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Abstract— The Vehicle Routing Problem with Time-Windows
(VRPTW) is an important problem in allocating resources
on networks in time and space. We present in this paper a
Deterministic Annealing (DA)-based approach to solving the
VRPTW with its aspects of routing and scheduling, as well
as to model additional constraints of heterogeneous vehicles
and shipments. This is the first time, to our knowledge, that
a DA approach has been used for problems in the class
of the VRPTW. We describe how the DA approach can be
adapted to generate an effective heuristic approach to the
VRPTW. Our DA approach is also designed to not get trapped
in local minima, and demonstrates less sensitivity to initial
solutions. The algorithm trades off routing and scheduling in
an n-dimensional space using a tunable parameter that allows
us to generate qualitatively good solutions. These solutions
differ in the degree of intersection of the routes, making the
case for transfer points where shipments can be exchanged.
Simulation results on randomly generated instances show that
the constraints are respected and demonstrate near optimal
results (when verifiable) in terms of schedules and tour length
of individual tours in each solution.

I. INTRODUCTION
In this paper, our focus is on a class of network-based

resource allocation problems that are commonly referred to
in the optimization literature as Vehicle Routing Problems
with time-Windows (VRPTW). These problems involve both
routing and scheduling elements, and are NP-hard in general.
VRPTW problems involve the routing and scheduling of
multiple vehicles from a depot (or multiple depots) to meet
demands at multiple locations, under some time-window
considerations. This class of problems is at the core of several
problems that involve routing and/or scheduling, and occurs
in several application domains including, but not limited
to, transportation, logistics and communications. Specific
examples include airline scheduling, vehicle routing, ser-
vice network design, load distribution, production planning,
computer scheduling, portfolio selection, and apportionment.
These application domains have important economic value,
and high importance is attached to achieving economically
and computationally efficient solutions to the VRPTW.

VRPTW problems have been some of the most extensively
studied problems in the optimization literature. In the past
three decades, approaches including exact methods, heuris-
tics, and neighborhood search approaches, or a combination
of these have been used. As such, several survey papers on
the topic exist. We refer the reader to [1], [2], [3] for the
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most recent surveys on general vehicle routing problems,
and to [1] for some special cases of the VRPTW. Because
these problems involve the allocation of multiple hetero-
geneous and discrete resources, have non-linear costs and
constraints, the problems are typically non-linear and non-
convex. Heuristic approaches are often subject to achieving
local minima rather than global minima, and therefore are
dependent on the starting solution that is used.

Specifically, we consider K vehicles (resources) that start
at a depot, and need to pick up shipments from various
customer locations, denoted i = 1, ..., N . Each vehicle j can
potentially have capacity Wj . Each customer has a time-
window [ti,start, ti,end] within which the shipment is to be
picked up. Associated with each customer/shipment i is a
priority weight pi. Additionally, we are also given the travel
times between each pair of points in the network including
the depot and customer locations. Our goal is to find the
set of customers to be visited by each individual vehicle, the
sequence and the schedule according to which they should be
visited, while minimizing the costs associated with shipments
served earlier or later than their time-windows, and the total
distance covered by the vehicles. We also consider the case
of heterogeneous shipments, where each shipment can also
be one of l = 1, ..., p types. Each vehicle j, has a holding
capacity for the lth type of shipment, that we denote as Wjl.

In this paper we present a solution methodology based
on Deterministic Annealing (DA) for the VRPTW. DA is
well-suited to combinatorial clustering/resource allocation
problems that require obtaining an optimal partition of an
underlying domain, and optimally assigning resources to
each cell of the partition. DA-based methods have been
reported in a vast number of applications such as mini-
mum distortion problems in data compression [4], model
aggregation [5], routing problems in multiagent networks [6],
locational optimization problems [7], and coverage control
problems [8].

Such problems are highly non-convex, computationally
complex and suffer from poor local minima that riddle the
cost surface [9]. A variety of heuristic approaches have been
proposed to address these difficulties, and they range from
repeated optimization with different initialization, and heuris-
tics to good initialization, to heuristic rules for cluster splits
and merges. In this context, simulated annealing algorithm
[10], which capitalizes on the analogy of annealing process
in physical chemistry, was shown to be a good iterative
method that would achieve a global minimum, but with an
annealing rate so slow that this algorithm loses practicality
in many applications. In [11], [12], a threshold accepting
deterministic variant of the simulated annealing algorithm
has been proposed. It should be remarked that in some ex-
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isting literature, such deterministic variants are unfortunately
also referred to as the deterministic annealing algorithms;
however they are significantly different from the maximum-
entropy principle based deterministic algorithm [13] used in
this article - in terms of the underlying heuristics, imple-
mentation, goals, and performance. The DA algorithm used
in this paper has the ability to avoid poor local optima while
still maintaining a relatively fast convergence rate. However,
to the best of our knowledge, DA has not been availed to
address the specifications and constraints that arise in the
context of simultaneous routing and scheduling problems.
Our approach adapts these specifications and constraints in
terms of facility location/clustering, thereby enabling the
use of DA. Since DA allows for incorporating multiple
constraints and different types of specifications, it is well
suited to VRPTW (including cases when complex additional
constraints are present). For instance, this approach offers
the flexibility to tradeoff routing and scheduling in space
and time-dimensions to identify clusters in the combined
space to allow us to tradeoff between routing and scheduling
decisions. We discuss this in detail in the paper.

The main contributions of this paper are to incorporate
the DA method to VRPTW, where specific capacity, routing,
and scheduling constraints are incorporated simultaneously.
Simulation results show that the constraints are respected
and demonstrate near optimal results (when verifiable). This
method provides a tunable parameter, whereby the relative
importance of scheduling vs routing is controlled. Studies
with respect to this parameter evidence general features,
which can be used for updating scheduling and routing
procedures; for instance we show that when schedule is
emphasized over routes, there is an increased overlapping
of routes and self intersections, which suggests that such
scenarios will benefit by having transfer/exchange locations
where shipments between different vehicle routes can be
exchanged.

II. PROBLEM DESCRIPTION

In order to solve the VRPTW, we first describe a series
of related problems, which are in increasing order of com-
plexity.

A. Uncapacitated Scheduling Problem

This problem involves finding a schedule according to
which each vehicle will visit the customer (shipment) lo-
cations in order to pick up shipments. In this problem
we ignore the locations of customers and assume travel
between any two locations is instantaneous. While this is not
applicable in practice, this helps illustrate the working of our
algorithm. Note that in the context of VRPTW, this problem
only considers the vehicle allocation for a given schedule
information; it does not have any routing aspect to it. More
precisely, the problem reduces to a scenario where shipments
with prescribed time-windows are needed to be picked up
from a depot; the objective is to ascribe an arrival time for
each vehicle so that the maximum number of shipments are
serviced.

B. Capacitated Scheduling Problem
This problem builds upon the uncapacitated scheduling

problem by adding capacity constraints on the number of
customers (shipments) that can be carried by each vehicle.
Vehicles are heterogeneous, that is, can have varying capac-
ities.

C. Scheduling Problem with Multiple Capacity Constraints
In this version of the capacitated scheduling problem,

customers (shipments) picked up have varying types. They
thus have different occupancy rates in each vehicle. Each
vehicle has a capacity associated with each shipment type it
can carry.

D. Vehicle Routing Problem (VRP)
In the VRP, we find a set of locations that is served by

each vehicle in the fleet, as well as the sequence according to
which each customer location should be visited. We assume
that there are no time-window restrictions on when each
customer (shipment) can be visited/served.

E. Vehicle Routing Problem with Time Windows (VRPTW)
The VRPTW involves solving the VRP with additional

time-window restrictions on the time that each customer
can be visited. This problem can incorporate heterogeneous
shipment sizes as well as heterogeneous capacities.

III. DETERMINISTIC ANNEALING ALGORITHM:
A MAXIMUM ENTROPY PRINCIPLE APPROACH

FOR CLUSTERING
At its core, the DA algorithm solves a facility location

problem (FLP): For given N customer locations, find K
facility locations such that the total weighted sum of the
distance of each customer to its nearest facility is minimized.
In other words, if si and rj ∈ Rn denote the locations
of ith customer and jth facility, respectively, then the FLP
addresses the following optimization problem:

min
rj∈Ω,1≤j≤K

N∑
i=1

pi

{
min

rj ,1≤j≤K
d(si, rj)

}
(1)

where, d(si, rj) ∈ R+ denotes the distance between the
ith customer location si and jth facility location rj , Ω ∈
Rn is a compact domain of interest and pi is a given
positive constant (without loss of generality, we assume∑
i pi = 1) that denotes the relative weight of the ith

customer. Note that in general, si and rj need not necessarily
denote physical locations but can belong to any relevant
property space Ω. Borrowing from the data compression
literature [14], we define distortion as a measure of the
average distance of a customer to its nearest facility, given

by D(s, r) =
N∑
i=1

pi min
1≤j≤K

d(si, rj). Then the equivalent

optimization problem is to minimize the distortion function.
The solution to a FLP essentially results in a series of
clusters, where the facility j is located at the centroid rj
of the jth cluster and each customer is associated only to its
nearest facility.

Note that any change in location of a particular customer i
affects d(si, rj) only with respect to the nearest facility j in
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the distortion. This distributed aspect makes most algorithms
(such as Lloyd’s [15]) overly sensitive to the initial facility
location. The DA algorithm [13] overcomes this sensitivity
by modifying the distortion D such that every customer i is
associated to every facility j through an association weight
p(j|i):

D̄(s, r) =

N∑
i=1

pi

K∑
j=1

p(j|i)d(si, rj). (2)

Here we choose {p(j|i)} to satisfy 0 ≤ p(j|i) ≤ 1

and
K∑
j=1

p(j|i) = 1 without loss of generality. Thus, we

replace the average distance of a customer to its nearest
facility by the weighted average distance of a customer to
all the facilities. The weights p(j|i) assess the trade-off
between decreasing the local influence and the deviation of
D̄ from the original distortion D. Since we have no prior
knowledge on the association weights, we apply the principle
of maximum entropy to estimate them. The Shannon entropy

term H(r|s) = −
N∑
i=1

pi
K∑
j=1

p(j|i) log(p(j|i)), widely used

in data compression literature [14], measures uncertainties
in facility locations with respect to the known customer
locations. Thus, maximizing the entropy is equivalent to
decreasing the local influence.

This trade-off between minimizing the distortion in (2)
and maximizing the entropy [4], [13] is achieved by seeking
{p(j|i)} that minimize the free energy, or the Lagrangian,
given by F (r) , D̄(s, r)−TH(r|s), where T is a Lagrange
multiplier, referred to as temperature. This yields a Gibbs
distribution

p(j|i) =
exp{−βd(si, rj)}
K∑
k=1

exp{−βd(si, rk)}
(3)

with β = 1/T . By substituting the association weights (3),
the free energy in (4) simplifies as

F (r) = − 1

β

N∑
i=1

pi log

K∑
k=1

exp{−βd(si, rk)}. (4)

In the DA algorithm, this free energy function is then deter-
ministically optimized at successively reduced temperatures
over repeated iterations.

The readers are encouraged to refer to [16] for detailed
analysis on the complexity of the DA algorithm. For imple-
mentation on very large datasets, a scalable modification of
the DA is proposed in [17].

IV. SOLUTION APPROACH: MODIFICATIONS OF
THE DA ALGORITHM

DA addresses both routing and scheduling problems as
modifications of the clustering problem, wherein by choosing
Ω as a domain of spatial coordinates, the DA solution
groups together customers served by the same vehicle, while
clustering on the space Ω of time-windows results in service
schedules for each customer. We now describe the DA
algorithm in the context of VRP to accommodate various
scheduling, routing and capacity constraints.

A. DA for scheduling
In this scenario, the DA is used to allocate vehicle arrival

times rj to service the shipments with specified service
time-windows [ti,start, ti,end]. Accordingly we choose Ω ⊂ R
representing the time domain of interest, the property si of
the customer i is chosen to be the mid-point of the associated
time window, i.e.,

si =
ti,start + ti,end

2
; (5)

a convenient choice of the distance metric between the
customer i and facility j is the squared-euclidean distance
d(si, rj) = |si − rj |2. The distortion D̄ captures the penalty
of deviating from the mid-times. Thus, minimizing the free-
energy F in (4) is commensurate with the cost incurred
for not serving within the specified time-window being
minimized over all shipments.

B. DA for routing

Some common heuristics to the standard single depot
vehicle routing problems include approaches, such as, cluster
first-route second [18]. We follow the same approach wherein
we first cluster the demand nodes based on their geographical
distances, and then later design economical routes over each
cluster. Executing the DA algorithm directly on the space
of geographical coordinates results in a partition of the
underlying domain Ω, wherein each cluster j is served by
a different vehicle. In the clustering process Ω ⊂ R2 is the
spatial domain of interest and we use the parameter β to
cluster locations. The heuristic behind this approach is that
if we use K = N resources and let β →∞ then we expect
each customer to be associated with one resource (vehicle).

However, the clustering lacks the sequencing aspect of
the routing problem. In order to incorporate the sequencing
aspect, we include the minimum tour-length constraint in the
original formulation, which essentially amounts to solving a
traveling salesman problem (TSP) in each cluster. This is
achieved by appropriately modifying the free energy in (4)
to obtain the new Lagrangian

F ′(r) = F (r) + λ

(
K∑
k=1

d(rj , rj−1)− L

)
, (6)

where L is a given tour-length, and λ is the Lagrange
multiplier related to it. As L is gradually increased from
a small value, the tour length between locations {rj} in the
same cluster would coincide with the optimal tour length
between {si}. Here the spatial coordinates xi = (xi, yi)
represent the property si of the customer i. The distance
function d(si, rj) between the customer i and facility j is
chosen as : d(si, rj) = ‖si − rj‖22. We adopt the Elastic
Net approach [19] for finding the optimal tour-length. The
required tour-length is controlled by appropriately varying
the Lagrange multiplier λ with β [13], [20].

C. DA for scheduling-cum-routing
In this setting, we desire a resource j to be located at a

customer i in a pre-ascribed time-window. In this context,
the property si of the customer i is given by,

si =

 xi
yi

λ
2

(ti,start + ti,end)

 , (7)
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where xi = (xi, yi) and [ti,start ti,end] represent the spatial
coordinates and service time-window of the customer i,
respectively, and the domain of interest is Ω ⊂ R2 × R+.
We define a new metric that incorpates both scheduling and
routing through a velocity parameter λ

d(si, rj) =

∥∥∥∥xi −
[
rj(1)
rj(2)

]∥∥∥∥2
2

+
λ2

4
|(ti,start + ti,end)− rj(3)|2. (8)

Clearly, setting λ = 0 solves the routing problem, as
described in Sec. IV-B, while setting λ to a very high value
virtually solves the scheduling problem in Sec. IV-A. Thus
λ captures the trade-off between distance based optimization
and time-window based optimization problems. In practice,
λ should be set to a value comparable to the average speed
of the vehicles.

D. DA for heterogeneous capacitated resources/vehicles

In this setting, we consider vehicles {j} to be of different
types. If λj denotes the total allocated capacity of the
resource j, i.e. if λj amount of resources are located at rj ,
then the modified Gibbs distribution is given by p(j|i) =
λj exp{−βd(si,rj)}

K∑
k=1

λk exp{−βd(si,rk)}
. Note that the parameter λj in the

modified distribution specifies the weight of the jth resource;
the resulting solution pj : pk tend to be in the same ratio as
λj : λk, where pj is marginal distribution of the j resource
given by pj =

∑
i pip(j|i) [4], [7], [21].

E. DA for heterogeneous capacitated vehicles and heteroge-
neous shipments

In this setting, we have p types of customers, and the
total amount of resource j needing to be allocated to all
customers of lth-type are λjl, 1 ≤ l ≤ p, 1 ≤ k ≤ K.
These constraints are incorporated in the Gibbs distribution

as p(j|i) =

p∑
l=1

λj,l exp{−βd(si,rj)}

K∑
k=1

p∑
l=1

λkl exp{−βd(si,rk)}
.

V. SIMULATIONS AND RESULTS

In this section, we demonstrate the effectiveness of DA for
solving scheduling and routing problems of varying degrees
of complexity. We generate randomized instances of each
problem type and the algorithm is tested for each of the
problem instances. However, for the sake of demonstration,
we show only one instance of each problem type.

A. Uncapacitated Scheduling Problem

For the uncapacitated scheduling problem, we consider an
instance with 20 shipments needing to be serviced by 3 vehi-
cles. The depot incurs the corresponding cost if the shipment
does not get serviced. That is, if a vehicle arrival time does
not lie in the time-window for a shipment, the shipment goes
to waste and the corresponding cost is incurred by the depot.
We randomly sample the time-windows to lie within [0, 350]
minutes.

In Fig. 1a, blue lines denote the final clustered information
(vehicle arrival times) after direct execution of the DA
algorithm (as described in Sec. IV-A). The red bars denote
the time-windows for each shipment. Only three shipments
indexed 3, 4 and 11 do not have any vehicle arrivals within

their time-windows. From the time-intervals seen in Fig. (1a),
it is evident that the omission of these shipments is inevitable,
as accommodating any of them leads to larger costs as other
shipments will not be served.

B. Capacitated Scheduling Problem
In the capacitated scheduling problem, we provide ca-

pacity to each vehicle and the algorithm should attempt to
match these capacities. Once again, the time-windows are
randomly sampled to lie within [0, 350] minutes. We have
100 shipments needing to be picked up by only 10 vehicles,
where the capacities assigned to each vehicle (cluster) are
{3, 5, 9, 9, 9, 10, 13, 13, 13, 16}.

Subjected to these capacities, the algorithm works well and
only 30% of the shipments are not serviced. The effective-
ness of the DA algorithm for clustering with capacity con-
straints is observed in the pie chart in Fig. 1c. The pie chart
shows the fraction of shipments associated with each vehicle,
which is mathematically depicted by p(rj) =

∑
i pip(j|i).

The capacities associated with each cluster (vehicle) are in
proportion with the capacity values given as constraints.

C. Scheduling Problem with Multiple Capacity Constraints
For this problem, there are capacities associated with each

vehicle and all types of shipments. For the simulation, we
choose an instance with 100 shipments in total, 3 types of
shipments and only 10 vehicles for pickup. There are 34 ship-
ments of type-1 (red), 36 shipments of type-2 (magenta), and
30 shipments of type-3 (green). The capacities are randomly
chosen and subject to these capacities, the algorithm works
well.

In Fig. 2a, the blue lines depict the vehicle arrival times,
and the red, magenta and green bars indicate the time-
windows for the three types of shipments respectively. A total
of 71 shipments are picked up. Fig. 2b shows the number of
shipments picked up by each vehicle.

Fig. 2c shows the effectiveness of the DA algorithm in
respecting the capacity constraints. The plot on the left shows
the capacity constraints (λjl) for each type of shipment and
vehicle. The plot on the right shows the clustered mass
information. Clearly, the shapes of the two plots match each
other.

D. Vehicle Routing Problem
For the VRP, we consider a 59 cities network (and a

depot city from where the vehicles start) whose geographical
coordinates are located in a [−100, 100]× [−100, 100] unit2

area. The coordinates of the vehicle depot are given by (0, 0).
The nodes need to be serviced by a total of six vehicles.

We first cluster the network based on their pairwise square-
Euclidean distance d(xi, xj) = ‖xi − xj‖22, i.e., the DA
algorithm described in Sec. IV-B is executed on the set of
cities {xi} to obtain K = 6 partitions of the entire network.
This is followed by solving a TSP in each of the individual
clusters using the modification described in Sec. IV-B. Fig.
3 shows the effectiveness of the DA algorithm for solving
an instance of the VRP.

Remark: While the cluster first-route second approach
does not necessarily result in an overall global optimal solu-
tion, each individual tour obtained by the DA algorithm in
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(a) (b) (c)
Fig. 1: (a) Time-Windows for 20 shipments (Red Intervals) and the Arrival Times (Cluster locations (blue lines)) for 3 vehicles. (b)
Time-Windows for 100 shipments (Red Intervals) and the Arrival Times (Cluster locations (blue lines)) for 10 vehicles. (c) Capacity
associated with each cluster for the 100 shipments scenario. Clearly, the capacities obtained by the DA algorithm are in proportion to the
capacity values given as constraints.

(a) (b) (c)
Fig. 2: (a) Time-Windows for 100 shipments (3 types) and the Arrival Times (Cluster locations (blue lines)) for 10 vehicles. The three
colors (red, magenta and green) are used to indicate the type of shipments. (b) Number of shipments served by each vehicle for each
type. (c) [Right]: Capacity constraint values for each type of shipment and vehicle. [Left]: Capacity associated with each vehicle and each
type of shipment. Clearly, the shapes indicate that the capacities obtained by the constrained DA algorithm are in proportion with the
capacities provided as constraints.

Fig. 3: Solution to the VRP using cluster first-route second ap-
proach. The nodes are first clustered based on their pairwise
distances, followed by computation of optimal routes over these
clusters.

the prescribed is indeed optimal (as verified using exhaustive
simulations).

E. Vehicle Routing Problem with Time Windows
For the VRPTW, we again consider the same network of

59 cities, however, with respective delivery time-windows.
The time-windows are chosen to lie in the interval [0, 350]
minutes. The maximum speed of each vehicle is chosen to
be 10 units/min.

The cities are first clustered using the spatio-temporal
metric described in Eq. 8. Introduction of the additional
time coordinate in the problem domain results in intersecting
partitions in the spatial coordinates (see Fig. 4), i.e., the
paths traversed by different vehicles have overlaps. This
observation is in consonance with the fact that vehicles
may traverse overlapping routes to ensure timely delivery

of packages. Once the cities are clustered in the spatio-
temporal domain, the DA algorithm is employed again for
solving TSPs over each cluster in this new domain, i.e., the
TSP is solved using the new metric. This heuristic ensures
timely delivery of shipments so that losses incurred to the
depot are minimized. The algorithm achieves this objective
by finding self-intersecting (zig-zag) routes. In Fig. 4a, two
such routes (green and cyan) are shown with corresponding
time-windows. A total of only 11 shipments are not delivered
on time.

It should be noted that the parameter λ in (8) controls
the trade-off between the distance based optimization and
the time-window based optimization. In other words, λ can
be interpreted as the average velocity of a vehicle. Smaller
values of λ result in reduced total tour-lengths, but allow
for larger number of not-on-schedule deliveries, as shown
in Fig. 4b. As λ is increased, the paths traversed by each
vehicle overlap and appear to have self-intersections as well
as intersections with routes of other vehicles. Thus, such
a framework also allows for existence of potential transfer
points, where shipments can be transferred from one vehicle
to another. Note that λ = 0 corresponds to the scenario
of VRP (see Fig. 3), where routes do not overlap or self-
intersect.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, scheduling and routing problems of varying

degrees of complexity are addressed in the Deterministic
Annealing framework. The algorithm surfaces as an efficient
heuristic for solving combinatorially complex scheduling
and routing problems. Following are some key features and
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(a) (b)
Fig. 4: (a) Computation of optimal routes by the DA algorithm using the proposed spatio-temporal metric. The method ensures timely
delivery of packages so that losses incurred to the depot are minimized. Two such routes (green and cyan) are shown with corresponding
time-windows, where the corresponding deliveries for most cities are met on time. (b) Effect of parameter λ on the total tour-length and
the number of unsuccessful deliveries.

observations of the DA algorithm (and its modifications):
(1) The solutions provided by the DA are completely in-
dependent of initializations. In fact, the algorithm attempts
to solve a completely deterministic optimization problem
(maximization of entropy term) in the beginning.
(2) The algorithm has ability to avoid poor local optima. This
is illustrated by the quality of solutions for various problem
types. For example, in the m-TSP scenario in the VRP in Sec.
V-D, the individual tour-lengths are found to be optimal.
(3) When modified appropriately, the algorithm respects
various capacity constraints. For example, in Sec. V-C we
observe that the capacities obtained by the DA algorithm
match the required capacity constraints for each shipment
and each vehicle.
(4) A new spatio-temporal metric is proposed which incorpo-
rates the concept of time-based distance using a velocity pa-
rameter λ. As λ is increased, the routes traversed by different
vehicles are observed to overlap more, and a relatively larger
number of self-intersections are observed within each route
to ensure timely delivery of packages. This may facilitate
introduction of the transfer points where shipments from
one vehicle are transferred to another to be delivered by the
second vehicle.
The solutions provided by DA are observed to be robust
to uncertainties in customer locations or service schedules,
which will be demonstrated in the subsequent work. Another
future direction is to design distance functions that incorpo-
rate the time-windows directly in the problem formulation.
We intend to test our algorithm against the existing heuristics
on benchmark instances and the results will be reported in
the subsequent work. We also aim to include the notion of
transfer points in our problem formulation as part of our
future work.
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