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This paper presents a method for detecting abnormal motion in real time using a computer
vision system. The method is based on the modeling of human body image, which takes
into account both orientation and velocity of prominent body parts. A comparative study
is made of this method with other existing algorithms based on optical flow and the use
of accelerometer body sensors. From the real time experiments conducted in the present
work, the developed method is found to be efficient in characterizing human motion and
classifying it into basic types such as falling, sitting, and walking. The method uses a
Radial Basis Function Network (RBFN) to compute the severity coefficient associated
with the type of motion, based on experience. The paper evaluates the various methods
and incorporates the advantages of other methods in order to develop a more reliable

system for abnormal motion detection.

Keywords: Abnormal motion detection; optical flow; accelerometer body sensors; RBFN (Radial

Basis Function Network).

1.

Though robots have been used in many applica-
tions including factories and rescue operations,
home care robotics is a newer development
which is likely to become significant with an
aging population and changing demographics
and household needs. In a fast-paced society,
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people find it difficult to manage their daily
household tasks. Human housekeepers and
helpers are commonly used while the regularity
and reliability of such assistance are often want-
ing. As the life expectancy of the population
increases, the need for homecare robotic tech-
nologies will grow. For example, during the 20th
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century, the US population under the age 65 has
tripled while those who are 65 and older have
increased by a factor of 11. According to Interna-
tional Population Reports [Kinsella & He, 2009],
about 1 in 8 Americans were elderly in 1994, and
about 1 in 5 will be elderly by the year 2030.
In addition, the percentage of the population
aged over 65 in European nations is anticipated
to rise from 17.9% in 2007 to 53.5% in 2060.
According to the 2006 Canadian Census, the
number of people aged 65 and over increased by
more than 446,700 compared to 2001 (+11.5%),
exceeding the 4-million mark for the first time
(4.3 million).

Falls, collisions, strokes, and heart attacks
are among the greatest dangers faced by the
elderly. For those who live alone in particular,
such incidents can be extremely dangerous. The
injured persons need to be provided immediate
first aid or other emergency attention. A home
environment that is able to automatically mon-
itor the motion of the occupants and quickly
and accurately determine abnormal motions will
improve the quality of life and reduce the health
care costs. Lives can be saved if immediate help
is provided to injured persons.

For a robot to be able to provide help, it
must first be able to differentiate between nor-
mal and abnormal motions and then identify the
abnormalities. There are various approaches for
detecting abnormal human motions. The most
popular is the use of wearable body sensors, par-
ticularly accelerometers and gyroscopes, to mea-
sure translational and angular accelerations of
the body. This method is also useful in study-
ing medical conditions like Parkinson’s disease,
where hands and other body parts exhibit dis-
tinct tremors in the frequency range of 6 to
8 Hz. These sensors may be worn on different
body parts. However, people may forget to wear
them or may feel uncomfortable wearing them.
Hence, a non-wearable or non-contact system for
detecting abnormal motions in humans will be
advantageous. The use of a vision system is able
to provide an appropriate method to this end,
as developed in this paper.

This paper presents two vision-based
approaches for detecting abnormal motions in
humans. The first approach uses optical flow to

determine various flow parameters such as veloc-
ities and displacements. The second approach
uses modeling of human body images. A human
body image is modeled as an ellipse, which has
the following advantages:

(a) Ellipse is the simplest geometric figure that
can represent a human body as an image

(b) Computationally, it is very efficient

(c) Change in orientation and other parameters
of the ellipse will help in determining the
motion of human body.

Since the entire operation is performed using
image pixels and not in terms of world coor-
dinates, the method does not require cam-
era calibration, thereby simplifying camera
installation.

Both of these vision-based methods have
pros and cons. The paper discusses the efficiency
and usability of the methods for different types
of human motion. It also proposes a weighted
scheme to compare the methods in order to iden-
tify which method should be used in a particu-
lar situation. An accelerometer-based approach
is also presented for comparison. Section 2 high-
lights previous research in the field. Section 3
describes the methodologies used in this paper
and the system overview. Section 4 presents
results and a comparative analysis based on
them. Section 5 provides conclusions.

2. Related Work

The problem of abnormal motion detection
has been studied by researchers in two main
ways. These methods are primarily distin-
guished by the type of sensors used. The first
approach makes use of wearable body sensors
like accelerometers and gyroscopes. Accelerom-
eters are MEMS-based sensors used to measure
the accelerations at a particular location in a
body. Gyroscopes are used to measure the ori-
entation of a body. The orientation can also be
measured by measuring the acceleration com-
ponents in orthogonal directions. The second
approach is a non-contact approach, which uses
vision. It is based on extracting human motion
data from a sequence of still images or a video
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and using computer vision capabilities to detect
abnormality in motion.

The first approach is relatively simple and
can be easily employed. A drawback of this
approach is that it is not human-independent.
Abnormal motion can only be detected when the
sensors are worn, and therefore the person has
to wear the sensors all the time. This may be
inconvenient or impractical in some situations.
Hence, a human-independent approach, partic-
ularly a vision-based approach, has advantages
in this regard.

Douka et al. [2009] proposed a scheme that
combined both motion and visual information.
Acceleration data from the sensors were used to
indicate a fall incident, and trajectory informa-
tion and the subject’s visual location were used
to verify the fall. For fall detection, the scheme
relied on detecting a sudden change in posture
followed by inactivity.

Lustrek & Kaluza [2009] used radio tags
placed on various body parts to determine their
locations. The use of radio tags made this
scheme human-dependent, and moreover, the
number of tags used was as high as 12, causing
further practical difficulty.

Liu et al. [2010] used a kNN classification
algorithm to classify postures using the ratio and
difference of a human body silhouette, bound-
ing box height and width. Though the method
was considered to be efficient, it might result in
false positive cases when the person stretched his
hands to pick up objects. A scheme was given to
reduce this effect.

Doulamis et al. [2010] used the trajectory of
the upper boundary of the foreground object to
detect a fall. However, motions like a slip seem
to have a larger horizontal motion as well and
are slightly different from fall scenarios, where
feet displacements are small. Similarly, Tehrani
et al. [2009] used two features, centroid and
top of head, to estimate a fall. This scheme
has the same drawback as that mentioned
above.

Modeling of a human body image as an
ellipse is mainly motivated from the work of
Nait-Charif & McKenna [2004] and Foroughi
et al. [2008]. Nait-Charif & McKenna [2004],
however, estimated unusual motions by finding

inactivity in activity zones of the room. Such
an approach is highly room specific and gives
a high number of false positive results. On the
other hand, Foroughi et al. [2008] used a com-
bination of an approximated ellipse around the
human body, horizontal and vertical projection
histograms, and temporal changes of the human
head position as feature vectors. Fall detection
was performed by the standard deviations of
the orientation and the dimension ratio of the
ellipse. Similar to Doulamis et al. [2010] and
Tehrani et al. [2009], however, Foroughi et al.
[2008] used a network of overlapping low sample
rate cameras. Due to the small sampling rate,
the work assumed that a fall was defined as
an event that resulted in a person lying on the
floor in a position which they were unable to
quickly recover from. Diraco et al. [2010] com-
puted the location of a 3D human centroid with
respect to the floor. It is known, however, that
distance alone cannot accurately characterize a
fall.

Lin & Ling [2007] determined fall incidents
by the location and the rate of change of the cen-
troid of a human object. However, it is known
that other features must be taken into account
as well. Jansen & Deklerck [2006] detected fall
incidents by determining the body posture along
with the period of inactivity. However, the inac-
tivity zones had to be pre-defined — i.e., cali-
bration was required for each room. Zhong et al.
[2004] determined unusual activity by matching
the extracted features of the video with a set
of pre-stored prototypes. Though the method
is equivalent to using a neural network-based
approach, it involved excessive computation,
and the number of prototypes was a limiting
factor.

The algorithm employed by Yu et al. [2009]
uses constraints on human state change patterns
to discard some patterns that do not correlate
with the fall event. For instance, when a person
falls from standing, the fall will be constrained
by standing, bending, and lying. However, such
constraints may not be helpful in identifying a
wide range of abnormal motions, as the num-
ber of constraints is limited. Rougier & Meu-
nier [2006] detected falls using only the 3D head
trajectory, while Rougier et al. [2008] detected
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falls by analyzing the human shape deformation
using a video sequence.

The work described in Debard et al. [2009] is
based on the knowledge of whether the posture
is upright or not, whereas Miaou et al. [2006]
used the change of the ratio of a person’s height
to width as features and obtained the associated
thresholds in two ways: one took personal infor-
mation into consideration and the other did not.
The method described in Debard et al. [2009]
cannot differentiate among motions such as a
fall, sitting, and pickup, as the body orientation
can be the same in all these cases.

Khan & Habib [2009] used a combination
of motion gradients and change in shape for
fall detection. Hazelho et al. [2008] detected
falls by determining the direction of the main
axis of the body and the ratio of the vari-
ances in the horizontal and vertical directions.
However, if a person stretches out their hands,
the variances in the vertical direction may
become noticeable and may give a false positive
result.

3. Methodology

Given an indoor environment, the present aim
is to develop an algorithm that can detect var-
ious types of abnormal human motion, and can
classify them. Although the algorithm developed
here is environmentally independent in that it
does not require pre-calibration based on the
arrangement of the indoor environment, it uses
an important condition that the largest mov-
ing object in the environment is a human. This
condition helps in real time detection of abnor-
mal motions using cameras. The other way the
problem of abnormal motion detection has been
approached is by the use of wearable body sen-
sors such as accelerometers.

The specific assumption concerning the
largest moving object in the indoor environ-
ment is particularly useful when the human
motion is abnormal. This assumption also
removes the discrepancy in the results obtained
from skin color identification as the skin color
depends on the person. Also, human identi-
fication based on geometric modeling of the
human body is not particularly useful in the

detection of abnormal motions where a sim-
plified geometric shape can hardly match the
human shape.

Once a moving human object is identified,
the body image is modeled as an ellipse. The
ellipse is the simplest 2D geometric figure that
can represent an image of a human body. The
parameters of the ellipse are utilized in motion
identification and determination of the velocity
vectors. The determination of various flow vec-
tors using optical flow can fail to deliver satis-
factory results, however, for abnormal motions
like falls.

The other approach is the use of wearable
body sensors. Though this approach is sim-
pler, it is not human-independent, as the per-
son has to wear the sensors all the time. With
this approach, there is no compensation for such
occurrences as forgetfulness.

Use of vision systems

The present approach of abnormal motion detec-
tion using a vision system consists of the follow-
ing four steps:

(a) Identification of a human in the image
(b) Extraction of motion parameters by using

(1) optical flow, or
(2) human body image modeling

(c¢) Training the neural network
(d) Severity value calculation and decision
making

3.1. Identification of human
in the image

In an indoor environment, the task is limited
to identifying all the moving objects and finding
the largest moving object in the image. The fore-
ground information in the image is extracted by
subtracting the background from it (see Fig. 1).

This approach has a major disadvantage. If
an object changes its position in the succes-
sive images, it will always be treated as mov-
ing. Hence, the background model is adaptive in
nature, as the current frame is actually the cur-
rent frame along with some part of the previous
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(a) Original image (b) Background

(¢) Foreground

Fig. 1. Foreground extraction.

frame:

Hnew = (]— - 04) * lold + Q% (HGW image)

Onew = (Max (opmin, (1 — @) * Ugld (1)
+ o * (new image)?))?
where
lold — mean values of all pixels of penultimate
frame

lnew — mean values of all pixels of current frame
oo1d — std. deviations of all pixels of penulti-
mate frame
onew — std. deviations of all pixels of current
frame
omin — threshold value of std. deviations
— learning rate

The higher the learning rate, the faster the
adaptation of the background. There exist many
noisy pixels as well. A lower learning rate slows
down the process of adaptation, but with a very
few noisy pixels. The condition for a pixel to be
a part of the background is:

tnew — 0.5 % 0pew < pixel value < finew
+ 0.5 * Opew (2)

Foreground refinement by hole filling:
Once the foreground pixels are obtained, the
foreground is further refined by expanding the

L

(a) Original image

b) Top to ) Left to d) Right to ) Refined
bottom right left foreground
Fig. 2. Foreground refinement by hole filling.

blob in three directions and then taking their
intersection. This helps in filling the voids and
empty spaces in blobs (see Fig. 2).

3.2. Extraction of optical flow
parameters

Optical and affine flow is based on the assump-
tion that the velocity within the considered
neighborhood is constant. It also assumes
brightness constancy, which means that the
brightness structures of local time-varying image
regions remain unchanged under motion for a
short period of time. It can be formulated as:

I(z,y,t) = I(x + dx,y + dy,t + dt) (3)

The first-order Taylor series expansion yields the
following set of linear equations:
S

N Y LI
L1, I <> > LI

(Y

(4)
where I(z,y) is the intensity of the pixel at loca-
tion (z,y).

In affine transformation [Derpanis, 2005], the
system is modeled as

(-G 0= o
where (u,v)”
(z, )"

is the velocity vector at location
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The affine parameters are evaluated using:

Yr > al? > yI? > LI,
a2’ ayl?
Syl > ayll Y YL
S LI, Y ald, > yll,
doaldy, Y 2L, Y ayll,
S yldy Y ayld, > y’Ll,

Yo,
>l
> vl

In this case, at least six points are required for a
unique solution. Since the Taylor series expan-
sion approximates the solution, the precision of
the estimates is enhanced by iterative proce-
dures.

The results of the optical and affine flow
model for various cases are given now. For small
motions (see Figs. 3(a) and 3(b)) — i.e., nor-
mal motions — the human body may be treated
as a rigid and non-deformable object, and it is

(c) Transformed image with estimated flow parameters

Fig. 3. Flow results for small deformations.

> all,
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(6)
possible to get a very good estimate of the
flow parameters. Fig. 3(c)) indicates estimated
motion (1) by the conventional method and
(2) by the log polar sampling method. It is seen
that for small deformations, the results are quite
accurate.
The results for large displacements show that
large deformations (Fig. 4) are difficult to track
by the method of optical flow. The situation

o 1 s

b) Image II

(a) Image I

(c) Transformed image with estimated flow parameters

Fig. 4. Flow results for large deformations.
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worsens when the object being tracked is a
deformable one such as a human.

3.3. Human body image modeling

To overcome the problem in tracking deformable
objects such as humans, the present paper
proposes a method modeling a human body
image. This method also proves to be efficient
in handling complexity and hence can be easily
employed in real time procedures.

A simple model for human body image is
thought of as an ellipse. The advantages are as
follows:

(a) It is the simplest geometric shape that can
represent the human body. Being a sim-
ple shape, the extraction of information
from it is relatively less complex and time-
consuming.

(b) The rate of change of orientation of an
ellipse is an indicator of severity of abnormal
motion. A large rate of change of the ellipse
orientation may indicate an event such as a
fall or collision.

(¢) The rate of change of dimensions of an
ellipse is also an indicator of the severity of
abnormal motion.

Extraction of ellipse: The extraction of an
ellipse from a background image is a four-step
process:

(I) Bounding box parameters are collected

using an available standard algorithm.

(IT) The orientation of the blob is measured.

(III) The larger dimension of the bounding
box is treated as the major axis of the
ellipse, and the smaller dimension as the
minor axis. The orientation of the ellipse
is decided by the orientation of the blob.

(IV) The ellipse is constructed using the follow-
ing parametric information (see Figs. 5(a)
and 5(b)):

X(t) = Xe+ a*cos(t) x cos(P)
— b« sin(t) * sin(P)

Y (t) =Y.+ ax*cos(t) * sin(P)
— b *sin(t) * cos(P)

where @ is the orientation of the ellipse.

(7)

(a) Bending down

(b) Lying down

Fig. 5. Ellipse estimation.

Once the matching ellipse is obtained,
the next task is to track various points on the
ellipse and the centroid. For convenience, the
points that play a crucial role in deter-
mining the category of motion are selected.
These points are located on the ellipse at
angles —15°,15°,90°,165°, —165°, and —90°.
The motion of the centroid is also observed
here. The first two points correspond to a region
near the head, and the last two points cor-
respond to a region near the legs. The other
two points correspond to a region near the
waist.

These points on the ellipse are tracked in suc-
cessive frames. The changes in the positions of
these points are noted for various cases of motion
like fall, sit, pick-up, and walk. An artificial neu-
ral network is then constructed and the network
is trained for various cases.

4. Results and Evaluation

Trajectories of the points on the ellipse for dif-
ferent motion scenarios are given in Fig. 6. Tra-
jectories at the top indicate motion of points
near head region; trajectories in the middle indi-
cate motions of centroid and points near waist
region; and the trajectories at the bottom indi-
cate motion of points near legs. In the case of
a fall (Fig. 6(a)), there is a sharp change in
the trajectory of various points of the ellipse
as compared to sit (Fig. 6(b)) and pick-up
(Fig. 6(c)).

It is seen that there is a clear difference
among the trajectories adopted by the points
on the ellipse in different scenarios, which
enables the category of motion to be character-
ized. From the data, it is observed that during
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Fig. 6. Trajectory of ellipse points during various motion scenarios.
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Table 1. Displacement data.

Case Displacement Disp. of Disp. of Disp. of Disp. of

of Head Head Legs Legs

Centroid (pt-1) (pt.2) (pt.1) (pt.2)

Fall 16.12 14.89 13.82 17.36 18.42
16.40 19.54 21.02 15.19 12.78

25.00 41.39 44.38 13.18 8.91

Fall 12.66 12.04 17.95 13.53 7.63
12.78 26.35 31.88 1.34 7.52

20.89 45.03 44.25 5.61 4.97

Fall 18.50 13.27 13.96 23.86 23.07
20.89 21.49 21.58 26.60 24.39

26.57 32.74 31.23 2.28 1.91

Sit 8.51 11.50 7.66 5.54 9.42
7.83 8.44  10.47 9.18 6.07

9.86 17.54 19.19 3.89 1.28

Sit 3.54 6.22 5.92 4.20 3.88
4.24] 7.41 7.03 4.43 4.38

2.12 7.69 6.52 3.58 2.73

Pick 5.70 8.91 9.27 5.07 5.03
8.20 11.99 12.66 7.84 5.30

7.83 14.06 13.50 6.20 5.45

Pick 8.06 14.77 14.62 2.80 2.82
6.00] 5.04 5.04 6.96 6.96

8.28 15.12 15.39 3.53 2.75

various cases of motion, the peculiarity is pre-
served in the form of the ratio between the max-
imum displacement and the antepenultimate to
the maximum displacement.

Table 1 shows the displacements of the cen-
troid, points near the head, and the points near
the legs for various cases. All the displacements
are measured in pixels along the image.

(The pixel values in the z-direction range
from 120 to 160 and that in y-direction, the
range is from 80 to 200)

It is observed that the ratio of the third row
to the first row is the determining factor and is
characteristic of every scenario.

4.1. Training of the neural
network

Once all ratios for various scenarios are deter-
mined, it is necessary to find the criteria to iden-
tify various types of motions. Due to the large

Table 2. Decisions on severity values.

Severity value Probable motion

0.8-1.0 Very high severity — fall or slip
0.6-0.8 Moderately high severity — jump
0.4-0.6 Moderate severity — pick or run
0.2-0.4 Low severity — sit

0-0.2 Non-severity — walk

amount of data and the variation among differ-
ent motions of the same type, it is very difficult
to visually identify the criteria. Consequently,
artificial neural networks are used in the present
work.

This paper uses radial basis functions net-
works (RBFN). The inputs to the network are
the ratio values as in Table 1, and the outputs
are the severity values assigned for various sce-
narios. For example, the fall cases have sever-
ity values as high as 0.9, and the sit cases have
severity values close to 0.2. Thus, based on the
severity value obtained from the network for any
given input, the category of motion can be iden-
tified (see Table 2).

The output of the network is the correspond-
ing severity value. The decision-making pro-
cess is based on the classification as indicated
previously.

4.2. Use of wearable body
sensors

The second approach presented in the present
paper for the problem of detecting abnormal
motions is the use of wearable body sensors —
accelerometers and gyroscopes. Specifically, the
linear and angular accelerations of different
body parts may be used to determine the cate-
gory of motion.

One problem with body sensors is that the
system is not human-independent. Unlike vision
systems, which are human-independent, the sub-
ject has to wear body sensors continuously. Peo-
ple with poor memory may forget to wear the
sensors. The vision system approach is more
appropriate in this regard. However, under inad-
equate lighting conditions, particularly at night,
a vision system may not be effective, as the qual-
ity of the images will be deteriorated. The use
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Fig. 7. Accelerometer response along each axis during various motion scenarios.



Abnormal Motion Detection in Real Time Using Video Surveillance and Body Sensors

350 T T

113

300
250
200 :
Pick
150

100~

50

=

-100

180 i i \ i
0 2 4 B 8

10

12 14 16 18 20

(d) “Pick up” case

B00 T T T

continuous jumps

100

200~

300

400 i i \ i
0 2 4 B 8

10

(e) “Jump” case

Fig. 7.

of wearable body sensors can become critical in
such situations.

Abnormal motion detection using a sin-
gle 3-axis accelerometer is implemented in the
present work and its performance is evaluated
for various cases of motion. The sensor is
mounted rigidly on the chest of the person. Rigid
mounting is realized by using magnetic tapes
and skin-tight clothes.

The specific sensor used in the present work
is ADXL345 — a 3-axis digital (I12C) accelerom-
eter from Sparkfun. The device is capable of
transferring data through Bluetooth and other

(Continued)

wireless protocols. Experiments are conducted
efficiently and easily using the setup.

Specifically, experiments are carried out for
the motion cases: fall, slip, jump, walk, pick-up,
and sit. In some cases, the motion trajectories
are found to have some peculiar characteris-
tics. Using these characteristics, the category of
motion can be easily identified. Note that the
device has been configured to work in the +£2¢g
sensitivity range. The value on the Y-axis is the
ADC value subjected to the maximum of 512
on either side. The X-axis data represent time
in seconds.
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Figure 6 shows the responses from the
accelerometer sensors along each axis. The
different shades in the graphs along y-axis rep-
resent data corresponding to different axes:
X-axis, Y-axis and the Z-axis of the accelerom-
eter. The z-axis of the graph represents time
elapsed in seconds.

It is seen that for cases like pick-up and
jump, there occurs a strong characteristic
through which such motions can be identified.
Cases like fall and slip can also be partially
identified as there occurs a sharp change in
the acceleration data. However, these cases lack
uniqueness because of the fact that the human
body can fall in any orientation and thus the
component of acceleration due to gravity does
not act in the same way along each axis for
different scenarios. It is very difficult to iden-
tify cases like sit as the acceleration does not
change much, owing to the same body orienta-
tion. This method can be further improved by
the use of an accelerometer at one of the thighs
and a gyroscope.

4.3. Comparative analysis

The main aim of the present experiments is to
provide a comparative study of various methods
to detect abnormal motion and to show how to
use the combined results to improve the overall
efficiency. Table 3 provides a comparative anal-
ysis of the approaches presented in the paper.
The comparative study enables us to use
the two approaches simultaneously to detect

unusual activities and to assign proper weights
to individual approaches for non-erroneous
detection of abnormal motion. Such fusion
of multiple sensors has also been proposed
in Doukas et al. [2009].

5. Conclusion

This paper presented a method for detecting
abnormal motion in real time using a computer
vision system. The method was based on the
modeling of human body image, which took
into account both orientation and velocity of
prominent body parts. A comparative study was
made of this method with other existing algo-
rithms based on optical flow and the use of
accelerometer body sensors. From the real time
experiments conducted in the present work, the
developed method was found to be efficient in
characterizing human motion and classifying it
into basic types such as falling, sitting, and walk-
ing. The method used a Radial Basis Function
Network (RBFN) to compute the severity coef-
ficient associated with the type of motion, based
on experience. The efficiency of the method
was found to be nearly 80%. A shortcoming
of the method was in the foreground extrac-
tion, which was essentially devised for indoor
detection, as it was based on the assumption
that the largest moving object in the environ-
ment was a human. For implementation in other
(outdoor) environments, the scheme needs to be
appropriately modified. For example, the use of
skin color information along with the foreground

Table 3. Summary of comparative evaluation.
Cases Using optical Using body Using body
flow modeling Sensors
Speed Time consuming Sufficiently fast Very fast

Fall detection
Walk detection

Sit detection

Jump detection
Slip detection
Pick-up
Availability of data

Human inter-dependency

Poor

Very efficient

Inefficient

Inefficient

Inefficient

Inefficient

Poor in occlusions,
dark environment

Maximum

Very efficient

Very efficient

Sufficiently efficient

Very efficient

Very efficient

Sufficiently efficient

Poor in occlusions,
dark environment

Maximum

Sufficiently efficient
Very efficient
Inefficient

Very efficient
Sufficiently efficient
Very efficient
Always

Minimum
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identification and extraction may be appropri-
ate. Finding moving objects (or bounding boxes)
that contain human skin color or human infra-
red data will resolve the problem. Though the
method can detect basic human motions, there
are some serious abnormal motions such as, the
motion of the hand in a heart attack — that can-
not be tracked, as it requires motion information
on various body parts obtained separately and
then analyzed as a whole. The method must be
modified for precise detection of individual body
parts when these are visible within the camera
frames.
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