions of customers cor-
responding to each vehicle and corrections to ensure route feasibility
with the depot. We now describe in further detail each component.
6

4.1. MEP for the clustering or partitioning component: 𝐷1( ,)

Given a total of 𝑛 customer locations, the partitioning problem seeks
to divide them into 𝐾 clusters, each allocated to one vehicle for a given
set of 𝑛 ≫ 𝐾 customers, such that the cumulative sum of distances from
each customer location to the centroid of the partition is minimized. The
MEP solution approach to the partitioning problem is based on the
Deterministic Annealing (DA) algorithm (Rose, 1998).

Let  = {𝐱𝑖, 1 ≤ 𝑖 ≤ 𝑛} and  = {𝐲𝑗 , 1 ≤ 𝑗 ≤ 𝐾} denote the
sets of locations of customers and partitions, respectively. Partitioning
customers into clusters is the following optimization problem (8):

min
{𝐲𝑗}

𝑛
∑

𝑖=1

{

min
1≤𝑗≤𝐾

𝑑(𝐱𝑖, 𝐲𝑗 )
}

, (8)

where 𝑑(𝐱𝑖, 𝐲𝑗 ) ∈ R+ denotes the distance between the 𝑖th customer
location and 𝑗th partition’s centroid location.

Any solution to this problem results in clustering of the underlying
domain of customers into 𝐾 clusters {𝐶𝑗} such that for any point
𝐱𝑖 ∈ 𝐶𝑗 , the nearest partition’s centroid is located at 𝐲𝑗 . Alternatively,
a partition {𝐶𝑗} can be described in terms of a set of associations
 = {𝑣𝑖𝑗} ∈ {0, 1}𝑛×𝐾 defined as

𝑣𝑖𝑗 =
{

1 if 𝐱𝑖 ∈ 𝐶𝑗
0 else .

Thus a configuration of a partitioning problem is completely de-
scribed by the tuple ( ,) with the cost for that configuration given
by 𝐷1( ,) ≜

∑𝑛
𝑖=1

∑𝐾
𝑗=1 𝑣𝑖𝑗𝑑(𝐱𝑖, 𝐲𝑗 ). The objective in (8) can thus be

reformulated as:

min
( ,)

𝐷1( ,). (9)

Most algorithms for partitioning or clustering problems, such as
Lloyd’s algorithm (Lloyd, 1982), are very sensitive to the initial as-
signments of partitions or facility locations and their associations with
customers. This is primarily due to the distributed aspect of such
problems, where any change in the location of the 𝑖th customer affects
𝑑(𝐱𝑖, 𝐲𝑗 ) only with respect to the nearest partition 𝑗. The DA algo-
rithm (Rose, 1990, 1998), overcomes this sensitivity by allowing each
location to be partially associated to every partition through a so-called
association probability. Association probabilities are initially uniform,
and then repeatedly updated using the maximum entropy principle.
Specifically, a probability distribution {𝑃 ( ,)} is ascribed over the
space of combinatorial decisions, and repeatedly estimated using the
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Fig. 3. The working methodology of the DA algorithm. At small values of 𝛽, the algorithm is independent of the choice of initial partitions, in fact, the partitions’ centroids
are optimally located at the centroid of all customer locations 𝐱𝑖. At very low values of 𝛽 (Figure (a)), 𝐱1 is uniformly associated with all the three resources - 𝐲1; 𝐲2; 𝐲3,
i.e., 𝑝(1|1) = 𝑝(2|1) = 𝑝(3|1) = 1∕3. As 𝛽 is increased gradually, the algorithm preferentially allocates facilities based on the distribution of customer locations. At intermediate values
of 𝛽 (Figure (b)), the fuzziness in the associations decreases and as a result 𝑝(1|1) > 1∕3. When 𝛽 → ∞ (Figure (c)), the resource associations become hard, i.e., 𝑝(1|1) = 1 and
𝑝(2|1) = 𝑝(3|1) = 0, resulting in hard-clustered solutions.
maximum entropy principle by solving the following related problem:

max
( ,)

𝐻(𝑃 ( ,))

subject to ⟨𝐷1( ,)⟩ ≤ 𝐷0,
(10)

where 𝐷 = ⟨𝐷1( ,)⟩ ≜
∑

 , 𝑃 ( ,)𝐷1( ,) is the average cost and
𝐻(𝑃 ( ,)) ≜ −

∑

( ,) 𝑃 ( ,) log𝑃 ( ,) is the Shannon entropy of the
probability distribution 𝑃 ( ,) and quantifies the randomness of the
distribution. In the MEP approach, we seek to maximize entropy under
the constraint that 𝐷 ≤ 𝐷0, 𝐷0 > 0. The constraining parameter 𝐷0 is
successively reduced through a Lagrange multiplier.

Equivalently to (10), we instead seek to minimize its Lagrangian
relaxation ⟨𝐷⟩ − 1

𝛽𝐻 . For a given value of 𝛽, the optimal probability

distribution 𝑃 ( ,) can be shown to be a Gibbs distribution, given by

𝑃 ( ,) = 𝑒−𝛽𝐷1( ,)
∑

 ′ , ′ 𝑒−𝛽𝐷1( ′ , ′)
. (11)

Since the partitioning problem seeks to find the clusters that max-
imize these probabilities, it is reasonable to consider the marginal
probability distribution {𝑃 ()}, given by:

𝑃 () = 𝑒−𝛽𝐹cluster()
∑

 ′ 𝑒−𝛽𝐹cluster( ′)
, (12)

where 𝐹cluster() is the analog of free energy in statistical physics and
is given by (13),

𝐹cluster() = − 1
𝛽
log𝑍() = − 1

𝛽
log

𝑛
∑

𝑖=1

( 𝐾
∑

𝑗=1
𝑒−𝛽𝑑(𝐱𝑖 ,𝐲𝑗 )

)

. (13)

If the annealing parameter 𝛽, is very small (≈ 0), minimizing this
Lagrangian relaxation is equivalent to maximizing entropy 𝐻 , which is
in fact a convex problem. On the other hand, at large 𝛽, minimization
of this Lagrangian relaxation is equivalent to solving the underlying
problem. Thus, the Lagrange multiplier 𝛽 defines a homotopy between
a convex problem and the original clustering problem. In the DA algo-
rithm discussed in Rose (1998), the Lagrangian is numerically solved
for many values of 𝛽 as it is increased from 0 to a large value. Fig. 3
illustrates the iterative solution process. The free energy function (13)
is minimized at successively increased 𝛽 values over repeated iterations
(for example, Fig. 3a, b, and c).

The set  of partitions that optimizes the free-energy at each 𝛽
satisfies the following analytical expression:

𝜕
𝜕𝐲𝑗

𝐹cluster = 0 ∀𝑗 ⇒
𝑛
∑

𝑖=1
𝑝(𝑗|𝑖) 𝜕

𝜕𝐲𝑗
𝑑(𝐱𝑖, 𝐲𝑗 ) = 0 ∀𝑗, (14)

where 𝑝(𝑗|𝑖) = 𝑒−𝛽𝑑(𝐱𝑖 ,𝐲𝑗 )
∑𝐾

𝑘=1 𝑒
−𝛽𝑑(𝐱𝑖 ,𝐲𝑘)

, as described earlier in (11). Computing

𝑝(𝑗|𝑖) for each iteration (each value of 𝛽) and using it as a starting point
for the next iteration is performed as shown in Rose (1990, 1998), and
as shown in Fig. 3.
7

At low values of 𝛽, the Gibbs distribution in (11) is uniform, and
the association probabilities are also uniform, as shown in Fig. 3a. This
is expected since entropy is maximum when the distribution is com-
pletely random or uniform. As 𝛽 → ∞, the Gibbs distribution hardens
(converges to 0 or 1), i.e., 𝑃 () converges to 1 at the minimum of
𝐹cluster() and 0 otherwise. Thus, the softened associations converge to
hard associations as the algorithm proceeds with successively increased
values of 𝛽, as seen in Fig. 3b and c. For a detailed analysis on the
complexity of the basic MEP approach for partitioning, readers are
encouraged to refer to Parekh, Katselis, Beck, and Salapaka (2015).

4.2. MEP for routing in each cluster: 𝐷2()

We now describe how the MEP method models the routing of
vehicles in each identified cluster. Adapting the MEP algorithm for
routing is not straightforward, because the original MEP method results
in a partition of the underlying domain into 𝐾 clusters, whereas the
routing problem involves finding a sequence or set of sequences in
which each customer location must be visited to minimize total tour
length across one or more tours. Observe that if we partition the domain
with as many clusters as the number of customers, i.e., if we choose
𝐾 = 𝑛, then we expect each customer location to be uniquely co-
located with one facility. The sequencing aspect is further incorporated
by adding a minimum tour-length constraint to (10). We build upon the
existing Elastic-Net (EN) based approaches, which have a fundamental
drawback because of the lack of a systematic way to choose parameter
values, often leading to unsatisfactory solutions (Stone, 1992). In this
paper, we alleviate this dependence on hyperparameter tuning by
deriving a principled approach to parametric variations of the corre-
sponding Lagrange multipliers, thereby allowing us to broaden and
extend the EN-type approaches to a much broader class of VRPs.

Rose (1990) incorporates routing for the TSP to cover all cus-
tomers with a single vehicle using the minimum tour-length constraint,
modifying the free-energy function (13) to

𝐹TSP() ≜ 𝐹cluster() + 𝜃

( 𝐾
∑

𝑗=1
𝑑(𝐲𝑗 , 𝐲𝑗+1)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐷2()

, (15)

where, 𝐲𝐾+1 = 𝐲1 and 𝜃 is a secondary Lagrange multiplier associated
with minimizing the tour-length obtained by joining the resources
𝑗, 𝑗 + 1 for all 1 ≤ 𝑗 ≤ 𝐾.

Fig. 4 demonstrates the working methodology of the EN approach
(derived using MEP) for the basic TSP. Specifically, the desired number
of partitions (depicted by triangles) are the same as the number of
customer locations (depicted by squares). Fig. 4(a) shows that at very
low values of 𝛽, each location is uniformly probabilistically associated
with all the facilities — all the facilities are located at the centroid
of the customer locations. At an intermediate value of 𝛽 (Fig. 4(b)),
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Fig. 4. Pictorial representation of the working methodology of the MEP approach for routing. At small values of 𝛽 (Figure (a)), each location is uniformly associated with all
facilities. At intermediate values of 𝛽 (Figure (b)), the partitions develop affinity to unique customer locations, and at large values of 𝛽 → ∞ (Figure (c)), the associations of the
partitions to customers locations converge to 0 or 1. For each value of 𝛽, the partitions are constrained to maintain tension in the connecting loop through the term that penalizes
tour length.
the fuzziness in the associations decreases and as a result partitions
start developing affinity to unique customer locations. When 𝛽 → ∞
(Fig. 4(c)), the partitions’ associations with the customer locations
converge to 0 or 1 (similar to ‘hardness’ of Gibbs distribution in case of
original DA algorithm), resulting in hard-clustered solutions as desired.
Observe that at each value of 𝛽, the partitions are constrained to
maintain tension in the loop connecting them through the minimum
tour length constraint term 𝐷2(). Furthermore, a tour is identified by
the ordered set of resources (𝐲1,… , 𝐲𝐾 ).

Using the MEP framework, the free-energy of this system is given
by:

𝐹 () = − 1
𝛽

𝑛
∑

𝑖=1
log

( 𝑛
∑

𝑗=1
𝑒−𝛽

∑𝐿𝑖
𝑙𝑖=1

𝜁𝑙𝑖 𝑑(𝐱𝑖 ,𝐲𝑗 )
)

+ 𝜃
𝑛
∑

𝑗=1
𝑑(𝐲𝑗 , 𝐲𝑗+1) (16)

At optimal location of resources {𝐲𝑗}, we must have

𝜕𝐹
𝜕𝐲𝑗

= 0

⇒ 2𝜃
(

2𝐲𝑗 − 𝐲𝑗+1 − 𝐲𝑗−1
)

− 1
𝛽

𝑛
∑

𝑖=1
𝑝(𝑗|𝑖)

{

−𝛽
𝐿𝑖
∑

𝑙𝑖=1
𝜁𝑙𝑖2(𝐲𝑗 − 𝐱𝑙𝑖 )

}

= 0

⇒ 𝐲𝑗 =
∑𝑛

𝑗=1 𝑝(𝑗|𝑖)⟨𝐱𝑖⟩ + 𝜃
(

𝐲𝑗+1 + 𝐲𝑗−1
)

∑𝑛
𝑗=1 𝑝(𝑗|𝑖) + 2𝜃

, (17)

where 𝑝(𝑗|𝑖) = 𝑒−𝛽
∑𝐿𝑖

𝑙𝑖=1
𝜁𝑙𝑖 𝑑(𝐱𝑖 ,𝐲𝑗 )

∑𝑛
𝑘=1 𝑒

−𝛽
∑𝐿𝑖

𝑙𝑖=1
𝜁𝑙𝑖 𝑑(𝐱𝑖 ,𝐲𝑘)

and ⟨𝐱𝑖⟩ is the expected location

of the 𝑖th-city, given by ⟨𝐱𝑖⟩ =
∑𝐿𝑖

𝑙𝑖=1
𝜁𝑙𝑖𝐱𝑙𝑖 .

4.3. Inclusion of close-enough constraints

As discussed earlier, the CETSP is computationally challenging be-
cause each location can be visited by entering a circle around the
location, meaning that there is a continuum of possible edges between
each pair of customer locations. Using the MEP approach, the ‘resource
locations’ define the points of visit by a vehicle. While our approach to
CETSP can be applied without loss of generality to the multiple-CETSP
or close-enough-VRP, below we outline our approach for only a single
vehicle, for clarity.

We introduce an additional radius parameter 𝜌𝑖, corresponding to
each customer’s location 𝐱𝑖, which captures the distance within which
the vehicle is assumed to have visited the location 𝑖. Accordingly, we
modify the distance between a customer location 𝐱𝑖 and partition’s
centroid 𝐲𝑗 as:

𝑑CE(𝐱𝑖, 𝐲𝑗 , 𝜌𝑖) =
(

‖𝐲𝑗 − 𝐱𝑖‖ − 𝜌𝑖
)2 . (18)

As mentioned previously, the partitions’ centroids {𝐲𝑗} automati-
cally define the points of visit 𝐫𝑗 described in Section 3.2. The cu-
mulative distance function corresponding to a CETSP in the proposed
8

framework is given by:

𝐷( ,) =
∑

𝑖,𝑗
𝑣𝑖𝑗𝑑CE(𝐱𝑖, 𝐲𝑗 , 𝜌𝑖)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐷1( ,)

+ 𝜃
∑

𝑗
𝑑(𝐲𝑗 , 𝐲𝑗+1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐷2()

. (19)

Following our approach to minimization of the cumulative distance
function using the maximum entropy principle, the free-energy of this
system is:

𝐹 = − 1
𝛽

𝑛
∑

𝑖=1
log

(

𝑛
∑

𝑗=1
𝑒−𝛽𝑑𝐶𝐸 (𝐱𝑖 ,𝐲𝑗 ,𝜌𝑖)

)

+ 𝜃
𝑛
∑

𝑗=1
𝑑(𝐲𝑗 , 𝐲𝑗+1). (20)

Setting the derivative of the free-energy term with respect to ‘par-
titions’ 𝐲𝑗 to zero and solving for 𝐲𝑗 results in the following update
equation:

𝐲𝑗 =
∑𝑛

𝑖=1 𝑝(𝑗|𝑖)(𝐱𝑖 + 𝜌𝑖 sign (𝐲𝑗 − 𝐱𝑖)) + 𝜃(𝐲𝑗+1 + 𝐲𝑗−1)
2𝜃 +

∑𝑛
𝑖=1 𝑝(𝑗|𝑖)

, (21)

where the association probabilities are now given by 𝑝(𝑗|𝑖) =
(

𝑒−𝛽𝑑𝐶𝐸 (𝐱𝑖 ,𝐲𝑗 ,𝜌𝑖)
∑𝑛

𝑘=1 𝑒
−𝛽𝑑𝐶𝐸 (𝐱𝑖 ,𝐲𝑘 ,𝜌𝑖)

)

and sign(⋅) is a vector-valued signum function.

4.4. MEP for connecting routes to the depot: 𝐷3( ,)

The final component 𝐷3( ,), represents the connection of routes
within each partition to the depot, by subtracting the distance between
two successive customers in each vehicle’s tour and inserting the depot
𝜶. This is done by first subtracting the distance between 𝐲𝑘𝑙 and 𝐲𝑘𝑙+1
from the original distance function, and adding links between these
points to the depot.

We do this by including an additional set of decision variables to
capture the indices where one vehicle’s customers stop and another
vehicle’s begin. For example, in Fig. 5(a), the set of customers joined by
continuous lines (𝑘1+1 until 𝑘2) are covered by the same vehicle and the
dotted lines represent the broken loop. We denote the set of customer
indices where the TSP loop is partitioned, referred to as partition
indices, by  = {𝑘1, 𝑘2,… , 𝑘𝑚−1}, for a set of 𝑚 vehicles. Similarly,
in Fig. 5(b), for the returning 𝑚TSP, the partition indices represent the
point at which the vehicle travels back to the starting point of her tour.
Analogously, in Fig. 5(c), the partition indices represent the beginning
and ending of each vehicle’s route which are connected to the depot,
forming the vehicle’s route.

This component is formulated as follows:

𝐷3( ,) = 𝜃

(

𝑑(𝐲1,𝜶) + 𝑑(𝐲𝑛,𝜶)

+
𝑚−1
∑

𝑙=1

{

−𝑑(𝐲𝑘𝑙 , 𝐲𝑘𝑙+1) + 𝑑(𝐲𝑘𝑙 ,𝜶) + 𝑑(𝐲𝑘𝑙+1,𝜶)
}

)

. (22)
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Note that here, 𝜃 is a secondary Lagrange multiplier. The objective
is to seek the configuration ( , ,) that minimizes the cumulative
distance function in (7). 𝐷3( ,) not only takes into account removal
of links between customers 𝐲𝑘𝑙 and 𝐲𝑘𝑙+1, but also adds links back to
the depot 𝜶 to account for travel to and from the depot.

For the complete VRP, for a given instance ( , ,), the cumulative
distance function 𝐷( , ,) in our MEP based formulation is defined
as:

𝐷( , ,) = 𝐷1( ,) +𝐷2() +𝐷3( ,), (23)

4.5. Inclusion of capacity constraints on vehicles

We now discuss how to add capacity constraints to the VRP to solve
the CVRP. To incorporate capacity constraints, we adopt a cluster-first
route-second (Desaulniers, Desrosiers, Erdmann, Solomon, & Soumis,
2002; Gillett & Miller, 1974; Hiquebran, Alfa, Shapiro, & Gittoes, 1993;
Miranda-Bront et al., 2017) approach, which is one of the most common
approaches employed by several heuristics for the single-depot VRP.
The MEP framework allows us to easily adapt to such an bi-level
approach with clustering followed by routing. We first use the MEP
approach to cluster the customer locations to account for capacity con-
straints (Baranwal et al., 2016), and then design economical routes over
each cluster as discussed in Section 3.3. While this can be suboptimal
as it is a sequential approach, we demonstrate that the solutions we
achieve are competitive with existing approaches in Section 5.

Let the customers be allotted to vehicles, such that the relative
capacities 𝜆𝑗 ’s of the vehicles obey,

𝑝(1) ∶ ⋯ ∶ 𝑝(𝑗) ∶ ⋯ ∶ 𝑝(𝐾) = 𝜆1 ∶ ⋯ ∶ 𝜆𝑗 ∶ ⋯ ∶ 𝜆𝐾 .

In order to incorporate capacity constraints into the existing MEP
formulation, 𝑝𝑖’s are modified to capture relative weights (weighted by
capacity) of each customer location. Let Cap𝑖 be the capacity require-
ment for the 𝑖th-customer, then the relative weight of the 𝑖th-customer
is given by 𝑝𝑖 =

Cap𝑖
∑

𝑖′ Cap𝑖′
. Thus, the total mass associated with a vehicle

𝑗 is given by 𝑝(𝑗) =
∑

𝑖 𝑝𝑖𝑝(𝑗|𝑖), where 𝑝(𝑗|𝑖) is the modified Gibbs
distribution, i.e.,

𝑝(𝑗|𝑖) =
𝜂𝑗𝑒

−𝛽𝑑(𝐱𝑖 ,𝐲𝑗 )

∑𝐾
𝑗=1 𝜂𝑗𝑒

−𝛽𝑑(𝐱𝑖 ,𝐲𝑗 )
.

ere 𝜂𝑗 ∈ [0, 1] specifies the relative weight of the 𝑗th vehicle. During
uzzy initialization (i.e., 𝛽 ≈ 0), 𝜂𝑗 ’s are initialized to 𝜆𝑗 ’s, and thus,
(𝑗) = 𝜆𝑗 at the beginning of the annealing process. The corresponding
ree-energy function is suitably modified as:

( , 𝜂) = − 1
𝛽

𝑁
∑

𝑖=1
𝑝𝑖 log

( 𝐾
∑

𝑗=1
𝜂𝑗𝑒

−𝛽𝑑(𝐱𝑖 ,𝐲𝑗 )

)

. (24)

Correspondingly, the update equation for the facility location 𝐲𝑗 can be
btained by setting the derivative of the modified free-energy function
.r.t. 𝐲𝑗 to zero, resulting in

𝑗 =
∑𝑁

𝑖=1 𝑝𝑖𝑝(𝑗|𝑖)𝐱𝑖
𝑝(𝑗)

, (25)

hich depends implicitly on the weight parameters 𝜂𝑗 . Note that the
esired mass associated with the vehicle 𝐲𝑗 is 𝜆𝑗 , which leads to the
ollowing update rule for 𝜂𝑗 :

𝑗 =
𝜆𝑗

∑𝑁
𝑖=1 𝑝𝑖

𝑒−𝛽𝑑(𝐱𝑖 ,𝐲𝑗 )
∑𝐾

𝑗=1 𝜂𝑗𝑒
−𝛽𝑑(𝐱𝑖 ,𝐲𝑗 )

. (26)

In the capacitated version of the MEP framework, the free-energy
function in (24) is deterministically optimized at successive 𝛽 values
by alternating between (25) and (26) until convergence. Once the cus-
tomers are clustered according to the capacity, the routing within each
cluster is obtained through the framework described in the beginning
of this section.
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4.6. Putting it all together - CVRP

The MEP framework for the CVRP proceeds iteratively, with re-
peated evaluations of partitions  at different values of the annealing
parameter 𝛽 and the secondary Lagrange multiplier 𝜃. We describe
he mathematical derivations of the iterative evaluations and marginal
istributions, called the update equations, through the following theo-
ems. These update equations are embedded within the algorithm for
he VRP, fully described in Algorithm 1.

heorem 1. Let  = {𝐱𝑖, 1 ≤ 𝑖 ≤ 𝑛} be the set of customer locations
hat need to be served by 𝑚 vehicles. Let ( , ,) be the tuple consisting
of partitions {𝐲𝑗 , 1 ≤ 𝑗 ≤ 𝑛}, set of associations {𝑣𝑖𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛} and
et of partition indices {𝑘𝑙 , 1 ≤ 𝑙 ≤ 𝑚 − 1} respectively. Applying the MEP
ramework results in the following iterative scheme for
(a) Partitions or clusters

𝑗 =

∑𝑛
𝑖=1 𝑝(𝑗|𝑖) + 𝜃𝐲𝑗+1

(

1 − (𝑚 − 1)
∑

�̃� Pr(𝑗, ̃)
)

+ 𝜃𝐲𝑗−1
(

1 − (𝑚 − 1)
∑

�̃� Pr(𝑗 − 1, ̃)
)

∑𝑛
𝑖=1 𝑝(𝑗|𝑖) + 𝜃

(

2 − (𝑚 − 1)
∑

�̃�

(

Pr(𝑗, ̃) + Pr(𝑗 − 1, ̃)
))

(27)

(b) Probability of partition sets

Pr(𝑘1,… , 𝑘𝑚−1) ≜
𝑒𝛽𝜃

∑𝑚−1
𝑙=1 𝑑(𝐲𝑘𝑙 ,𝐲𝑘𝑙+1)

∑

̃ 𝑒𝛽𝜃
∑𝑚−1

𝑙=1 𝑑(𝐲𝑘𝑙 ,𝐲𝑘𝑙+1)
, (28)

with 𝑝(𝑗|𝑖) as defined in Section 4.1 and ̃ ≜  ⧵ {𝑗}.

roof. The cumulative distance function in a VRP is described as (23).
sing the methodology proposed in (11), the corresponding Gibbs
istribution is:

( , ,) = 𝑒−𝛽𝐷( , ,)
∑

 ′ , ′ ,′ 𝑒−𝛽𝐷( ′ , ′ ,′)
(29)

We are interested in finding the most probable set of partitions 
hat not only minimize the cumulative tour lengths, but also provide
sequence in which a tour comprising of customer locations must be

raversed by individual vehicles. Thus, we must evaluate the marginal
istribution 𝑃 () and aim to maximize it. Evaluation of 𝑃 () requires
arginalizing the numerator term in (29):

() =
(

∑


𝑒−𝛽𝐷1( ,)

)

𝑒−𝛽𝐷2()
(

∑


𝑒−𝛽𝐷3( ,)

)

, (30)

here 𝑍() =
∑

 , 𝑒−𝛽𝐷( , ,). If we define the free-energy of this
ystem as 𝐹 () ≜ − 1

𝛽
log𝑍(), then the marginal distribution 𝑃 ()

is given by

𝑃 () = 𝑒−𝛽𝐹 ()
∑

 ′ 𝑒−𝛽𝐹 ( ′)
. (31)

Finding the most probable set of partitions is equivalent to maxi-
izing the marginal distribution 𝑃 (), which in turn is equivalent to
inimizing the corresponding free-energy 𝐹 (). Note that

() = − 1
𝛽
log

(

∑


𝑒−𝛽𝐷1( ,)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐹cluster()

+𝐷2() − 1
𝛽
log

(

∑


𝑒−𝛽𝐷3( ,)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐹3()

(32)

At the point that minimizes the free-energy function, we must have
𝜕𝐹
𝜕𝐲𝑗

= 0 for all 𝑗, where

𝐹cluster() = − 1
𝛽
log

⎛

⎜

⎜

⎝

∑


𝑒
−𝛽
{

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑣𝑖𝑗𝑑(𝐱𝑖 ,𝐲𝑗 )

}

⎞

⎟

⎟

⎠

= − 1
𝛽
log

( 𝑛
∏

𝑛
∑

𝑒−𝛽𝑑(𝐱𝑖 ,𝐲𝑗 )
)

𝑖=1 𝑗=1
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Fig. 5. Schematic of a (a) Non-returning 𝑚TSP with 𝑚 = 3 and  = {𝑘1 , 𝑘2}, equivalent to creating three clusters and Hamiltonian paths in each cluster; (b) Returning 𝑚TSP with
𝑚 = 2 and  = {𝑘1 , 𝑘2}, equivalent to creating two clusters and creating tours within each cluster; and (c) Single-depot VRP with 𝑚 = 3 and  = {𝑘1 , 𝑘2}. The dashed blue lines
indicate the removal of links, while solid blue lines indicate the addition of links.
= − 1
𝛽

𝑛
∑

𝑖=1
log

( 𝑛
∑

𝑗=1
𝑒−𝛽𝑑(𝐱𝑖 ,𝐲𝑗 )

)

⇒
𝜕𝐹cluster()

𝜕𝐲𝑗
= 2

𝑛
∑

𝑖=1
𝑝(𝑗|𝑖)(𝐲𝑗 − 𝐱𝑖), (33)

where 𝑝(𝑗|𝑖) is the same as defined in Section 4.1. Similarly,
𝜕𝐷2()
𝜕𝐲𝑗

= 2𝜃(2𝐲𝑗 − 𝐲𝑗+1 − 𝐲𝑗−1), (34)

where 𝐲𝑛 = 𝟎. Finally,

𝐹3() = − 1
𝛽
log

⎛

⎜

⎜

⎝

∑


𝑒
𝛽𝜃
{

∑𝑚−1
𝑙=1 𝑑(𝐲𝑘𝑙 ,𝐲𝑘𝑙+1)

}

⎞

⎟

⎟

⎠

⇒
𝜕𝐹3()
𝜕𝐲𝑗

= − 2𝜃
∑


Pr()

𝑚−1
∑

𝑙=1

{

(𝐲𝑘𝑙 − 𝐲𝑘𝑙+1)𝛿𝑘𝑙 ,𝑗 + (𝐲𝑘𝑙+1 − 𝐲𝑘𝑙 )𝛿𝑘𝑙 ,𝑗−1
}

𝜕𝐹3()
𝜕𝐲𝑗

= − 2(𝑚 − 1)𝜃
∑

̃

{

(𝐲𝑗 − 𝐲𝑗+1)Pr(𝑗, ̃)

+(𝐲𝑗 − 𝐲𝑗−1)Pr(𝑗 − 1, ̃)
}

, (35)

where ̃ ≜  ⧵ {𝑗} and Pr(⋅) is the probability of the partition set as
defined in (28).

On setting the derivative 𝜕𝐹
𝜕𝐲𝑗

to zero and collecting the terms
containing 𝐲𝑗 , one obtains the update Eq. (27) for the partitions. ■

Corollary 1. The update Eq. (27) for partitions is a gradient descent on
the free-energy function in (32).

Proof. Let {𝐲(𝑡)𝑗 } denote the set of partitions at the 𝑡th iteration of
Algorithm 1. Let us represent 𝚗𝚞𝚖(𝑡) as the numerator and den as the
denominator of (27). Then, we have

𝐲(𝑡+1)𝑗 = 𝚗𝚞𝚖(𝑡)

𝚍𝚎𝚗
. (36)

Note that the numerator term comprises of current iterates of par-
titions {𝐲(𝑡)𝑗 }. However from (33)–(35), the derivative of free-energy
function w.r.t to 𝐲(𝑡)𝑗 is given by:

1
2
𝜕𝐹 ( (𝑡))

𝜕𝐲(𝑡)𝑗
= −𝚗𝚞𝚖(𝑡) + 𝐲(𝑡)𝑗 𝚍𝚎𝚗

= −𝚗𝚞𝚖(𝑡) +
(

𝐲(𝑡)𝑗 − 𝐲(𝑡+1)𝑗 + 𝐲(𝑡+1)𝑗
)

𝚍𝚎𝚗

⇒
1
2
𝜕𝐹 ( (𝑡))

𝜕𝐲(𝑡)𝑗
=
(

𝐲(𝑡)𝑗 − 𝐲(𝑡+1)𝑗
)

𝚍𝚎𝚗, (37)

This gives the final update equation, succinctly written as:

𝐲(𝑡+1)𝑗 = 𝐲(𝑡)𝑗 − 1
2.𝚍𝚎𝚗
⏟⏟⏟

𝜂

𝜕𝐹 ( (𝑡))

𝜕𝐲(𝑡)𝑗
,

with 𝜂 being the step-size of the gradient descent. ■
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Algorithm 1 MEP Algorithm for CVRP
1: input: 𝑛,  = {𝐱𝑖}
2: input: 𝐾; //Number of vehicles
3: input: 𝛽min, 𝛽max; //Min & max value of annealing parameter
4: input: 𝜃min; //Min value of secondary Lagrange parameter
5: initialize: 𝛽 ← 𝛽min; 𝐲𝑗 ←

1
𝑛

∑

𝑖∈𝑛
𝐱𝑖; 𝜃 ←

5
√

𝛽𝑚𝑖𝑛
6: initialize: 𝑝(𝑗|𝑖) ← 1

𝑛
; initialize Pr() uniformly

7: //Start Annealing
8: while 𝛽 < 𝛽max do
9: //Loop for controlling secondary Lagrange multiplier

10: while 𝜃 > 𝜃min do
11: while  does not converge do

12: 𝑝(𝑗|𝑖) ← 𝑒−𝛽𝑑(𝐱𝑖 ,𝐲𝑗 )
∑

𝑘∈𝑁
𝑒−𝛽𝑑(𝐱𝑖 ,𝐲𝑘)

//Evaluate Gibbs distribution

13: update Pr() according to (28)
14: update  according to (27) //Find most probable set of partitions
15: end while
16: //Constrain the partitions to minimize tour-length
17: compute length 𝐿 of the tour

18: compute 𝐹DA ← − 1
𝛽

∑

𝑖∈𝑁
log

(

∑

𝑗∈𝐾
𝑒−𝛽𝑑(𝐱𝑖 ,𝐲𝑗 )

)

19: compute 𝐸 ← − 𝜕𝛽𝐹DA
𝜕𝛽

20: decrease, 𝜃
21: end while
22: increment 𝛽: 𝛽 + 𝛿𝛽 //Annealing
23: //Update 𝜃 such that tour-length remains constant between each 𝛽 update
24: re-initialize 𝜃: 𝜃 − 𝛿𝛽

𝛽

(

𝛥𝐸
𝛥𝐿

+ 𝜃
)

25: end while
26: return:  , {𝑝(𝑗|𝑖)}, Pr()

We provide an overview of the MEP solution algorithm in Algorithm
1. Each iteration of the algorithm is over a single value of the annealing
parameter 𝛽 (lines 7–17). For a constant 𝛽, the secondary Lagrange
multiplier 𝜃 must be updated to ensure that the tour-length remains
constant during each 𝛽 update. In the absence of this update, the
results can be less meaningful or far from optimal, as was observed
in Vakhutinsky and Golden (1994). We now describe the algorithm for
the control of the secondary Lagrange multiplier.

Controlling the secondary Lagrange multiplier
We now present a procedure to determine a new initial value of

𝜃 during each 𝛽 update, such that the free tour-length is kept con-
stant (Rose, 1990). For the sake of brevity, the update procedure is
derived only for the basic TSP. The approach is quite general and is
easily extended to address any of the variants of the classical TSP. For
notational convenience, we use 𝜃∗,∗ and 𝐿 to denote the optimum
(local) value of secondary Lagrange parameter, optimal set of partitions
and optimal free tour-length at a given value of 𝛽, respectively. Finally,
let 𝐹 ∗

TSP ≜ 𝐹TSP(∗, 𝜃∗) = 𝐹 (∗) denote the optimal value of the
free-energy function in (15).
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From Ravindran, Reklaitis, and Ragsdell (2006), for such con-
strained optimization, we have:

𝜃∗ = −
𝜕𝐹 ∗

TSP
𝜕𝐿

. (38)

Therefore from (38), we have:

𝜕𝜃∗

𝜕𝛽
= − 𝜕

𝜕𝛽

[

𝜕𝐹 ∗
TSP

𝜕𝐿

]

= − 𝜕
𝜕𝐿

⎡

⎢

⎢

⎣

𝜕𝐹 ∗
TSP
𝜕𝛽

+
∑

𝑘

𝜕𝐹 ∗
TSP

𝜕𝐲𝑘
𝜕𝐲𝑘
𝜕𝛽

|

|

|

|

|𝐲𝑘=𝐲∗𝑘

⎤

⎥

⎥

⎦

= − 𝜕
𝜕𝐿

[

𝜕𝐹 ∗
TSP
𝜕𝛽

]

, (39)

where the last statement is a consequence of the fact that
𝜕𝐹TSP
𝜕𝐲𝑗

= 0 for

all 𝑗 at the optimum. Using the function form of 𝐹 from (15),
𝜕𝐹TSP
𝜕𝛽

evaluates to:

𝜕𝐹
𝜕𝛽

= 1
𝛽2

𝑛
∑

𝑖=1
log

( 𝑛
∑

𝑗=1
𝑒−𝛽𝑑(𝐱𝑖 ,𝐲𝑗 )

)

+ 1
𝛽

𝑛
∑

𝑖,𝑗=1

𝑒−𝛽𝑑(𝐱𝑖 ,𝐲𝑗 )
∑𝑛

𝑗′=1 𝑒
−𝛽𝑑(𝐱𝑖 ,𝐲𝑗′ )

𝑑(𝐱𝑖, 𝐲𝑗 ), (40)

which can be re-written as:

𝜕𝐹TSP
𝜕𝛽

= −
𝐹TSP
𝛽

+ 1
𝛽

[

𝜃
𝑛−1
∑

𝑗=1
𝑑(𝐲𝑗 , 𝐲𝑗+1) +

𝑛
∑

𝑖,𝑗=1
𝑝(𝑗|𝑖)𝑑(𝐱𝑖, 𝐲𝑗 )

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≜𝐸

, (41)

where 𝑝(𝑗|𝑖) is as defined in Section 4.2. Note that the expression 𝐸 in
(41) is related to the free-energy 𝐹 by:

𝐸 = 𝜕
𝜕𝛽

(𝛽𝐹TSP). (42)

Thus from (39), (41) and (42), we have:

𝜕𝜃∗

𝜕𝛽
= − 𝜕

𝜕𝐿

(

𝐸∗ − 𝐹 ∗
TSP

𝛽

)

= 1
𝛽

⎛

⎜

⎜

⎜

⎜

⎝

− 𝜕𝐸∗

𝜕𝐿
+

𝜕𝐹 ∗
TSP

𝜕𝐿
⏟⏟⏟
=−𝜃∗

⎞

⎟

⎟

⎟

⎟

⎠

[from (38)] (43)

Therefore, from (43), we consider the following first-order approx-
imation for 𝜃 update:

𝜃′ ≈ 𝜃∗ + 𝜕𝜃∗

𝜕𝛽
𝛥𝛽 ⇒ 𝜃′ = 𝜃∗ +

𝛥𝛽
𝛽

(

−𝛥𝐸∗

𝛥𝐿
− 𝜃∗

)

, (44)

where 𝛥𝐸∗∕𝛥𝐿 is estimated using the last two iterations in 𝜃 (before
the moment to update 𝛽 arrives).

Note that (44) holds true for any TSP variant, however, the formula-
tions of free-energy function 𝐹 and free tour-length 𝐿 are different for
each variant. For instance, in a classical TSP, the free tour-length is sim-
ply the cumulative distance between consecutive partitions, whereas in
an 𝑚TSP the free tour-length includes the total length of all individual
tours.

4.7. Inclusion of soft time-window constraints

Our approach to the Vehicle Routing Problem with Time-Windows
(VRPTW) is based on solving routing problems in a higher-dimensional
space, where the added dimension corresponds to the time-window
constraints. For ease of understanding, we first focus on pure schedul-
ing problems without the routing aspect. Consider 𝑛 shipments which
need to be served (e.g. collected from or deposited to a single depot)
within their pre-specified corresponding time-windows {[𝑡𝑖,start, 𝑡𝑖,end] ∶
1 ≤ 𝑖 ≤ 𝑛} by a fleet of 𝑚 vehicles. The objective is to allocate
arrival times for each vehicle  = {𝐲𝑗 ∶ 1 ≤ 𝑗 ≤ 𝑚} to serve
the shipments within specified time-windows such that the maximum
number of shipments are served. In this context we choose the set of
11
Fig. 6. Illustration of the Close-enough TSP (CETSP) solutions generated using our
MEP approach.

customer ‘locations’  = {𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} as the mid-point of the
associated time-windows, i.e.,

𝑖 =
𝑡𝑖,start + 𝑡𝑖,end

2
. (45)

With the above choice of customer locations, the cumulative dis-
tance function 𝐷( ,) for an instance ( ,) captures the penalty of the
actual service time deviating from the mid-times. This function is chosen
to maintain continuity of the objective function and can also accom-
modate other penalty functions, ideally, those that are continuous and
differentiable. Thus, minimization of the free-energy function in (13) is
commensurate with minimizing the total cost incurred for not serving
a shipment within the specified time-window. In this introductory
paper, we use the deviation from the mid-times of the time-windows
as our penalty function; however, in future work, we will expand
this to other continuously differentiable functions that have negligible
penalty within the allowed time windows and higher penalty outside
the allowed windows.

To adapt this to the VRPTW, we modify the set of customer locations
 = {𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛} to not only comprise of geographical location coor-
dinates, but also the ‘temporal coordinates’ weighted using a speed-like
factor 𝜆, i.e.,

𝑖 =

⎡

⎢

⎢

⎢

⎣

𝑥(1)𝑖
𝑥(2)𝑖

𝜆
𝑡𝑖,start + 𝑡𝑖,end

2

⎤

⎥

⎥

⎥

⎦

, (46)

where (𝑥(1)𝑖 , 𝑥(2)𝑖 ) ∈ R2 represent the geographical locations of the 𝑖th
customer, and 𝜆 > 0 is an additional parameter that captures the
trade-off between the geographical optimization and the scheduling op-
timization. More specifically, we solve the VRPTW problem by solving
the regular 𝑚TSP problems where we replace the customer location
by (46). When 𝜆 is set to zero, the problem reduces to a routing only
problem, while setting 𝜆 to a very high value essentially disregards the
routing aspect and only solves the pure scheduling problem described
above. In practice, 𝜆 is set to a value comparable to the average speed
of the vehicles.

5. Computational results and discussion

We now benchmark the proposed MEP heuristics for variants of the
routing problem on synthetic and real-world instances. Our algorithms
are implemented on an Intel 𝑖7 − 7700HQ @ 2.80 GHz machine using
MATLAB. The algorithm is benchmarked for both solution quality, as
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Fig. 7. CETSP solutions on the Bubbles benchmark instances. (a) Bubbles-1: Finds optimal solution, except for the tiny ‘hook’ at the right-bottom corner. (b) Bubbles-2: MEP uses
the intersection of two circles to reduce travel distance.
Fig. 8. Illustration of the MEP approach solutions for CETSP instances, with a single vehicle and multiple vehicles.
well as the associated runtime. Recall that our MEP implementation
has not been optimized for computational runtime, for example, by
parallelizing the computation of probabilities. Hence, the runtime com-
parisons are largely conservative. The MEP framework is benchmarked
against the most widely used heuristic in the VRP literature, namely
the Simulated Annealing (SA) algorithm. For consistency, we have used
the publicly available optimized SA implementation from the Yarpiz
Project (The Yarpiz Project, 2019).

As before, the computational analysis is carried out in the in-
creasing order of complexity of the various routing problems - (i)
close-enough TSP, (ii) capacitated vehicle routing problem, (iii) vehicle
routing problem with time-windows. We benchmark the MEP variant
of CETSP on TSPLIB (Reinelt, 1991) instances against the state-of-the-
art Steiner Zone heuristic for equal radii case proposed by Mennell
(2009). Additionally, we illustrate our approach for CETSP on a syn-
thetic dataset with unequal radii which demonstrates the flexibility of
our framework. For CVRP, we consider both the real-world instances
(where we compare our algorithm against the SA and the cluster-first
route-second approaches), as well as the best-known solutions (best of
best over all previous approaches reported in Laporte et al. (2014)) of
CMT-14 (Christofides, Mingozzi, & Toth, 1979) instances. Finally, we
benchmark the MEP approach against the SA algorithm on a real-world
instance for VRPTW, and illustrate the key difference in solution quality
of both these approaches.

5.1. Benchmarking CETSP

Fig. 6 shows the implementation results for the CETSP on randomly
generated dataset with 10 customer locations, with additional radii
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parameters. For the CETSP, it is difficult to determine optimality of
our solution, because this is much more difficult to check manually
and unlike the standard TSP, benchmarks and corresponding optimal
solutions are not standardized. We compare our MEP heuristic against
the larger, 100-cities (customers) data (kroD100 from TSPLIB Reinelt,
1991) tested by Mennell for equal radii of 11.697 (Mennell, 2009).
Mennell achieves an average tour length of 58.54 units on instances
with a 0.3 overlap ratio on the data (they do not provide details on
computation time). Our MEP-based heuristic finds an average optimal
tour length of 64.99 units in 863 s. Our tests on Mennell’s 48 instances
created for the CETSP reveal the following. For instances with low
overlap between customers’ circles, such as bubbles1 (Fig. 7) and con-
centric1, we get slightly better solutions than Mennell’s solutions; but
as the level of overlap increases, Mennell’s solutions dominate ours in
terms of tour distances. This is because our MEP method aims to visit
points on the periphery of the circle around each customer because
the interior of the circle is also penalized, whereas other methods such
as Mennell’s aim towards visiting highly overlapping zones to cover
multiple customers’ radii (or circles). To overcome this, in future work,
we will minimize the penalty structure for visiting a customer within
the allowed radius, and maximize it for visiting outside the radius, as
discussed in Section 6. On the other hand, Mennell’s and other methods
are geared towards the radii around each customer being equal; our
MEP method allows for heterogeneous radii for different customers.
Moreover, while Mennell’s method is geared towards a single vehicle,
our approach can accommodate multiple vehicles in the CETSP (Fig. 8).
However, due to a lack of benchmark instances for the multiple-vehicle
case, we do not have a standard for comparison of our solutions.
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Fig. 9. Robust-TSP: TSL when city location is not known precisely.

Section 3.1 also introduced a robust variant of the basic TSP, also
referred to as the robust-TSP and is closely related to the CETSP. In
robust-TSP, the customer locations are known only probabilistically,
and the objective is to minimize the cumulative expected route length.
Fig. 9 shows the results for one such synthetic problem instance in
which the locations of the customers are known with uncertainty.
The MEP algorithm assigns probabilities to each location to find ro-
bust routes that can be executed with the least possible deviations in
expectation.

5.2. CVRP

We first report the performance on a real-world dataset of 60
customers in Gurugram city, India, using three distinct approaches. The
first approach (Fig. 10a) is based on cluster-first route-second heuristic,
where customer locations are first clustered based on the respective ca-
pacities, and routes within each cluster are obtained using the proposed
MEP framework for routing. This approach, though easily scalable to
a large number of customers, produces routes that are largely non-
overlapping due to clustered set of customer locations. The second
approach is based on SA (Fig. 10b) algorithm. The final approach
(Fig. 10c) is based on the direct MEP algorithm described in Algorithm
1. Since the approach directly concurrently incorporates clustering and
routing, the routes produced by it are overlapping (and hence the total
travel distance is shorter). Recall that if the routes are non-overlapping,
then a far-off cluster would be served by one set of vehicles, while
a nearby cluster would be served by another set, thereby giving up
the opportunity to serve a nearby customer on its way using a vehicle
scheduled to serve another customer located significantly further away
from the depot. Thus, overlapping routes potentially reduce the number
of vehicles and total distance traveled. The direct MEP-based approach
results in solutions with much lower costs (by ∼ 32%) than the SA
algorithm, along with lower computation times. More specifically, the
run-time and the total lengths for the three approaches are obtained as
- (a) Run-time: 46.6 s, Sq. total length: 789.78 km. (b) Run-time: 51.2
s, Sq. total length: 706.46 km. (c) Run-time: 17.08 s, Sq. total length:
552.44 km.
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Table 2
Performance on CMT-14 instances.

Dataset Best known MEP approach

50C 524.61 537.07
75C 835.26 891.58
100C 826.14 927.06
150C 1028.42 1160.7
199C 1291.29 1476.2
50CD 555.43 556.68
75CD 909.68 929.69
100CD 865.94 900.80
150CD 1162.55 1207.93
199CD 1395.85 1494.96
120C 1042.11 1090.72
100C 819.56 839.68
120CD 1541.14 1598.09
100CD 866.37 900.97

For a more thorough comparison, we draw from the standard CMT-
14 instances that have been extensively used as benchmarks in the liter-
ature. Table 2 summarizes the performance of the MEP-based cluster-
first route-second approach on the CMT-14 benchmark instances (La-
porte et al., 2014) for the CVRP. There are 14 instances in the CMT-14
benchmark dataset, with the number of customers ranging from 50–
200. Capacity requirements for customers are heterogeneous. Vehicle
capacities are also heterogeneous. Additionally, there are constraints
on the total time taken by each vehicle to serve its allotted customers.
Serving a customer incurs additional time, which is often referred to
as the service time. Subject to these constraints, we adopt a cluster-first-
route-second approach embedded with MEP; that is, we first cluster
the customers based on their capacity requirements and geographical
coordinates, and find economic routes within each cluster. We further
adjust these routes using basic swap and insertion methods to ensure
feasibility of the final solution, i.e., customers between two neighboring
routes are randomly swapped to generate new routes or a customer
is randomly removed from a route and inserted into another route.
The process is repeated a few times until an improved solution is
obtained or the set maximum allowable iterations are elapsed. Solu-
tions produced by our approach to each of these instances utilize an
equal number of vehicles as the number suggested by the best-known
solutions over all approaches in the CMT-14 dataset. Moreover, the
cumulative distance traveled by the vehicles (salesmen) is within 6.2%
of the best-known solutions on average. The average CPU time per
instance is approximately 2.5 min.

5.3. VRPTW

We again work with the real-world instance using the datasets for
Gurugram city, India, with 60 shipments on average, with delivery
time-windows of 8:00–11:00, 10:00–13:00 and 16:00–19:00 h respec-
tively as specified by the delivery service provider. Fig. 11 shows
the performance of the MEP approach and the SA approach for the
Gurugram city data with 60 shipments. Although time-windows are
considered soft, the MEP solution satisfies all time-window constraints,
with a total distance lower by ≈17% than SA. It is slightly slower at
49.5 s versus 44.1 s for the SA. The difference in total travel distance
between the two approaches can also be observed qualitatively. In
particular, the yellow-route in Fig. 11a, attributed to the point located
at the top-left corner, covers only a few customer locations (as opposed
to the red route in Fig. 11b). Since this point is located farthest from
the depot and the total length of the route covering that point is at least
twice the distance of the point from the depot, it is desirable to cover
multiple other points on the route in order to minimize total travel
distance. The nature of the solution produced by the MEP framework
exhibits this behavior.
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Fig. 10. Comparison of the proposed simultaneous clustering and routing approach with the cluster-first route-second method and simulated annealing (SA) for the 60 customers
Gurugram data. (a) Cluster-first route-second-Run-time: 46.6 s, Sq. total length: 789.78 km. (b) SA-Run-time: 51.2 s, Sq. total length: 706.46 km. (c) MEP approach-Run-time:
17.08 s, Sq. total length: 552.44 km.
Fig. 11. Performance of the simulated annealing (SA) and the proposed MEP approach for 60 customers Gurugram data with three service time-windows (a) SA: Run-time 49.5
s, (b) MEP approach: Run-time 44.1 s.
6. Algorithmic analysis and discussion

Flexibility of the algorithm

The MEP approach for routing problems is flexible and generaliz-
able. With distance functions modified appropriately, the MEP based
framework is applicable to several variants. Several constraints, includ-
ing but not limited to, returning/non-returning constraints, capacity
constraints, time-window constraints, and close-enough constraints are
easily incorporated into the framework and contribute to the flexibility
of the MEP approach.

Scalability

The inclusion of the entropy term for making the approach insensi-
tive to initial choice of routes comes at the expense of requiring global
computations to be made for evaluating Gibbs distribution and parti-
tions. However as the annealing parameter grows larger (i.e. 𝛽 → ∞),
the contributions of the ‘‘far-off’’ customer locations in evaluating Gibbs
distribution becomes progressively smaller. In fact, in the limiting case,
the contribution of customer locations that are not ‘‘nearest neighbors’’
is zero. This property can be used for significantly reducing run times
as explained in (a) and (b) below.

(a) Localizing Gibbs estimates
At each value of the annealing parameter 𝛽, the computations

of Gibbs distributions are global in the sense that distances of each
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customer to all the facilities are used. However, as the algorithm
progresses with higher values of 𝛽, the Gibbs distributions 𝑝 assume
approximately binary values 0 or 1. These approximations become
exact as 𝛽 → ∞. This property can be exploited to make the proposed
approach scalable. A sufficiently large threshold 𝛿 > 0 and all customer
locations 𝐱𝑙 that satisfy 𝑑(𝐱𝑙 , 𝐲𝑗 ) > 𝛿 can be ignored in the computation
of 𝑝(𝑗|𝑙). This approximation makes our approach scalable. Since large
values of the distances correspond to smaller value of the associated
Gibbs distribution, the truncated terms have only small effects on the
computation of 𝑝(𝑗|𝑙) and the partition location 𝐲𝑗 thereof. Automating
the choice of 𝛿 is ongoing work.

(b) Keeping secondary Lagrange multiplier fixed
The approach for routing problems proposed in this manuscript

requires computing the optimal value of the secondary Lagrange mul-
tiplier 𝜃(𝛽) at each value of the annealing parameter 𝛽. On the other
hand, historically, Elastic Net based approaches to routing problems
have largely depended on keeping the secondary multiplier 𝜃 fixed for
all values of the primary Lagrange multiplier 𝛽 (Yuille, 1990) or varying
𝜃 as 𝜃 ∝ 1

√

𝛽
(Durbin & Willshaw, 1987). Choosing 𝜃 as a deterministic

function of 𝛽 would result in significant reduction in complexity of our
routing algorithm, though the reduction in complexity may come at the
cost of marginal increase in optimal route-length. A detailed analysis of
this tradeoff is part of our ongoing work.
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Addressing penalties within allowed radii and time-windows

The current CETSP formulation contains a penalty for visiting a
customer, both inside and outside of the allowed radius around each
customer; similar to the time-window penalty for VRPTW that imposes
some (low) penalty even for visiting within the allowed time-window.
However, this should be zero. This can be addressed by setting the
derivative of the distance function 𝑑CE(𝐱𝑖, 𝐲𝑗 ,𝝆𝑖) with respect to 𝐲𝑗 to
zero whenever 𝐲𝑗 exists within 𝜌𝑖 distance from the customer location
𝐱𝑖. This negates the penalty incurred for visiting a customer within the
specified radius and should help this heuristic identify more accurate
solutions.

7. Conclusions and future work

In this paper, we introduced a unified flexible algorithmic approach,
which we refer to as the MEP approach, which is applicable for a
large class of routing problems, and demonstrated that this method can
be used to formulate and solve multiple classes of routing problems
including VRPs and CETSPs and their variants. We show that our MEP
approach improves algorithmically upon its precursors, the Determinis-
tic Annealing (DA) approach and the Elastic Net (EN) approach in this
category, by devising a principled approach to tuning hyperparameters
for the approach. We also discuss that the parameter update step is
characterized as a gradient descent step. Our approach exhibits fast
run times with significant parallelization and solution quality close
to existing techniques. We test the performance of our approach on
real-world data and benchmark instances for the VRP and demonstrate
that the MEP approach can generate solutions within 6.2% of the best
known solutions. We also test our approach on recent benchmarks for
the CETSP and discover that our solutions exhibit minor differences to
the best known solutions — specifically, our approach performs better
when overlap between the circles of customers is small, compared to
Mennell’s approach. On the other hand, our approach is more flexible
in that it can be more easily generalized to multiple vehicles in the
CETSP. Our approach’s flexibility, as well as ability to achieve good
solution quality compared to best of best-known solutions, make it a
suitable candidate for incorporating into hybrid methods and meta-
heuristics that leverage the strengths of multiple techniques. Our work
indicates the promise of this method and its potential to be enhanced
in combination with other heuristics, and to be competitive with best-
known solutions in the literature. We also discussed enhancements
being explored in ongoing work, to improve scalability of our algorithm
and to modify penalty functions for CETSP to improve accuracy.

The generalizability aspect of the MEP framework is quite appeal-
ing; however, similar to most heuristics, the framework lacks optimality
guarantees. While we show empirically that the performance of the
proposed algorithm is comparable to several benchmark routing al-
gorithms, it is desirable to characterize the worst-case performance
bounds analytically, and will be discussed in our future work. Our
initial analysis suggests that for a class of combinatorial optimization
problems that involve bipartite graph matching, the MEP framework
finds the true optimal solution. We are working on extending such sub-
optimality guarantees for the class of problems discussed in this work,
i.e., VRP and its variants.

Another future direction points to improving the modeling and
formulation of distances in CETSPs. Currently, our formulation requires
that points of visit lie only on the periphery of the circle of uncertainty
around a location. However, sometimes if the neighboring circles are
highly overlapping, it is often desirable to visit points that are common
to both the circles and lie strictly inside each of them. This would result
in shorter routes and fewer points of visit. Finally, we aim to extend
the current formulation to dynamic real-time instances and problems
15

involving ride-sharing and dynamic pickup and delivery.
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