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Abstract— Kernel k-means and spectral clustering methods
have both been used extensively to cluster data that are
non-linearly separable in input space. While there has been
significant research since their inceptions, both the methods
have some drawbacks. Similar to the basic k-means algorithm,
the Kernel k-means algorithm is sensitive to initialization. On
the other hand, the spectral methods are based on finding
eigenvectors and can be computationally prohibitive. In this
paper, we propose a novel maximum-entropy principle (MEP)
based weighted-kernel deterministic annealing (WKDA) algo-
rithm, which is independent of initialization and has ability to
avoid poor local minima. Additionally, we show that the WKDA
approach reduces to Kernel k-means approach as a special
case. Finally, we extend the proposed algorithm to include
constrained-clustering and present the results for a variety of
interesting data sets.

I. INTRODUCTION

Cluster analysis or clustering is a key element of unsuper-
vised learning and has emerged as one of the fundamental
problems in data mining in the recent years. It is used for ex-
ploratory data analysis to find hidden patterns in data, where
the clusters are modeled using similarity measures based
upon metrics such as Euclidean, Manhattan and Bergman
divergences. These similarity measures represent distances
of data points from their corresponding cluster centroids, or
pairwise distances between any two data points in the input
space.

The task of clustering is computationally difficult (NP-
hard). A particularly well known approximation method is
Lloyd’s algorithm [1], often actually referred to as “k-means
algorithm”. It does however only find a local optimum,
and is commonly run multiple times with different random
initializations. To overcome the curse of initialization, Rose
[2] proposed an annealing-based algorithm, well described in
terms of laws such as maximum entropy principle (MEP) [3]
in statistical physics literature, and showed that the solutions
obtained using this approach are totally independent of the
choice of initial configurations. The algorithm is referred
as deterministic annealing (DA) algorithm and is aimed to
provide high-quality solutions to clustering problem with
only marginal increase in computational complexity.

A major drawback of both k-means and DA algorithms
is their incapability to separate clusters that are non-linearly
separable in input space. Fig. 1 shows the performance of
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Fig. 1: Results of k-means clustering algorithm on (a) linearly
separable input data, and (b) nonlinearly separable input data.

k-means algorithm in identifying natural clusters for two
distinct distribution of data points. While the data points in
Fig. 1a can be separated using a hyperplane in R2 (line),
there is no such line that can separate data points distributed
along two concentric circles in Fig. 1b. Thus, while k-means
algorithm finds optimal linear separation of data points in
Fig. 1b, such separations are indeed not natural and often
undesired. Several approaches are proposed to tackle such a
problem - (a) Agglomerative (or hierarchical) clustering [4],
which uses linkage functions and distance thresholding on
resulting drendograms, (b) Spectral clustering [5], [6], which
requires computing eigenvectors of the associated graph
Laplacian, and (c) Kernel k-means [7], which uses kernel-
trick to map data points to higher-dimensional space and then
clusters data points using linear separators in the new space.
While performance of agglomerative clustering is sensitive
to choice of linkage functions and thresholds on cutting the
resulting drendograms, computation of eigenvectors of large
sparse matrices in spectral clustering can have substantial
computational overheads, especially when a large number of
eigenvectors are to be computed. On the other hand, similar
to the basic k-means algorithm, the kernel k-means algorithm
is sensitive to initialization and a poor initialization may
result in undesirable clustering performance.

To overcome these limitations, a novel weighted kernel
deterministic annealing (WKDA) approach is presented in
this paper. The WKDA algorithm enjoys the best of both
worlds. On one hand, the algorithm is independent of initial-
ization much similar to the basic DA algorithm; and on the
other hand, WKDA does not require computing eigenvectors.
Furthermore similar to kernel k-means, by choosing the
weights in particular ways, the WKDA objective function is



identical to the normalized cut. Thus we can use WKDA-like
iterative algorithms for directly minimizing the normalized-
cut of a graph.

The rest of the paper is organized as follows. Section
II introduces the basic DA algorithm by Rose, which is
modified for shape-clustering applications using kernel trick
in Section III. We then specify WKDA’s equivalence to
kernel k-means approach and spectral clustering in Section
IV, followed by evaluation of the WKDA algorithm on few
example scenarios in Section V. We finally conclude the
paper with directions to future work in Section VI.

Notations: We use capital letters such as X,Y to denote
matrices; and lower case bold letters such as x,y to denote
column vectors. N, k ∈ N denote the number of data points
and number of desired clusters, respectively. M denotes the
number of attributes (or dimensions) of input data point.
Script letters such as X ,Y represent sets; ‖x‖ denotes the
L2-norm of x; and ‖X‖F denotes the Frobenius norm of

matrix X , and is given by ‖X‖F =
(∑

i,j X
2
ij

)1/2
.

II. DETERMINISTIC ANNEALING (DA)
ALGORITHM

The deterministic annealing (DA) algorithm views the
task of clustering as an equivalent facility location problem
(FLP), which concerns with optimal placement of facilities
to minimize transportation costs from a given set of points to
their nearest facilities. More precisely, given a set of N ∈ N
points X = {xi : xi ∈ RM , 1 ≤ i ≤ N}, the objective
of an FLP is to find optimal locations of k ∈ N facilities
denoted by Y = {yj : yj ∈ RM , 1 ≤ j ≤ k} such that the
aggregate weighted sum of distances of each point from its
nearest facility location is minimized. If p(xi) denotes the
relative significance of point xi, then an FLP considers the
following objective

min
Y={yj}
T ={tij}

k∑
j=1

N∑
i=1

tijp(xi)d(xi,yj)︸ ︷︷ ︸
D(X ,Y)

, (1)

where T = {tij : tij ∈ {0, 1}} is a set of associations
with tij = 1 if facility yj is allocated to point xi, otherwise
tij = 0, and d(xi,yj) = ‖xi − yj‖2. Borrowing from data
compression literature [8], the quantity D(X ,Y) in (1) is
often referred as distortion between set of data points X
and facility locations Y . Then the equivalent optimization
problem is to minimize the distortion function. Solution to
an FLP results in a set of clusters, where facility j is located
at the centroid yj of the jth cluster, and each data point is
associated only to its nearest facility (Voronoi partitions).

Most algorithms for FLP (such as Lloyd’s [1]) start
with some initial distribution of facility locations Y and
iteratively optimize over them as the algorithm proceeds.
However, such approaches are sensitive to the choice of
initial facility locations, primarily die to the distributed aspect
of the FLPs, where any change in the location of xi affects
d(xi,yj) only with respect to the nearest facility located at

yj. The DA algorithm suggested by Rose [2], overcomes
this sensitivity by allowing fuzzy association of every data
point to each facility through an association probabilities
{p(yj|xi)}. This results in a modified distortion measure to
reflect the weighted average distance of data points to all the
facilities:

D̄(X ,Y) =

N∑
i=1

p(xi)

k∑
j=1

p(yj|xi)d(xi,yj). (2)

The probability distribution {p(yj|xi)} assesses the trade-
off between decreasing the local influence and the deviation
of the modified distortion D̄ from the original distortion
measure D. The uncertainty in associating facility locations
Y = {yj} to locations of data points X = {xi} is captured
by Shannon entropy term, widely used in data compression
literature:

H(Y|X ) = −
N∑
i=1

p(xi)

k∑
j=1

p(yj|xi) log (p(yj|xi)). (3)

Note that maximizing the entropy is commensurate with
decreasing the local influence. The trade-off between max-
imizing the entropy and minimizing the modified distortion
in (2) is addressed by seeking the probability distribution
{(p(yj|xi)} that minimize the free-energy function (or equiv-
alent Lagrangian) given by

F , D̄(X ,Y)− 1

β
H(Y|X ) +

N∑
i=1

µi

 k∑
j=1

p(yj|xi)− 1

 ,

(4)
where the last term corresponds to {p(yj|xi)} being a valid
probability distribution. The Lagrange multiplier β bears a
direct analogy to the inverse of the temperature variable in an
annealing process [3]. Minimizing F at small values of β is
equivalent to maximizing entropy H (a convex optimization
problem). As β is increased gradually, minimization of
F lays more emphasis on minimization of the distortion
function. The association weights {p(yj|xi)} that minimize
the free-energy function are given by the Gibbs distribution

p(yj|xi) =
e−βd(xi,yj)∑k

j′=1 e
−βd(xi,yj′ )

. (5)

By substituting the Gibbs distribution into (4), the corre-
sponding free-energy function is obtained as

F (Y) = − 1

β

N∑
i=1

p(xi) log

 k∑
j=1

e−βd(xi,yj)

. (6)

In the DA algorithm, the free-energy function is determin-
istically optimized at successively increased values of the
annealing parameter β. The optimal facility locations Y are
obtained by setting the derivative of F (Y) with respect to
yj to zero, thereby resulting in following update equation

yj =

∑N
i=1 p(xi)p(yj|xi)xi∑N
i=1 p(xi)p(yj|xi)

. (7)



Note that the above equation has a form similar to computing
centroids in k-means clustering algorithm. However in k-
means clustering, the association between xi and yj are hard
(0-1). The DA algorithm alternates between (5) and (7) at
each β until convergence. In fact, the convergence of (6) is
guaranteed as a consequence of coordinate descent on the
free-energy function [9].

Since its inception, DA has been successfully applied to
larger class of optimization problems such as, pattern classifi-
cation [10], image segmentation [11], graph aggregation [12],
robust speech recognition [13], expectation-maximization
[14], coverage control [15] and scheduling problems [16].

III. WEIGHTED KERNEL DA

We propose weighted kernel deterministic annealing
(WKDA) as an extension of the basic DA algorithm for shape
clustering scenarios as shown in Fig. 1b. This is achieved
by mapping the data X in the input space to a higher-
dimensional feature space through an appropriate choice
of kernel functions. This approach is referred as “kernel
trick” and enables learning algorithms to operate in higher-
dimensional feature space without ever explicitly computing
the coordinates of data points in that space. The mapping
allows to use linear separators to extract clusters in the
implicit feature space.

Note that the squared Euclidean distance d(xi,yj) can be
expressed using inner-products as

d(xi,yj) =< xi,xi > + < yj,yj > −2 < xi,yj >, (8)

where yj is defined in (7). For all xi and xi′ in the input
space X , kernel functions κ(xi,xi′) can be expressed as an
inner product in higher-dimensional, implicit feature space
H using non-linear feature maps φ : X → H which satisfies

κ(xi,xi′) =< φ(xi), φ(xi′) >H . (9)

While explicit representation of φ is not necessary, its exis-
tence is guaranteed as long as κ satisfies Mercer’s condition
[17]. For a given set of data points X = {x1, . . . ,xN}
in the input space, a kernel matrix K ∈ RN×N is given
by Kii′ = κ(xi,xi′). Mercer’s condition requires that K
must be positive semi-definite (PSD). Empirically, for kernel-
based algorithms, choices of kernel function κ that do
not satisfy Mercer’s condition may still perform reasonably
if κ at least approximates the intuitive idea of similarity
[18]. Many popular choices of κ exist, such as Gaussian,
polynomial or radial basis function kernels. Using the non-
linear distortion function φ, the distance between data point
φ(xi) and facility location yj in the implicit feature space is
given as

<φ(xi), φ(xi)>+<yj,yj> −2 <φ(xi),yj>︸ ︷︷ ︸
d(φ(xi),yj)

, (10)

with

yj=

∑
i p(xi)p(yj|xi)φ(xi)∑

i p(xi)p(yj|xi)
, p(yj|xi)=

e−βd(φ(xi),yj)∑
j′ e

−βd(φ(xi),yj′ )
.

(11)

Here (11) is a consequence of the DA algorithm with
modified distance function d(φ(xi),yj′). All computations in
(10) are in the form of inner products, hence we can replace
all inner products by entries of the kernel matrix, i.e.,

d(φ(xi),yj) = Kii − 2

∑
l p(xl)p(yj|xl)Kil∑
l p(xl)p(yj|xl)

+

∑
l,m p(xl)p(xm)p(yj|xl)p(yj|xm)Klm

(
∑
l p(xl)p(yj|xl))2

. (12)

In the WKDA algorithm, the Euclidean distance in (12) is
iteratively computed until convergence at each β value.

Algorithm 1 WKDA Algorithm

Input: X = {x1, . . . ,xN}; No. clusters: k; Kernel Matrix
K; Weight Matrix W , diag{p(x1), . . . , p(xN)}

Output: Cluster associations : {p(yj|xi)}
Initialization:
p(yj|xi)← 1

k ∀ xi ∈ X ,yj ∈ Y
β ← βmin

Annealing Process
while β < βmax do
β Iterations
while until convergence do

Evaluate d(φ(xi),yj) as in (12) ∀i, j
Evaluate p(yj|xi) as in (11) ∀i, j

end while
Increment β

end while
return {p(yj|xl)}

IV. CONNECTION WITH KERNEL k-MEANS AND
SPECTRAL CLUSTERING ALGORITHMS

The WKDA algorithm (Algorithm 1) shares many proper-
ties with the kernel k-means algorithm described in [7]. For
instance, when the association probabilities {p(yj|xi)} are
hard (0-1), the distance function in (12) reduces to distance
function for kernel k-means algorithm. Moreover similar
to the DA algorithm, the WKDA algorithm decreases the
objective function (modified free-energy function) in each β
iteration.

For implementing the WKDA algorithm, we must com-
pute the distance matrix [d(φ(xi),yj)] during each iteration.
The complexity of the WKDA algorithm can be analyzed
using (12). The main complexity arises from computing
the numerator of the third term in (12). The complexity
is O(N4k) scalar operations per iteration of computing the
distance matrix. Thus if the total number of iterations is τ ,
then the complexity of the WKDA algorithm is O(τN4k).
The complexity can be significantly reduced using scalable
implementation of the WKDA [19]. Such scalable implemen-
tation uses thresholding on association weights to minimize
the number of scalar computations arising from associating
every data point in the input space to all the clusters.

Similar to kernel k-means algorithm, the WKDA algorithm
too exhibits connections with spectral clustering clustering



algorithms such as normalized cut and ratio cut methods.
Note that the WKDA algorithm aims to optimize the ex-
pected distortion D̄(φ(X ),Y) given by

D̄(φ(X ),Y) =

N∑
i=1

p(xi)

k∑
j=1

p(yj|xi)d(φ(xi),yj). (13)

Let Wj be the diagonal matrix of all the p(xi) weights in the
jth cluster Cj , i.e., Wj , diag

{
p(xi1), . . . , p(xi|Cj|

)
}
∀il ∈

Cj and W , diag{W1, . . . ,Wk}, then the minimization
of total-distortion D̄(φ(X ),Y) in the limiting case (i.e.
p(yj|xi) ∈ {0, 1}) is equivalent to the following trace
maximization problem [7]

min
Y,{Cj}

D̄(φ(X ),Y) ≡ max
U∈RN×k

Tr

(
UTW 1/2 ΦTΦ︸ ︷︷ ︸

K

W 1/2U

)
,

(14)
where Φ = [Φ1, . . . ,Φk]T and Φj is a matrix of points
of the form φ(xi) associated with cluster Cj , i.e., Φj ,
[φ(xi)] ∀i ∈ Cj . The matrix U is of the form given by

U =


W

1/2
1 e1√
s1

. . .
W

1/2
k ek√
sk

 , (15)

where sj =
∑
i∈Cj

p(xi) and ej is a vector of ones
of appropriate dimension. Note that U is an orthonormal
matrix, i.e., UTU = I . This discrete optimization problem
is relaxed by allowing U to be an arbitrary orthonormal
matrix. Using Rayleigh-Ritz theorem, the optimal U for the
relaxed problem is obtained by taking the top k eigenvectors
of W 1/2KW 1/2. Similarly, the sum of the top k eigenvalues
of W 1/2KW 1/2 gives the optimal trace value.

On the other hand, for a graph G with edge-weight matrix
A and degree-matrix D, the optimization problem for the
relaxed normalized cut problem is given by

max
U∈RN×k

Tr
(
UTD−1/2AD−1/2U

)
s.t. UTU = I. (16)

Thus if we consider WKDA with W = D and K =
D−1/2AD−1/2, then the optimization problem in (16) is
identical to the one in (14). Similarly, the optimization
problem for the relaxed ratio cut problem is given by

max
U∈RN×k

Tr
(
UTAU

)
s.t. UTU = I. (17)

Choosing W = D1/2 and K = D−1/2AD−1/2 establishes
the equivalence between the WKDA algorithm and the ratio
cut approach.

Thus, if the affinity matrix K is positive definite, we
can use the WKDA procedure in order to minimize the
normalized (or ratio) cut, without the need to compute
eigenvectors.
Remark (Semi-supervised shape clustering): Semi-
supervised clustering methods aim to improve clustering
results using pairwise constraints, such as must-link
and cannot-link constraints. These constraints can be
incorporated into our framework through an appropriate

modification of the kernel matrix. For every cannot-link
constraint between xi and xi′ , the corresponding entry in
the kernel matrix is set to zero, i.e., K(i, i′) = 0. This can
be understood as follows. The WKDA algorithm replicates
normalized cut (or ratio cut) and aims to minimize the
associated cut value. Setting K(i, i′) = 0 is equivalent to
setting the edge-weight between i i′ to zero in the associated
graph. Thus any cut separating i and i′ incurs zero cost.
Hence, such a choice of kernel matrix favors viability of
cannot-link constraints.

Must-link constraints are relatively straight forward to
handle. For every pair i, i′ with must-link constraint between
them, we require that the two points must be associated to the
same cluster. This can be easily addressed in our framework
by enforcing p(yj|xi′) = p(yj|xi) during each β iteration of
the WKDA algorithm.

V. EXPERIMENTAL RESULTS

We now provide experimental results to validate the
usefulness of the proposed WKDA algorithm. Our WKDA
algorithm is implemented in MATLAB and all experiments
are done on a PC (Windows, Intel i7-4790 CPU @ 3.6GHz
processor, 8 GB RAM). Note that a geometric scheduling
rate of β update (i.e. βt+1 = 1.05βt) is employed and thus
results in fast clustering performance. The kernel matrices
are generated using Gaussian kernels.

We first present the results on standard shape data sets
- ‘flame’, ‘pathbased’ and ‘R15’, with 2, 3 and 15 natu-
ral clusters, respectively. These examples are downloaded
from https://cs.joensuu.fi/sipu/datasets/ under the shape sets
category. The results are shown in Figs. 2a, 2b and 2c,
respectively. Our WKDA algorithm successfully finds the
underlying natural clusters in each of these examples. Similar
performances are obtained for other standard shape data sets,
too. However, the corresponding results are excluded for the
sake of brevity.

Fig. 2d presents an artificially generated generated data set
composed of the string - ‘ICC2018’. The example contains
7 natural clusters in the form of individual characters of the
string. Our WKDA algorithm correctly finds the underlying
clusters in this example.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present an innovative WKDA algorithm
for shape clustering. The algorithm combines the kernel trick
with the distributed aspect of the deterministic annealing
algorithm to produce effective clustering solutions that are
independent of initialization. We also present a theoretical
connection between the WKDA algorithm and other existing
approaches, such as kernel k-means and spectral clustering
approaches. The algorithm is implemented on a variety of
interesting examples and is shown to find the underlying
natural shapes (clusters) in each of the example scenarios.

In future work, we would like to implement a scal-
able version of our algorithm with intelligent thresholding
schemes to further minimize the run-time complexity of the
WKDA algorithm. Another interesting aspect of the WKDA



Fig. 2: Implementation of the proposed WKDA algorithm on some interesting data sets. The data sets in examples (a), (b)
and (c) are obtained from https://cs.joensuu.fi/sipu/datasets/ under the shape sets category. The example presented in (d) is
an artificially generated data set.

algorithm is the existence of critical (pseudo)-temperature
(βcritical). It can be shown that the location of facilities Y
do not change significantly until β reaches βcritical. The
value of βcritical can be obtained analytically using variational
approach. This enables using even faster annealing schedule.
We will address this aspect in our subsequent work. Finally,
we would like to extend this approach to other combinatorial
optimization problems such as traveling salesman problem
(TSP).
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