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This paper derives the equations of motion of variale mass systems using a coordinate-
free approach. These equations have been verifiedittv simple models, and the terms
originating in the steady and unsteady gas-dynamiimteraction effects have been used in the
modeling and simulation of the propulsive phase ofhe Supersonic Inflatable Advanced
Decelerator when the vehicle is spinning. The varide mass terms have an effect both the
translation and the rotation of the vehicle duringthrust, indicating an increase in the roll
rate.

I. Introduction

HE objective of this paper is to describe the modeand simulation of the flight mechanics of valeamass
systems. The models derived in this paper applyoth rigid and flexible variable mass bodies, hosrethis
paper is limited to the dynamics of rigid bodieshmrariable mass. One application is the modelihthe flight
dynamics effects on the Supersonic Inflatable Agnadhic Decelerator (SIAD) during the propulsive pdhavhere
the torques arising during the STAR-48 solid mdiiom are important.
The equations of motion of variable mass systemsiat new*>°®"%'2however a coordinate-free derivation that
can be specialized to different cases is new. Mgpecifically, the derivations presented in this grapere
motivated by the fact that previous analyses ofalde mass systems under thrust are limited toapEobehicles
(rockets). The SIAD vehicle is an oblate vehicled dhe question arose if the same analytical detsoni of the
motion, as well as conclusions on the physics okets, would apply.
This paper is divided as follows. First, the dynesndf an extended body with variable mass floweiswetd. These
equations are then validated analytically with ¢heonical example of a double pendulum. Then, thaons are
also compared with previous work on variable mgsgesns. Second, these equations are applied wytisnics of
a variable mass spinning system under thrust, ubiegroperties of the SIAD vehicle. This analysidudes both
steady and unsteady gas-dynamic interaction eff€atslly, a brief discussion is provided on thd. JR-house
flight dynamics simulator DSENDS (Dynamic Simulatifor Entry, Descent, and Landing Simulator) arsl it
advanced visualization capabilities. The sectioramclusions ends the paper.

II.  Dynamics of Extended Body with Variable Mass Flow
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In this section we derive the equations of motiém @xtended body with variable mass flow. To da,tfirst we
recollect the basic ideas behind the Reynold’sspart theorem, then we outline the elements okttiended body
kinematics and kinetics, and derive the linear amdular momentum balance in coordinate-free forme T
equations of motion are validated with a simpled amell-known, double-pendulum example. Finally, sthe
equations are compared to similar equations detiyeather authors.
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A. Reynolds Transport Theorem

Reynolds’ Transport Theorem is a fundamental theanseed in formulating the basic laws of moving d®lor
fluids system$ Reynold’s transport theorem states that theahitdange of an extensive propehtyfor the system
is equal to the time rate of changeNbfnithin the control volume and the net rate of fluixthe propertyV through
the control surface. This fundamental theorem Wwasforms:

e FormA
(dN) aﬂ dv+ﬂ (w.dd) (1)
—_ = - w.
dt ) eys ot CV'?P CSnP w.aAa

e FormB
() = M 700 + [[ 20ty @
e = -_— V.
dt ) cns o atnp CSnP v.dAa

where,

N is any fluid property

n is fluid property per unit mass

dv is differential volume element

CMS is Control Mass System

CV is Control Volume

CS is Control Surface

w is efflux velocity, relative to control surface

v is local material velocity

If ves is local control surface velocity, then= v.s + w

Note: The two forms are equivalent and state tmeeskw in different forms. One can easily see thétte
control surface is non-deforming/rigidzcs = 0, and the derivative in Form A can be taken inside,,

%fﬂcvnpdv= ﬂfw%m)dv 3)

B. Continuity Equation

Continuity equation refers to mass conservationagn. Mass conservation principle states thatrttie of
increase of mass inside the control volume is etmahe net influx through the control surface. c®@mmass is
constant for a CMS (control mass system), usingatguo 19 and substituting = m for the extensive fluid
property, we can write:

0=% fpdv+ fp(w-d_A) 4

cv cs

If we denote the rate of change of mass insid&CN¥dy m, then using equation 22 we can write:

== [ p(w.da) ©)

cs
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C. Body Kinematics

Figure 1 shows a body (or a CV) with origin of thedy-fixed frame located at poifiton the body. The origin
of the inertial frame is located at a poiit At any instant, the position vector of a pointtbe body in the body-
fixed frame isr. Also, R is the location of the origin of the body framerfr the origin of the inertial frame. #f is
the position vector of the same point in the im¢fliame, we can write:

r'=R+r+u (6)

where u is a body deformation. For simplicity, istpaper we only consider rigid displacements, @@l Now, we
define the following quantities:

w : angular velocity of the body frame
w : angular acceleration of the body frame
!
% : derivative in the inertial frame
% : derivative in the body frame
!
Z—f = v, : velocity of the origin of the body frame
12
d, f = a, : acceleration of the origin of the body frame
da't -
% = v : velocity of the particle as observed in the bodyrfe
2
% = g : acceleration of the particle as observed in theytiaine

e Control volume
dm e v, oty

Figure 1. Control volume under mass flow.

Using the basic kinematics of the moving (rotatimgrslating) frames, we derive the linear veloeitg linear
acceleration of the generic point as:

1.7

r
dl

QU

—+><+dr 7
=Vot@Xr+on @)

o~
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d’?r'

. dr\y dv
W=QO+QXZ+QX(QXZ)+2<(UX—) ®)

dt dt

Correspondingly, the linear momentum of the exteruledy is:

9)

and the angular momentum of the extended body aheueference point O is:

I
Il

rxvdB

Il
W — W—

1=

><(v0 wxr+ v)dB

xJ.[dB j a)xr dB+jr><vdB
B B

=—y0xg+j[x wxr dB+I[><\_/dB

:—yOxI[dB+go-Q+IrxydB
B B

(10)

D. Linear Momentum Balance

Newton’s Equation is essentially the linear momenthalance equation. According to linear momentum
conservation principle, the net external force ®ystem is equal to the rate of change of the line@amentum of
that system. Substitutiny with linear momentum for the extensive fluid pragen the Reynold’s theorem, we

have:
dl
Fp +Fs = dtfrdm (11)
CMS

where,F; is the net external Body Force aRdis the net external Surface Force.

Since the mass is constant for a (CMS) Control Masgem, we can take the derivative inside thegnalein
the equation 27.
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Fp +

e

= dlﬁ, d 12
=\ | g¢dm (12)
CMS
Using the kinematics, we have:
. dr dv
EB+I_~"5=f{go+gxr+gx(sz)}dm+2gx(fd—dm) +<fd—dm) (13)
v t CMS t CMS

Now, using Reynold’s theorem,

dr d
( —_dm) =— ( f tdm) [ system mass is constant]
dt cms At jcms
= 3¢ Joyprav + [ s pr(w.dA) (14)
Similarly,
dv d
(J5am) = [pvav+ [ p(w.da) (15)

dt cus Ot & A

Since at any instant, particle veloci_zys%, using Transport Theoreaguation (13fan be re-written as:

dv 9? %]
( —‘dm) =— fprdv+— fpr(w. dA)+ fpv(w. dA) (16)
dt cus 0t? - ot = — =
cv CcS CcS
Hence, the linear momentum balance for a generahla mass system is:

Fp+Fs = fp{go+9xr+g><(g><r)}dv
cv

)
+2w X afprd\ﬂ fpr(m-d_A)
cv CcS

—Fc,Coriolis Force

9 )
o fptdv+mfp£(md_fl)+ fpz(w-d_A)
cv CcS CcS

—F, Transport Theorem in Rotating Frame

17)

E. Angular Momentum Balance

Once we have derived the linear momentum balaneeyse a similar approach to derive the angular mame
balance equation. Let us first define the angulamentum about the origin of the inertial frame.

H=[p(r'xt")av (18)

By substituting the extensive fluid propemty with angular momentum abodt in the equation of the Reynold’s
theorem, we obtain:
5
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e e i),
= (J ol x)av) 4 (f ’ (f' " d_rt> dv)ms

0
dlr'l d’i, ]
Rx|(|p 7 dv + fp rx— dav [from equation |
t cms t cms

= Rx (5 +5)+ [(x[a+oxr+0x (@x1)])dm
([ 20Dy am) ([ (ex22)am) )

Using some basic vector algebra, it can be shown:

dr d
(f(fXZQX—_)dm) =( —(1xgxg)dm>
dt cMs dt cMs

_c[(KXQXr)dm‘QX(f(%xf)dm)ms

Hence, from equations 19 and 35, we have:

dr 0
(f(erwx—‘)dm) =—fp(r><w><r)dv—fp(rxd)xr)dv
- cMs atcv___ cv___

Io.w Ip.®
dr
+ fp(rxgxr)(md_flﬂgx fp(rxd—;)dv
CcS cv
where [, is the moment of inertia tensor of the body alut
Similarly, the last term in the equation (17) canrb-written as:
dv d
p(rx—‘)dV) =(fp—£><zdv) “(uxy)=0
(Jolxgp)av) : FEx0dv) [ (xw)=0
== fp(rxz)dv+ fp(rxz) (w.dA) (22)
cv CcS
Also, we list the following quantities:
[ e xdxr)av =10 (23)
cv
fp(rXQX9X£)dV=9X(b-Q) (24)

cv

Hence, the angular momentum balance aldis:
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> My =Rx (£, +£) + 220

+ f(fXQo)dm+lo-Q+Qx(lo-Q)+ jp(txgxr)(md_fl)
cv CS

+% j(fxﬂ)dm+ fp(rxz)(w-d_flﬂgx f(1><g)dm

(25)

Sometimes it is useful to write equations of mottout a fixed poin® on the body. For body-fixed point we
substituteR = 0 in the previous equation:

ol
ZMO = f(ngo)dm++£o-Q+9><(£o-9) too0
cv
+ fp(rxgxr)(w-d_AH fp(rxz)(md_fl)
CcS a CS
+a](r><z)dm+g>< f(rxz)dm
cv cv

(26)

Figures 2 and 3 depict the various terms appedrintje linear and the angular momentum balance temsa
Notice the appearance of a steady thrust termnateady thrust term, and gyroscopic and Corioligoting terms
both in the linear and the angular momentum balance

Nd
Fs+F;y= EB = Rigid body
& ) offset
R, +@x@xr+@xrldB+ [ > transport
cv terms
20x| 2 [ prdv + [ priw-m)ds |+ ") coril
ot S s coupling

9’ d
Eipzdﬁ §LLPE(E'E) dS]+ I py(w-n)dS

T4

Convective Unsteady term -Thrust
acceleration

Figure 2. Summary of Terms in Linear Momentum Balarce.
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Rigid body offset

= J-E X RO dB :> transport terms

B
o] Rigid body
+£0 o J—‘O WX iu @ :i> Rotational terms
H J pPrX(@xr)(w-n)ds +wx j prxvdv i
@ c¥ terms

0
te [ prxvav+ [ pxxv)(w-n)ds

e

Unsteady

-Thrust
term

moment

Figure 3. Summary of Terms in Angular Momentum Balance.

y Y
.-"'/,-'\
Sl jpt T N

S d

S

Mo

(a) A Double Pendulum (b) Equivalent Single Pendulum

Figure 4. Validation of equations of motion for a @uble pendulum.

F. Validation for a Double Pendulum System

A double pendulum (see Figure 4.a) is a penduluth amother pendulum attached to its end, and impls
physical system that exhibits rich dynamic behawitth a strong sensitivity to initial conditionsh& motion of a
double pendulum is governed by a set of coupledhard differential equations given by:
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(my + my) 126, + myl,1, cos(8, — 0,)6, — m,l, 1, sin(6, — 6,)8% + (m; + m,)gl; sinf; = 0
m,136, + mylyl, cos(8, — 6,)6; + m,l, 1, sin(6, — 6,)67 +
m,gl,sinf, =0 27)

However, we look at this double pendulum systera different way. We treat this complex pendulumesys
as an equivalent single pendulum with méss + m,) and rotating with the first link (see Figure 4.bpwever,
because of the movement of the second link, thera iedistribution of mass inside the complex bblmass
(m, + m,), thereby changing the inertia of the system alttoeithingeO and the location of the COM. Our goal is
to obtain the same set of governing equations usieglynamical equations derived in the previousiae. For our
convenience, we assume that both the inertial frantk the body frame are located@atwith the body frame

rotating with the first link. We note that the nwotiis always planar and there is no mass-flow irowr of the
system. Since the motion of the body is planarhaee:

0
w= [Ol (28)
01

If I, is the inertia tensor of the body abdytwe have:

0
o= [ 0 l (29)
Izzel

Hence the gyroscopic coupling term becomes:
wx(lp.w)=0 (30)
The moment of inertia about z-axis is given by:

IZZ = mll% + mz(l% + l% + lelz COS(GZ - 91)) (31)

0
dl
:(_—O)Q=[ 0 o ] (32)
dt _Zmzlllz Sll’l(@z - 01)(62 - 61)91

Hence, the Newton-Euler equations for the equitaamle pendulum system are:
. dl, 0
ZMS" =b-g+(ﬁ)-9+ f(Qthz)dm+gf(r><z)dm (33)
cv cv
. 0 9°
Yt = [{(oxr)+ (@xwxr)ldm+20x 5 [ rdm+ o [rdm 34
cv cv cv
Also, the position vector of the masses from thiep@ are:
l; sin 6, l;sinf, + I, sin 0,

= [—ll cos Gll = [—ll cos6; — 1, cos B,

0 0

(35)

=

If v;,v,,a, anda, are the velocities and accelerations of the twosemas observed in the body frame (described
in the inertial frame), we have:

RKEN

[N
(Il

(=[]
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-lz CcoSs 62 (éz - él)

22 = lz Sll’l 02(0'2 - 9‘1)

[ 0

lz CoS 62 (éz - él) - lz Sln 92 (éz - 91)2

L = 1, sin0,(6, — 6,) + 1, cos 6,(6, — 91)2 (36)
0
Hence, we have:
f(ﬁxtxﬂ)dm=mz(9><rz><zz)=9 37)
@
3% f(rxz)dm =my(r, X @) =0 (38)
cv
d
2w X 3 fﬁdm = (ZQ X gz)mz (39)
az cv
FTe) f rdm = m,a, (40)

The net external moment about panis:

0
> Mg = 0 (41)
—m, gl; sin 0; — m,g(l;sinf; + l,sind,)

Substituting above terms into the Euler’s equatrthe equivalent single pendulum system, we obtai

(my + my) 26, + myl20, + myL4 1, cos(0, — 6,)(6, + 6,)
+m2lllz SIH(QZ - 91)(912 - 922) + (ml + mz)gll sin 91 + ng lz sin 92 == 0

(42)
Similarly, net external force on the mass, + m,) is:

—T sin 6,
Z Fext = [T cos 6y — (my +my)g (43)
0

where, T is the Tension force acting on the pendulum balbhs8tuting above terms into the linear momentum
balance for the equivalent single pendulum systeengbtain:

(ml + mz)ll COoS 91 él + m2l2 COS 92 éz -
(m; + my)l; sin0; 82 —m,l,sinH,02 = —T sin O,

(my + m,)l, sinf; 6; + my,l,sin6, 6, +
(my + m,)l; cos 0; 0% —m,l, cosB, 0% = TcosB; — (my + my)g

(44)
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Multiplying equation (42a) by, cos 8,) and equation (42b) b§{, sin 8,) and adding the two equations,
we obtain:

(ml + mz)lfel + mzlllz COS(QZ - 91) éz - mzlllz Sll’l(92 - 91)922
+ (my + my)gl;sinf, =0

(45)
Subtracting equation 43 from equation 40, we obtain

mzlllz COS(BZ - 91) él + mzl%éz + mzlllz Sln(92 - 91)912 + nglz Sll’l 92 = 0
(46)

Thus, we observe that the two equations 43, 44irditausing Transport Theorem are indeed the gowegrni
equations of motion for a double pendulum system.

G. Comparison to Previously Established Work (Thomsotf)

Thomsondescribed equations of motion for variable massesys by analyzing the motion of a system of point
masses. This section of the article deals withenévihg the Newton’s equation by using the Transf@dreorem
approach as described earlier. In order to be stamti with the notations used by Thomson, we desctie
following notations:

»i * position of " particle in the rotating frame
poi; : velocity of {" particle in the rotating frame
B oc : position of COM in the rotating frame

;_‘);m : velocity of COM in the rotating frame

r; : position of I particle in the fixed frame
1. : position of COM in the fixed frame

ﬂ p(w.dA) = —mn

Hence,the linear momentum balance for this systambe re-written as:

I_:B+ES=Zmi{ao+wxpoi+ﬁx(ﬂxﬁ"i)}

+2w X < Zml p(,l) — 2w X m;_)oe

mpoe) |
6t2 Z m; pot - —mu (47)
Now, by definition of COM,
Z m; Boi = mf_)oc (48)
B
a , :
= az M; Poi = MPoc T MPoc,,, (49)
= Z M Poi = MPoc + MPoc,,, + 2MPoc,,, (50)
11
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o (o
- —(’Zf"e) = #pe (51)

Hence, the baance of forces can be re-written as:
Ey + Fs = mag +ma X poc +m (@ X (@ X poc))
+2w X m (goc - goe) + 20 X MPqc,,,
+1i1 (Poc = Poe) + Mocyey + 11 (2Pocye — 1) (52)

However, from kinematics we know:
fr=ap+ (Q X goc) twx (Q X goc) + 20 X Pocyyy  Pocre;
=>F= m_C —m [29 X (f_)oe - f_)oc) - ZBOCrel + E] -m (f_)oe - f_)oc) (53)

As observed, the above equation has the exact &ameas derived in Thomson'’s paper.

H. Comparison to Previously Established Work (Cornelise’)

Cornelisse et al. derived the equations of motiba dgid rocket. If the origin of the body frame located at the
COM, the linear momentum balance equation can heiteen as:

Fg+Fs = fp{go+g‘><r+g><(g><r)}dv
cv =0 =0

=0

—Fc,Coriolis Force

+azf dv+af (wda) + [ pu(w.a)
3¢z | Prav+oo | pr(w.dA) + | pu(w.dA
cv CcS CcS
=0
—FrelTransport Theorem in Rotating Frame

(54)
Or equivalently,

d'Vem
d't

Fpt+tEstEtFEa=m

(55)
where,F, = 2w xmr, and F., = %+ mU,., . The Coriolis ForceF, term matches the one in Cornelisse

(4.2-6). The Relative Forcé,,; term matches the one in Corneligde2-12). The final equation 55 has the same
form as 4.2-1 irCornelisse. Similarly, the angular momentum balampeation for a rigid rocket has the same form
as described i€ornelisse.

12
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Figure 5. Flight profile of SIAD test.

- —
. Flight Dynamics Frame o 4
. (adopted from CEV) .~
| I 1oN:
0,00

(&) —  R(ot) —» Ecer)
EceR) —>R,(180)R,(90° - lat)Ry(long) —>
—>  R(yaw)R,(pitch)R(roll) —

—  R(be@)R(-alpha) 5 (W)

Figure 6. Frames and transformations used.

lll.  Equations of Motion of Variable Mass Spinning Systen under Thrust

Future robotic missions to Mars and eventual hueioration of the Red Planet will require that manassive
payloads than the one-ton Curiosity Mars rover &lévered to the surfaéeNASA is developing new large, sturdy,
13
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and lightweight systems to deliver next- generatiovers and landers on Mars. These new technolagiesd be
able to slow larger, heavier landers from the ssgm@c speeds of Mars atmospheric entry to the subgpound-
approach speeds necessary for a safe landing. Bystems, called low density supersonic decelesatm to
solve the complicated problem of slowing Martiarirgrvehicles down enough to safely deliver largglpads to
the Martian surface without bringing along massimeounts of extra rocket propellant or carryingrgdaand heavy
atmospheric entry shield. Of Entry, Descent, anadiag (EDL) technology developments over recentrgea
progress has been made in Entry (e.g. guidance)lLanding (e.g. skycrane concept for the Mars Saenc
Laboratory) but little progress made on Descenaddievices). NASA is interested in maturing suparsalrag
device technology for future robotic and mannedsioiss to Mars. The LDSD (Low Density Supersonic
Decelerator) Projetwas established to fully test two types of dragicks: a) Supersonic Inflatable Aerodynamic
Decelerator (SIAD), and b) Supersonic Ringsail Blamtée (SRP). During motor burn, a spin rate is usetitigate
the impact of thrust-to-center of mass offset utaisty on the trajectory flight path during maingéame operation,
since there is no active control system. A pretiietpitch over early in flight as the vehicle trigeng the relative
velocity vector is critical for targeting the poiat the end of the trajectory when the deceleratorflated. Shortly
after main engine cutoff, the vehicle is spun damd the SIAD is deployed. While SIAD is deployednmimal
residual roll spin rate is desired to avoid maskKiight dynamic behavior. Stratospheric tests @& ttbSD would
conducted in 2014 and 2015 at the Pacific Missimde Facility operated by the U.S. Navy on Kauaiyeii. A
large scientific balloon provided by NASA Wallop$ight Facility and the Columbia Scientific Ballodracility
would lift a solid-rocket powered test vehicle to altitude of about 120,000 feet (37 kilometers)ithid the
stratosphere, the LDSD payload would undergo aaipkwered trajectory to reach supersonic speedisham test
the deployment and function of the inflatable deraors, followed by recovery of the balloon anst teshicle in
the ocean.

Figure 5 shows the fight profile of the SIAD te§he mission design elements include: a) a balleamdh; b) a
Star48 engine / CEV type configuration; c) the elhiis spin-stabilized during powered phase; d)uhkicle is
aero-stabilized after powered phase; e) the SIA@e@oyed at ~Mach 3.75; f) the parachute is degglogt ~Mach
2; and g) the system finally descends on the patadb a water landing.

Figure 6 depicts the various reference frames usdlte analysis: ECI stands for Earth CenteredtigdelECEF is
the Earth Centered Earth Fixed frame (related ¢oHEI through the Earth’s spin rate), NED is thetNd&ast-
Down frame (related to the ECEF frame through theall latitude and longitude), B is the vehicle’sdipdrame
(related to the NED through the vehicle’s roll cpitand yaw angles), and W is the aerodynamic wiaché, related
to the B frame through the angle-of-attack anddigdengles.

The equations of motion of the SIAD deceleratonasriable mass spinning system under thrust aieedefrom

following assumptions: a) Spherical Earth rotataigconstant rate of rotation of ECEF frame wrt. E@ime; b)
Trajectory wrt. ECEF parameterized via magnitudeaafius vector, geodetic latitude, longitude; cpUstandard
atmosphere model; d) Spherical gravity model withand J3; e) Vehicle is a rigid body with varyimgss
properties; f) Mass properties and their time raiEshange updated at every time step; g) Vehicdesiation
kinematics parameterized via components of positemtor of c.o.m. wrt. ECI; h) Vehicle rotation kimatics of B-
frame wrt. ECI frame parameterized by quaterniorapeeters; i) Vehicle rotation kinematics of NER#fre wrt.

ECEF-frame parameterized by latitude and longitadgles; j) Vehicle rotation kinematics of B-framvet. NED-

frame parameterized by roll-pitch-yaw Euler anglkf;Vehicle rotation kinematics of W-frame wrt. Bafme

parameterized by alpha and beta angles; I) Thpyslieal with no misalignments along spin axis; Saiis is roll

axis; m) Variable mass effects, including jet damgpiorces and torques, are included; and n) theesyslynamics
propagation scheme used is a Runge-Kutta integrattheme at 100 Hz, with the output sampled at.1 Hz

Several assumptions are also made in regards tgatdynamic interaction during the propulsive gh#drst of all,
there are disturbance forces and torques inducekeovehicle by the solid rocket burn. These irttoa effects are
both steady and unsteady. The steady interactifattefgo under the name of Jet Damping. The jetpitegn
produces a stabilizing or destabilizing moment @pianing vehicle induced by the interaction betwtee Coriolis
forces and pressure field inside combustion chardberto the steady gas flow. The main assumptiged in the
modeling of the steady gas-dynami interaction é$fece the following: a) Rocket and combustion galkectively
are an isolated system; b) Solid portion of sysiemgid; ¢) Burning grain surface and nozzle ex# where mass
flow occurs; d) Steady angular rates; e) Rocketionadoes not affect internal flow; f) System isspnmetric wrt.
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the longitudinal axis; g) Fluid flow within contralolume is steady and symmetrical about longitudaas; h)
Fluid particles have no whirling motion relative ttte solid portion; and i) gas exit velocity is fanm. The main
assumptions used in the modeling of the unsteadydgaamic interaction effects are the following:Rgquires
high-fidelity modeling of inertial waves inside cbmstion chamber; b) Jet damping theory applies tmislender
rockets. In large spinning motors, there are stn@spnant, wavelike interactions between the flbwases in the
motor and the angular motion of the wobbling speafécand large nutation growth may then occur. sehe
assumptions are also reviewed'inAs a result of these assumptions, some termsénlinear and angular
momentum balance can be dropped out. These siogtidhs are summarized in Figures 7 and 8.

Nd
L R Rigid body
il . offset
J[Bo"‘QXQXE*‘QX!]dB"' \:_Il>transport
cv terms
20x| .prdv + [ pr(w-myds |+ [ Corio
ot o N cs coupling

N

b
i\j pras+2 | pr(w-m)ds |+ [ py(w-m)ds @
at cS \\\ CS

d’t TN

Leads to
@ @ @ jet damping
-Thrust T
Convective Unsteady term

acceleration

Figure 7. Thrust dependent terms in linear momenturrbalance.
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= J.[ X Bu dB |:> transport terms
B

y ] Rigid body
+£0 ‘@4—‘;0 .Q+@x£0 & I:'> Rotational terms
+I prXx(@Xr)(w-n)ds +mx xvdV f:;gmpic
& L terms

a5

+§j\gxde+!sp(zxx)(ﬂ-u)dS

t
cv _ Leads to
jet stiffening

Unsteady

-Thrust
term

moment

Figure 8. Thrust dependent terms in angular momentm balance.

Figure 9 shows the mass and mass flow rate asaidanof time during burn. Figure 10 shows the motaeof
inertia and the rate of change of the moments eftie during burn, and Figure 11 shows the locatibrihe
vehicle’s center of mass and applied thrust, amation of time.

T T

000 T T T T T T

T T T T T T

50
time: [s] time [s]

Figure 9. Mass and mass rate of change as a functiof time.
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Figure 10. Moments of inertia and their rate of chage as a function of time.
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Figure 11. Location of the center of mass and app@d thrust, as a function of time.

Steady Gas-Dynamic Effects
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With the simplifications shown in Figures 8 andtte linear momentum balance equation becomes:
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m{a,+axr+ox(wxr)]=
F@(t
20 xj'%pr (v,-n)ds

—anvr(vr-n)ds

) (56)
_EJ-VO erdV
®d
—2a) X EJ.VO pl’ dV
and the angular momentum balance equations become:
lo+oxlo=M,,
+p, x T
—lw
—J.SC[p x(@xp)](pv, -n)dS
_J'VCp[a) x(pxv, ):|dV (57)
B
_E ch(p X Vr)dV
—J.Scp(p xV,)(v,-n)dS
Here, we have used the following definition foe tinass flow rate:
rhc=—LCp(Vr-n)dS (58)
Following Cornelisse, and introducing the equivalenass flow center vector”, i.e., the location in
body frame of the thrust resultant over the noaréa:
1
pe—aj.%pr(v,-n)ds (59)

the “apparent forces and moments” due to the gtgad dynamic effects can be written as:
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Fapp = —20 % jSOpr (v,-n)ds
_J.s)pv’ (v,-n)ds
B
_EJ.V erdV (60)

°d
—2m % EJ-VO prdv

=2moxp,+T

Moo = _.[sc[p x (@ x p)](pvr -n)dS
—IVCp[w x(pxVv,) v

B

% VCp(p XV, )dV

=], P(pxv,)(v, -n)ds (61)
= Mp. X0 X pe+p xT

As shown in Figures 8 and 9, other terms vanislaount of: a) the solid portion of system isdjdd)
System is axisymmetric wrt. longitudinal axis; cjuil flow within control volume is steady and
symmetrical about longitudinal axis; and d) Fluigrticles have no whirling motion relative to thdido
portion of the system. Therefore, the final equagiof motion, used for simulation of the systemimtythe
propulsive phase, are:

—qy (62)

for the kinematics, and

mla,+axr+ox(wxr)]|=F, +2moxp,+T
: (63)
lo+oxlo=M_,-lo+mp,xoxp,+p,xT

for the linear and angular momentum balance. Natiee Coriolis-like terms due to mass flow in the
translation dynamics, the “jet-damping” terms aheé tmoment due to the thrust (thrust misalignment
moment) in the rotational equations. These equatere consistent with those derived in Corneliss a

Eke.

J. Considerations on System Stability

If we observe the homogeneous rotational equatio(&3), and use (p,q,r) for the roll, pitch andwates,
assuming no external forces, and no thrust misalegnt moment, we obtain:
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Isp+(|'s_ClmRr?)p:O
la-(l, - Is)qr+(l't—czmp§)q=0
i+ (1 =1 )ar +(1, - cmp?)r =0
(64)

We can assume a harmonic approximation for thetisolwf these equations, and we can obtain the
following homogeneous solutions:

{_ j;[(rs_qmaz)ns]dt} (65)

e{*J.O[([r%mPez)/'Jdt}eiJ.;[(It—lS)/It]dt

p(t) = p(0)

q(t)+ir(t)=[a(0)+ir(0)]

from which we note that the system dynamics islstdlithe following conditions are satisfied:
(I'S - clme) <0

ﬁ [(ii-cmp? )it Jdt > 0
(66)

Figure 12 shows the vehicle roll time constant disnation of time, indicating that, for the variabinass
parameters assumed for this vehicle (shown in Eg@Qr 10, and 11), the roll channel is unstable givén
an initial roll rate, the vehicle is expected t@elerate under thrust. Conversely, the combinechpind
yaw channels are stable, and theis initial rataulshdecay to zero during thrust. The simulatiorutss
described later on, will confirm these assessments.

s b [
T T T

apin time constant [1/s]
| |

I | 1 1 | ! 1 1
_‘I'l 10 n 30 40 50 60 T 89 80 100
time [s]

Figure 12. Roll time constant as a function of time

K. Uniform and Non-Uniform Exit Flow

The equations of motion (equation 63) have beercialed for various profiles of exit velocity
distribution. This development follows the work Bie et &°*2 In Eke, the angular momentum balance
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is rewritten as:

Ia')+a)><Ia)=—fa)—J.SC[px(a)xp):|(pvr-n)dS

(67)
where the point of thrust application p, and thessrféow rates, for uniform exit velocity, become:
p = X0, +rcosdb, +r<indb, (68)
Vv, -Nn =u=constant (69)
n=-| p(v, -n)dS=-zxUuR?
=~ [, p(v, -n)dS=-7xUR;
(70)
( R R )
Pe =( Pe % J
(71)
The mass flow term in equation (67) becomes:
2 2
Lo (e v, mjes=—m| B¢+ p, o) 72
And, consistently with Eke, the final rotationaluedgjons are:
- R
|1, + (13— 1) w,05 +[1, = (02 +7)]a)1 =M,
| R
L, + (1, = 1)y, +[1, (o] +I)]a’2 =M,
, . R (73)
L0, + (1, - 1)) 0,0, +[|3_m7]a)3 =M,
If the exit velocity is non-uniform, the rotationadjuations become:
|a)+a)xIa):Mem—[a)+pexT—_|.Sc[px(wxp)](pvr -n)dS
v, -n=u(r) (74)

and, defining the following andg parameters, function of the exit nozzle rad®ss
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2 2
f=p7 &, _R niform
Pet = 975 (uniform)
2 2
f :p§+3ﬁ, g::ﬁ“ (linear)
20° 10 (75)

2 2
f=p? +%, g:% (parabolic)

the final rotational equations for the case of moiform exit velocity become:
Lo+ (13— 1,)@,0, +[1; - f]o, = M,
L@, +(l, - )0, +[1, -Mflo, =M,

L0, + (1, = 1)) 0,0, +[|'3_ mgle, = M,
(76)

Figure 13 shows the forces and torques arising fthensteady gas-dynamic interaction, i.e. the “jet-
damping” terms. Figure 14 (left) shows the spite @during the burn for uniform, linear and parabagas
exit velocity profiles, indicating a growth in tisgin rate. Figure 14 (right) shows the spin ratedftferent
values of the exit nozzle radius, indicating thdiew the nozzle radius is large, the effective tesnilthe
spin rate is to decrease it, instead of increaiirithis result is consistent with the results aled in 1975
during the propulsive tests for the Viking vehfcl&éhe BLDT vehicle had four large retrorockets, tean
with respect to the longitudinal axis, effectivétyming a large effective exit radius, and the testults
indicated that at the end of the test the vehield Blowed own its roll body rate. The SIAD vehicle,
instead, ha only one rocket along the longitudmas and, effectively, a much smaller exit radibat tthe
BLDT.
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Figure 13. Jet damping forces and torques, durington.
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Figure 14. Roll (spin) rate during burn, as a funcion of exit velocity profile (left) and exit
radius (right).

L. Unsteady Gas-Dynamic Effects

STAR-48 motors are prone to coning instability &tign amplification due to unfavorable gas-dynamic

interactions) which has been observed on severalsimn$". The observed STARS8 burn dynamics for
past prolate payloads indicated that:

- at t=0 sec: Start of burn. Dominated by small nesidvobble induced during spirdp. Rates
usually less than 1 deg/sec.

- at t=50 sec: Mieburn. Short periods of coning growth/decay followsdsustained growth during

last 10 seconds of motor burn.
- at t=87 sec: End of motor burn. Lateral angulagsahay exceed 15 to 60 deg/s. Final cone angle

is in the range £0 deg depending on initial wobble angle, vehictenmants of inertia, and spin
rate.
The STAR-48B (Long Nozzle) motor was successfulgdias an upper stage of the Delta Il launch vehicl
on over 90 missions from 1989-2009. All flightsre/@xo-atmospheric (SIAD flight is endo-atmospheric
A comparison of key flight dynamics parameters jmesly done by industry indicated that LDSD was
outside of Delta Il flight experience for severalykparameters which may limit applicability of emigal
data. The Delta Il Star-48B flight experience (foolate payloads) also indicates that the spinfieziedue
to jet damping cannot be conclusively predictecedam prior experience.

To fully address this issue, the variable-massdrigpdy model described above was extended to
account for the internal unsteady gas-dynamic &utsn by including modeling of the inertial wava#is
derivation follows Ref. 7, and is based on inclgdm corrective term in the rotational equaitong iha
proportioonal to the lateral body rates only (mq@hy The rotational equations of motion now become

lotoxlo=M,-lo+Mp,xox p.+p,xT+R .0

(77)
where theRy,nis given by

Ryin =2, BY (-eA, + H)+BY(D, +F, ~ H) |

(78)
assuming a velocity and pressure distribution mside STAR48 engine based on an expansion in
cylindrical Legendre functions [Flandro] given by:
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u=Y" B,Q,exp(s)
p=3 Ad.exp(t)

(79)

wherep is a frequency in rad/Q., andé,, are velocity and pressure amplitud&s, B, Crn, D, Emy Fry Hm
are “gas-dynamic” mode shapes described in [FIgnthre system natural frequencies are:

A = 2[ 1+ b 2]
(80)

the vehicle nutation frequency is:

/1

l spin transverse)

W, = Q(l—
(81)

Figure 15 (left) shows the result of the verificatiof the model used to derive the Rgain. It waspgared
to the derivation of the Rgain for the Westar vishiehich is documented in [Flandro]. While the taasly

gas dynamic model did not reproduce exactly thet@egata, the trend was very similar, including the

amplification of the lateral body rates, with aalepancy only in the peak value of the amplificatio
Figure 15 (right) depicts the vehicle’s Rgain afumaction of time, showing the distinct amplificatiaf

lateral rates during the burn. However, the restitaody torques are small, hence the model of the

unsteady gas-dynamic effects predicts lateral ®sqghown in Figure 16) a factor of 10 smaller ttian
jet damping torques.
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Figure 15. Rgain and Rgain torque, during burn.
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Figure 16. Rgain and Rgain torque, during burn.

IV. Visualization of LDSD Dynamics using JPL's DSENDS kght Mechanics Engine

DSENDS is a physics-based engineering simulatosfiaice missions developed by the Dartslab teanASARs
Jet Propulsion LaboratoryDSENDS models the spacecraft as a multi-bodyesysthere the spacecraft position,
attitude, articulation and body flexibility statéend their rates) interact with gravity, atmospketerrain, and on-
board spacecraft devices in response to ground e@masnand flight-software directed sensing and obaittions.
DSENDS is a deployment of the Dshell multi-missgimulation framework. It was originally designedpmvide
functionality for Entry, Descent and Landing (EDtrpoblems but has since been generalized to praagabilities
relating to spacecraft ascent, orbit, proximity r@pens, rendezvous descent and surface operg@ogsroving).
The DSENDS tool is in use at JPL for technologyfemt development — all the way from Pre-Phase Ayaisato
flight operations. It is used by NASA/JPL missidos performance studies, cross-validation of otsienulations
and tools, and flight-critical EDL mission operatincluding lander targeting. It has been usedNBSA/JPL
Technology Programs, Program Offices, and Missioalgsis teams as a high-fidelity simulator to suppooposal
development, as an integration platform and tedt-fir studies, and as a tool for algorithm and vgafe
development. As part of JPL's end-to-end Missiostems, DSENDS interoperates with JPL’s Interplayeta
Mission design and navigation software Monte. ighft-operations it is used to verify the actionsya$sion actions
(e.g. determine the landing footprint), performgtting operations (e.g. to design interplanetagjettory
correction maneuvers). As the test program for LDiSQIeveloped the various test scenarios are getkeia
DSENDS and displayed using the visualization cdjtiesi of the tool. This allows the test engineers to design the
test system (e.g. size the rocket motors used telem@te the test article), visualize the trajectand related
constraints (e.g. land over- flight, communicatiime-of-sights), camera placements, etc.
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Figure 17. Snapshot of DSENDS flight simulator.

V. Conclusion

This paper derives the equations of motion of \deianass systems using a coordinate-free apprddese
equations have been verified with simple modeld, the terms originating in the steady and unstegydynamic
interaction effects have been used in the modedind simulation of the propulsive phase of the Ssqrdc
Inflatable Advanced Decelerator when the vehiclsp@ning. The variable mass terms have an effettt the
translation and the rotation of the vehicle durhgist, indicating an increase in the roll ratee Hpproach used in
the paper was to develop a powered phase full 6 B@famic model of the SIAD test vehicle, and apaljet
damping model typically used for a variable mag&lrbody slender rocket. Several authors have afeeil the jet
damping models to capture the interaction betwhercombustion physics and the system motion. kighper we
describe how these models are used for the prediofi the SIAD vehicle stability during motor buemd address
the effect of different exit gas velocity profilem the roll spin stability during burn. The effeot thrust
misalignment has been investigated and seems tedlegible. The jet damping analysis is usuallydazhenly on
variable-mass rigid body model of jet-damping, whipplies to slender rockets. STAR-48 is howevdarge
rocket, and internal gas-dynamic interactions arportant. STAR-48 motors are also prone to coniggability
(nutation amplification due to unfavorable gas-dyi@interactions), which has been observed in fligh several
occasions. To fully address this issue, the végiatass rigid body model was extended to accounthi® internal
unsteady gas-dynamic interaction by including miodelof the inertial waves. The conclusion was tttaEs
extended model predicts lateral torques a factatGogmaller than the jet damping torques. The @dddtect of
vehicle aerodynamics on the rigid body variable srdygnamics, which is important because of massetiepl is
found not to adversely affect the static aerodyicastability of the system by changing the centemaks to center
of pressure distance. The results of the simulatghow that in the absence of thrust misalignrttentoll spin rate
grows from 15 to 25 deg/s, depending on the assuaxiedelocity profile.
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