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A B S T R A C T

In this paper, the problem of decomposing a large interconnected power network into smaller loosely-coupled
zones in order to facilitate easy and flexible management of power transmission systems is addressed. This
decomposition enables secondary level voltage control at regional levels and controlled islanding, which can be
used to prevent the spreading of large-area blackouts. An electrical power transmission system is viewed as a
fully-connected, weighted directed graph, where nodes and edge-weights of the graph represent buses and
quantifications of electrical similarity between any two buses, respectively. Unlike impedance or admittance
based similarity measures which are largely restrictive and do not account for topology of power networks, the
electrical similarity between any two buses in this work is considered in terms of their influence over the re-
mainder of the network. In particular, the electrical similarity between two buses is quantified in terms of the
respective voltage fluctuations over all the buses in the network as a result of reactive power perturbations at
these buses. Moreover, quantification of electrical influence does not have significant bearing on the compu-
tational complexity since it is computed using jacobians obtained as byproducts of solving power flow equations.
The resulting directed graph is then clustered into prespecified number of zones that are weakly coupled elec-
trically using a graph-theoretic clustering algorithm. A rule-based decentralized control strategy is proposed for
effective management of bus voltages in the weakly coupled zones that are obtained as a result of the clustering
process. The proposed approach is then tested on IEEE test systems for applications such as supervisory voltage
control and islanding, and results in excellent identification of mutually decoupled sub-networks within a large
power network.

1. Introduction

It was only about fifteen years ago that the National Academy of
Engineering (NAE) regarded the North American electrical grid as the
most significant engineering achievement of the 20th century [1], and
yet the modern power transmission system faces major challenges [2]
due to ever increasing complex interconnections among multiple ele-
ments in the grid. Some of these challenges include avoiding cascading
failures [3], ensuring network robustness [4], and reduction of large
network into smaller systems for better analyzability [5]. Better stra-
tegies are required in order to manage and mitigate risks related to
network failures.

An electrical power transmission system can be viewed as a
weighted directed graph, where nodes and edge-weights of the graph
represent buses and quantifications of electrical similarity between any
two buses, respectively. This abstraction enables tools from graph
theory to be employed for effective management of power systems

through identification of cliques (or clusters). Such decomposition of a
large interconnected power network into smaller loosely-coupled
groups facilitates easy and flexible management of the power trans-
mission systems by enabling secondary voltage control at regional le-
vels [6] and controlled islanding that aims to prevent the spreading of
large-area blackouts, thereby making the network robust to power and
load fluctuations [7].

In this work, an interpretable classification of power networks is
provided by identifying mutually decoupled (or loosely coupled) clus-
ters (or zones). Such classification helps to control the spread of power
outage and simultaneously identify the nodes that are most affected
during any unforeseen event of blackout or catastrophic failure. A novel
notion of electrical similarity between any two buses and an efficient
graph clustering algorithm are proposed such that a bus is tightly
coupled to other buses within its cluster, while bearing loose coupling
with nodes in other clusters. This decomposition reveals the underlying
topological structure in the network and enables synthesis of a
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supervisory voltage control scheme where it suffices to perform loca-
lized corrective actions (at cluster level) in case of any unforeseen
events.

Several recent works have explored the graph-theoretic abstraction
of power networks to come up with similarity measures and clustering
algorithms for partitioning a large network. These similarity measures
can be broadly classified as - (a) Structural similarity, which is purely
based on graph-theoretic quantities such as degree distribution of nodes
and degree assortativity [8], graph diameter [9] and characteristic path
length [10], (b) Topological similarity, which incorporates underlying
physics (such as Kirchhoff’s laws) to derive electrical distance either from
offline (non realtime) quantities such as nodal conductance matrix
[11,12] or power flow matrix [6] and online quantities, such as derived
time-series phase angle data from phase measurement units (PMUs).
Graph theoretic measures of structural similarity are easy to obtain and
are often useful in comparing a given power network with other graph
structures. However, such measures often fail to capture electrical
coupling among the buses of a network primarily due to not accounting
for underlying dynamics. On the other hand, topological similarity
measures derived from circuit laws and network theorems alleviate this
problem. It is further preferred to employ offline measures of similarity
since the online methods rely on the observed data after the disturbance
has occurred. While majority of the above work focuses on hard par-
titioning of electrical networks, the authors in [13,14] employ a fuzzy
clustering approach for PMU placements such that a ‘dissimilarity’ be-
tween PMU bus and non-PMU bus contingency response signals is
minimized. The algorithm for network partitioning described in our
work enjoys the best of both worlds. The proposed algorithm initializes
with a fuzzy, unbiased estimate of network partitions, which are sui-
tably hardened as the algorithm evolves.

The notion of electrical similarity proposed in this work is based on
computation of first-order perturbation matrix obtained as a result of
solving power flow equations [6]. In particular, two buses are con-
sidered close, if they have similar influence over the remainder of the
network. Influence of a bus on another is characterized in terms of
sensitivity of voltage fluctuations at one bus due to reactive power
perturbations at another bus. The choice of quantification of influence
can be more general to include perturbations in active power injections
and phase angles. The characterization of electrical influence does not
have any bearing on the clustering algorithm proposed in this manu-
script. However since most networks exhibit active-reactive decoupling,
it suffices to restrict the notion of influence in terms of fluctuations in
voltage magnitudes due to reactive power perturbations. Consequently,

it is further shown that grouping of buses under the proposed notion of
influence is such that the voltage fluctuations at a bus due to pertur-
bations at buses within the same cluster are more than voltage fluc-
tuations due to perturbations at buses from other clusters. That is, not
only that perturbations at two buses in the same cluster have similar
effects on the entire network, the resulting voltage fluctuations at buses
from other clusters are much smaller than the voltage fluctuations at
the buses from the same cluster. Thus the proposed notion of electrical
similarity favors partitioning a network into loosely coupled zones.

Quantification of electrical distance necessitates development of an
efficient graph clustering algorithm which is scalable, independent of
initialization and has ability to avoid solutions comprising of non-ro-
bust clusters. In the proposed work, the problem of classification of
power networks is presented as a combinatorial resource allocation
problem. Similar combinatorial optimization problems have been stu-
died in different areas such as minimum distortion problem in data
compression [15], facility location problems [16], pattern recognition
[17], neural networks [18], graph aggregation [19], motion coordina-
tion algorithms, coverage control [20] and mobile sensing network
problems [21]. These problems are computationally complex, non-
convex and suffer from poor local optima that riddle the cost surface
[22]. A variety of heuristics ranging from repeated optimization with
different initialization, heuristics for good initialization, to heuristics
for cluster splits and merges have been proposed in literature to address
above difficulties. The graph partitioning algorithm proposed in this
work is based on deterministic annealing (DA) algorithm [23], which
avoids many poor local optima while maintaining a faster convergence
rate when compared to approaches such as simulated annealing [24] or
Lloyd’s algorithm [25]. The DA algorithm shares connections with the
computation of rate-distortion functions in information theory [26,15],
where an effective rate-distortion function parameterized by an an-
nealing variable is formulated and this function is deterministically
optimized at successively increased values of the annealing parameter.
Fig. 1 summarizes the proposed approach to clustering of electrical
networks.

As described earlier, the primary goal for partitioning a large power
network is to facilitate design of local controllers and allow for con-
trolled islanding so as to prevent the spreading of large-area blackouts.
A rule-based approach for decentralized voltage control is proposed,
which exploits mutual decoupling of the partitioned network and re-
quires only local control actions only at the local level. Similar rule-
based expert system for voltage control is proposed in [27], albeit the
control actions were not confined at local level. The proposed approach

Fig. 1. Proposed approach for clustering of an electrical network.
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combining clustering and rule-based control is tested for scenarios such
as overloading and controlled islanding, and demonstrates faster vol-
tage recovery as compared to [27]. The main contributions of this work
can be summarized as:

a. Quantification of electrical distance: A novel notion of elec-
trical distance between two buses is proposed. In this notion, two buses
are considered close if they have similar influence over the remainder
of the network. The similarity is quantified in terms of the respective
voltage fluctuations over all the buses in the network as a result of
reactive power perturbations at these buses (primarily due to active-
reactive decoupling in inductive networks). In the case of systems
where the hypothesis of active-reactive decoupling does not hold valid,
the measure of electrical distance proposed in this manuscript can be
easily modified to include more general measure also comprising of
active-power perturbations and fluctuations in phase angles.

b. Graph-Theoretic clustering algorithm: The algorithm proposed
for partitioning an electrical network is based on aggregating buses
(nodes) of the underlying graph into nodes of a representative super-
graph. Each node of a supergraph represents a cluster (zone) and
comprises of mutually strongly coupled electrical buses, whereas two
zones are practically decoupled with each other. Such an aggregation
defines a partition of the underlying electrical network.

c. Rule-based voltage control: A decentralized rule-based voltage
control scheme is proposed for effective management of power net-
works, where violations in bus voltage magnitudes can be corrected for
using only ‘local’ measurements and control actions.

d. Validation on IEEE test systems: The proposed clustering al-
gorithm along with the rule-based control strategy is employed on IEEE
test systems. Several critical scenarios ranging from undervoltage si-
tuations to potential cascading failures due to severe underloading are
considered and successfully alleviated by the proposed scheme.

2. Some preliminaries and quantification of electrical similarity

In this work, quantification of electrical similarity between two
buses is based on computation of the Jacobian matrix obtained by
solving power flow equations [28]. We first describe some preliminaries
on fundamental electrical quantities and matrix equations through a
toy-network containing four buses in Fig. 2. These buses can be of
different types - Slack bus, Generator bus (or PV bus) and Load bus (or

PQ bus). Each bus i is completely specified by four physical quantities -
voltage magnitude Vi , phase angle i, real power flow Pi, and reactive
power flow Qi. Link between two buses i and j are specified in terms of
line impedance Zij. The impedance matrix of the network is denoted by
Zbus. The admittance matrix YY [ ]ijbus is the inverse of Zbus. The cur-
rent flow through bus i is given by Ii. V and I denote the column vectors
of voltage and current magnitudes, respectively. Similarly, P Q, , are
the column vectors depicting real power flows, reactive power flows
and the voltage phase angles at the buses of an electrical network.

The admittance matrix Ybus is generally complex with real part
(conductance) Gij and imaginary part (susceptance) Bij, i.e.

= +Y G jBij ij ij. These fundamental electrical quantities are related to
each other using Kirchoff’s laws and power balance equations, and can
be described as:

= =

= +
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where N is the number of nodes (buses) in the network and
…j N{1, , }. The last two equations are called the power flow equa-

tions, and are typically solved to address the power flow problem [28].
The goal of a power-flow problem is to obtain complete voltages
magnitude and phase information for each bus in an electrical network
with specified load and generator real power and voltage conditions.
Electrical distance between two buses is quantified by considering first-
order perturbations around the operating point (power-flow solution at
nominal loading conditions). Considering first-order perturbations in
(1) results in following linearized equations:

= =
= =

I Y V Q Q V V
V Z I V V Q Q

, [ / ] ,
, [ / ] .

bus

bus (2)

The matrix ×Q V[ / ] N N appears in load-flow computation using
Newton-Raphson method. Its inverse matrix ×V Q[ / ] N N (also
known as sensitivity matrix) reflects the propagation of voltage varia-
tions through the power network due to reactive power injection at a
bus. Note that it is possible to consider a more general form of sensi-
tivity matrix where voltage variations depend on both reactive as well
as active power perturbations. However, most high power networks
exhibit active-reactive decoupling where fluctuations in voltage mag-
nitudes are tied predominantly to reactive power perturbations and
therefore it suffices to consider the above notion of sensitivity matrix.
For ease of illustration, this work investigates the sensitivity of voltage
fluctuations caused at a bus with respect to reactive power fluctuations
at another bus.

The influence of a bus on another bus is captured by the magnitude
of voltage coupling between the two buses, and is quantified in terms of
matrix of attenuation ×[ ]ij

N N , where

=V V V
Q

V
Q

, where ,i ij j ij
i

j

j

j (3)

which quantifies the voltage fluctuation at bus i per unit voltage fluc-
tuation at jth bus, when reactive perturbations are applied at bus j. Here
the normalization in the definition of ij has two distinct advantages -
(i) making the quantities dimensionless, (ii) assigning equal importance
to all the buses (i.e. = 1ii for all i). If ,i j denote the ith and jth

columns of the matrix of attenuation, respectively, then the electrical
distance between nodes i and j is defined as:

= =
=

d i j, ( ) .i j
k

N

ki kj

2

2

1

2

(4)

Qualitatively, two buses i and j are close, when the influences of these
Fig. 2. An example of a four-bus network, where buses 1,2,3 and 4 denote slack
bus, generator (PV) bus, connecting bus and load (PQ) bus, respectively.
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buses on the entire network (including the buses i and j themselves) are
similar. Note that from the definition (3), the diagonal terms of the
attenuation matrix satisfy = 1kk , for all k N1 , and therefore for
any > 0, if

< = <d i j( , ) 1ii ij ij

Similarly, we have <1 ji . Therefore < 2ij ji . Therefore, if
two buses i and j are close, then as a consequence the influence of
perturbations at buses i and j on each other are similar. Thus, if the
buses of a network are partitioned in terms of how similar they are in
influencing the network, then the influence of buses on each other from
the same cell in a partition will be large, that is close to 1.

Thus, an electrical network can be viewed as a weighted, directed
graph, where electrical buses are presented by nodes of the graph and
the corresponding edge-weights denote elements ij of the sensitivity
matrix. This makes it amenable to a graph aggregation method devel-
oped in [19], where a large weighted directed graph x with N nodes is
approximated by a smaller weighted directed graph y with K N
nodes, such that the smaller graph maintains least amount of re-
presentation error quantified in terms of a dissimilarity measure. Each
node (supernode) of the smaller representative graph y can be viewed
as a set of nodes on the larger graph x; in fact, the algorithm explicitly
gives the set of nodes in x that each node of y represents. Thus this
graph aggregation can be used to cluster nodes in x into K clusters, for
a given notion of distance between nodes. Accordingly the graph ag-
gregation method is used to group the buses in the electrical network
into clusters for the above notion of electrical distance. This graph
aggregation algorithm and its important features are briefly presented
in the next section. A more rigorous and exhaustive treatment can be
found in [19]. An important aspect of this article is the reinterpretation
this algorithm in terms of a specific information theoretic view point.

3. Graph clustering for determining loosely-coupled zones

An electrical network can be viewed as a directed, weighted graph,
where nodes of the graph represent buses and edge-weights between
two nodes denote electrical similarity between the associated buses. A
weighted directed graph W( , , ) is described in terms of

×, and +
×W which represent the set of nodes,

edges and the edge-weight matrix, respectively. Furthermore,
= N and the relative node weights are denoted by

…p i N{ }, {1, , }i , which satisfy p 0i with =p 1i i . The incoming
vector of the ith node is described by the weights of its incoming edges
and is denoted by …W WW [ , , ]i i Ni

T
1 , the ith column of the matrix W.

Distance between two nodes i and j is considered based on edge con-
nectivity given by d W W( , )i j . Note that this distance measures similarity
between nodes; for example, small value of d W W( , )i j implies that nodes
i and j have similar connectivity in the graph. In the context of the
problem of clustering power networks, buses represent the nodes of the
graph, while the edge-weight matrix of the underlying graph is re-
presented by the matrix of electrical similarities between buses.

In a graph aggregation problem, a small representative graph y
with = Ky of a large graph x with = N Kx is sought, where
similar nodes in x are aggregated into K supernodes and the resulting
edge-weights among these supernodes are to be determined (see Fig. 3).
These supernodes in turn represent the aggregated zones in an electrical
network and the edge-weights between the supernodes describe their
electrical coupling. Such an aggregation defines a map (also known as
partition function) : x y such that for any j l K1 , fol-
lowing properties hold true: (i) j( ) x

1 is non-empty, (ii)
=j l( ) ( ) Ø1 1 , and (iii) == j( )j

K x1
1 . Each partition function

defines an aggregation matrix ×{0, 1}N K as

= =i j[ ] 1 if ( ) ,
0 otherwise.ij i j, (5)

Let us consider a simple example for ease of exposition before we

dive deeper into concepts of graph aggregation. Consider the graph x
shown in Fig. 4 with = {1, 2, 3, 4}x with = =N 4x nodes. The
corresponding edge-weight matrix is given by

=X
0 0 0 0.5
0 0 0 1.5
0 0 0 1
2 2 2 0

.

Suppose we want to determine a graph y with two supernodes
( = =K 2y ), that is = {1 , 2 }y , which aggregates the graph x.
Note that in this example, X contains duplicated columns, which in-
dicates {1, 2, 3} are similar; in fact have identical edge-weight connec-
tions. Thus it is easy to verify that one of the supernodes (say 1 ) must
correspond to the nodes 1, 2 and 3 in the original graph, and supernode
2 must be associated with node 4 in the original graph, i.e., the par-
tition function is given by : {1, 2, 3, 4} {1 , 2 }. The representative
smaller graph y with edge-weight matrix Y is obtained by aggregating
nodes of x. The associated aggregation matrix and edge-weight
matrix Y are:

= =Y
1 0
1 0
1 0
0 1

, 0 3
2 0 .

However, it must be noted that X contains two distinct incoming
vectors that enable to aggregate x into y. These distinct incoming
vectors can be viewed as resources that need to be allocated to the nodes
of original graph. This viewpoint allows us to define a weight matrix

×Z N K of distinct resources given by

Fig. 3. Schematic of aggregating a large graph x into smaller representative
graph y with three supernodes. These supernodes represent loosely coupled
zones in an electrical network.

Fig. 4. Case when graph y is a contraction of x .
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=Z
0 0.5
0 1.5
0 1
2 0

.

Here the column Z i( ) approximates the ith column of X; in fact, they are
exactly the same in this example. Moreover, element Zkl in the matrix Z
can be interpreted as the directed weight from the kth supernode to the
lth node of x. The edge-weight matrix Y of the aggregated graph is
related to Z through aggregation matrix by =Y ZT . Note that in this
example, the problem of aggregating x into y is equivalent to finding
the double Z( , ) such that the cost function d X Z( , )i i i( ) is mini-
mized. Accordingly a general problem of aggregating a large graph

X( , , )x x x with = Nx into a graph Y( , , )y y y with
= <K Ny is given by:

=
×

p d X Zmin , ,
i

N

i i i
Z, 1

( )N K (6)

where represents the set of all ×{0, 1}N K aggregation matrices; the
edge-weight matrix Y is then given by =Y ZT . Here p{ }i , with

=p 1i i have been added in the problem formulation to represent
relative weights of the nodes of x, which are known a priori; in the
case where all nodes are equally important, one can choose =pi N

1 for
i N1 .
The discrete optimization problem in (6) is computationally hard

(NP-hard) and heuristics, such as Lloyd’s algorithm [25] that aim to
solve (6) suffer from the curse of poor local minima and initialization.
In this context, a deterministic annealing (DA) based algorithm for
graph clustering is described. The DA algorithm is independent of in-
itialization and has ability to avoid poor local minima. The algorithm is
described in Section 4.

4. Determining loosely-coupled electrical zones using graph-
theoretic clustering algorithm

In a graph aggregation problem, a given graph with edge-weight
matrix = =X X{ }i i

N
1 is required to be represented by an equivalent graph

with much smaller set of nodes = =Z Z{ }j j
K

1 with K N . The objective is
to find mapping … …N K: {1, , } {1, , } ascribing to each node i in the
original graph a supernode i( ) such that the cumulative representation
error is minimized. The representation error is often referred as a dis-
tortion (primarily due to its similarity to distortion function in the in-
formation theory literature) and the associated optimization problem is
given by:

=
p d X Zmin , ,

i

N
i i i

D

Z

X Z

, 1 ( )

( , ) (7)

where D X Z( , ) is the distortion between egde-wieght matrices of the
original graph and its supergraph. Note that the optimization problem
in (7) is equivalent to the optimization problem in (6). Thus finding an
optimal aggregation is equivalent to finding the optimal ‘hard’ (0–1)
association. There are combinatorially many ways to associate nodes to
supernodes, and complexity of any exact algorithm to find optimal
associations is exponential in the worst case. These associations can be
‘softened’ by ascribing a probability distribution over nodes of the
original graph. More precisely, the probability pj i of associating a node
i with supernode j is defined. The probabilistic association results in
following modified distortion:

= =
D p p dX Z X Z, , .

i

N

j

K

i j i i j
1 1 (8)

Note that the optimization problem

D X Zmin ,
pZ{ },j j i (9)

is equivalent to the optimization problem in (7) if probability dis-
tributions p{ }j i are restricted to be hard, i.e., p {0, 1}j i for all

i N j K1 , 1 . However, the probability distributions are not
known apriori. In this work, deterministic annealing (DA) algorithm is
used to estimate them. The DA algorithm seeks to maximize entropy, H,
between nodes and supernodes without exceeding a given distortion
D .

Note that the entropy is maximized if all the nodes are mapped to
the same supernode, since knowing the supernode does not reduce any
uncertainty about the knowledge of nodes of the original graph. On the
other hand, representing all the nodes by distinct supernodes maintains
maximum representation error (distortion). The trade-off between
maximizing the entropy and minimizing the distortion is achieved by
minimizing the Lagrangian given by:

+F p H DZ X Z, 1 , ,ji (10)

where is the Lagrange multiplier, referred to as the annealing para-
meter. Minimizing F with respect to the association probability pj i
yields a Gibbs distribution:

=

=

p
d

d

X Z

X Z

exp{ ( , )}

exp ,
.j i

i j

j
K

i j1 (11)

By substituting the association probabilities (11) into the expression for
Lagrangian, (10) simplifies to

=
= =

F p dZ X Z( ) 1 log exp , .
i

N

i
j

K

i j
1 1 (12)

Let us revisit the Lagrangian in (10). At low values of , minimizing
the Lagrangian is equivalent to minimizing mutual information, which
indeed is minimized when the association probabilities are uniform.
Lagrange multiplier defines a homotopy between the mutual in-
formation and distortion function. As is increased, minimization of
the underlying Lagrangian results in the minimization of the modified
distortion D X Z( , ). However, it should be remarked that at large values
of the annealing parameter , the association probabilities p{ }j i in (11)
are approximately 0 or 1, i.e., p{ }j i are hard. Therefore as increases,

from pj i ij, where ij is an element of the (hard) aggregation ma-
trix , and from the equivalence between (7) and (9) for hard parti-
tions, minimization of (12) with respect to Z{ }j results in minimization
of the original distortion function D X Z( , ). In the DA algorithm, the
Lagrangian in (12) is deterministically optimized at successively in-
creased values of over repeated iterations (For more details on the DA
algorithm see [29,23]).

Coming back to the problem of partitioning a power network into
loosely coupled zones, the matrix of attenuation = [ ]ij in (3) is
considered as edge-weight matrix X of the underlying graph x, i.e.,

=X . Application of the DA algorithm for graph clustering results in a
set of codewords Z, aggregation matrix and a smaller representative
graph y with edge-weight matrix =Y ZT . Partitions of the network
are uniquely determined by the columns of the aggregation matrix
through the associated partition function : x y. The inverse map

j( ) x
1 for all j y defines a zone (or set of buses aggregated in a

cluster) in the network.
Remark: Identifying a suitable number of supernodes (K) is a fun-

damental problem in clustering analysis. Many methods, such as gap
statistics [30] and information-theoretic [31] are suggested to address
this fundamental problem in clustering analysis. In fact in our recent

M. Baranwal and S. Salapaka Electrical Power and Energy Systems 109 (2019) 641–651

645



work [32], it is shown that the proposed clustering method has a nat-
ural way of determining natural clusters and is used here for de-
termining suitable number of supernodes.

5. Rule-based supervisory voltage control

The proposed clustering algorithm provides a classification of a
power network intended for easy and flexible management of bus
voltages in the network. The “local” voltage control is achieved using a
rule-based expert system, similar to the work proposed in [27]. How-
ever in our work, we rely only on local (comprising of buses belonging
to the same zone in a network) measurements and control actions to
achieve desired voltage control. Thus the task of a large network-wide
voltage control is reduced to control of many sub-networks with very
few number of buses.

Primary task of the proposed rule-based strategy is to ensure that
the voltage magnitudes at buses stay within the tolerable limits. This is
achieved by altering the generator voltages, adding/removing shunt
capacitances, and adjusting tap changers in the priority order -
Generator Shunt Tap Changer, where a b indicates that a is
prioritized over b. The rationale behind the proposed priority order is
understood as follows. Generators being the sources of power injection
in the network, they must be adjusted first during instants of network
failure (voltage fluctuations). Unlike transformers that interconnect two
buses (possibly belonging to different zones), shunt capacitors exist
between individual buses and ground. Thus, adjusting shunt capaci-
tance results in large voltage variations primarily in the zone the shunt
capacitor belongs to.

The rule-based actions rely only on “local” information in any event
of failure (voltage fluctuations). Consider the overloading scenario in
the IEEE-14 bus network shown in Table 4. The excessive overloading
results in drop in voltage magnitudes below allowable lower limit (0.9
p.u.) at buses 9, 10 and 14. All the affected buses belong to green (G)
zone, as suggested by the proposed clustering algorithm. As a con-
sequence, corrective actions are limited only to buses belonging to
green zone. Since a generator (PQ) bus has the largest priority, the
voltage of the generator bus 6, which belongs to the green zone, is
adjusted until voltage at bus 6 reaches maximum allowable limit (1.1
p.u.). This control action is followed by adjusting the shunt capacitor at
bus 9, which again belongs to green zone. Thus clustering the electrical
network makes it feasible to employ corrective actions only at local
(zonal) level and facilitates easy management of the associated power
transmission system. The overall rule-based strategy is implemented as
a set of IF-THEN rules, as described in Fig. 5.

6. Results on IEEE test systems

The graph clustering algorithm described in Section 4 in combina-
tion with rule-based control 5 is tested on some standard network
configurations - IEEE-14 bus system and IEEE-30 bus system. Figs. 6a
and 6b show the network configuration of the IEEE-14 bus and IEEE-30
bus test cases, respectively. The IEEE-14 bus test case represents a
portion of the American Electric Power System (in the Midwestern US)
as of February, 1962. The test case includes all different kinds of buses -
Slack, PV and PQ comprising of 5 generator buses, 3 tap changers and 1
shunt capacitor. The IEEE-30 bus test case represents a simple ap-
proximation of the American Electric Power system as it was in De-
cember 1961, and comprises of 8 generators, 4 tap changers and 2
shunt capacitors. The matrices of attenuation [ ]ij are first obtained by
load-flow computations using Newton-Raphson method for the two test
cases. The obtained matrices are then clustered into 3 partitions for the
IEEE-14 bus test case and 2 partitions for the IEEE-30 bus test case.
Tables 1 and 2 denote the clustering results for the two test systems.
These partitions are marked by different colors in the ‘Bus Type’ col-
umns and also indicated by corresponding initials. The results for var-
ious overloading and islanding scenarios are summarized below.

Moreover, quantities pertaining to clustering of IEEE-14 test system -
matrix of attenuation [ ]ij , matrix of associations and locations of
supernodes Z are listed in Appendix A for clarity of presentation.

6.1. Effect of perturbations on inter and intra-cluster elements

The power-flow solutions in per unit (p.u.) at nominal loading
conditions for the two test systems are indicated in column 3 of Tables 1
and 2, whereas columns 4, 5 and 6 indicate the effects of perturbing
generator voltages at different buses. It is observed that the influence of
these perturbations is larger at the buses belonging to the same group
(cluster) where the perturbations originate. For instance, in the IEEE-14
bus system, doubling the generator voltage at bus 2 results in change in
voltage magnitudes at buses 4 and 5 by about 0.4 p.u. The effect of this
perturbation is less severe at other buses, which do not belong to the
group formed by the buses 2, 3, 4 and 5. Note that bus 3 is a generator
bus (PV bus) where voltage is set a priori, and hence there is no change
in its voltage magnitude. Similar effects are seen in columns 5 and 6
when perturbing the generator voltages at buses 6 and 3, respectively.
Interestingly, buses {6, 9, 10, 11, 12, 13, 14} in the IEEE-14 bus system
are labeled as low-voltage (LV) buses, whereas buses 7 and 8 are
marked as tertiary-voltage (TV) buses. Remaining buses are indicated as
high-voltage (HV) buses. This underlying electrical structure is natu-
rally captured by the proposed clustering algorithm.

The proposed approach generalizes to larger bus systems too.
Similar to the 14-bus test system, perturbing generator buses in the
IEEE-30 bus test system result in large perturbations in buses belonging
to the same cluster where the perturbations originate. While the algo-
rithm was also tested for the IEEE-300 bus system, the details of it are
excluded in this manuscript for the sake of brevity.

6.2. Effect of perturbations at buses within the same cluster over the
remainder of the network

By construction, we have that two buses are considered close
(electrically) when they have similar influence over the entire network.
This is very well captured in the resulting partitions for the two test
systems. Generator voltages at buses 2 and 3 are perturbed separately in
the IEEE-14 bus system. Both these buses belong to the same cluster and
result in similar perturbations over the entire network. For instance,
both these buses have a very small influence on bus 12, affecting the
voltage magnitudes by 0.013 p.u. and 0.008 p.u., respectively.
However, the effect is large on buses such as bus 7, where the changes
in voltage magnitudes are 0.176 p.u. and 0.100 p.u., respectively.

Similar conclusions can be drawn for the IEEE-30 bus test system.
Doubling generator voltages at buses 2 and 11, both of which belong to
the same cluster, have similar effect over the entire network. Their
effects are large on buses such as bus 28, where the changes in voltage
magnitudes are 0.148 p.u. and 0.052 p.u., respectively.

Comparison with existing methods: In [33,34], a spectral clus-
tering algorithm is proposed for clustering of power networks. Their
method employs absolute value of inverse of the admittance matrix as a
measure of pairwise electrical distances. The underlying graph is then
partitioned using spectral clustering and results in following partition of
the IEEE-14 bus: {1, 2, 3, 10, 11, 13, 14}, {8} and {4, 5, 6, 7, 9, 12}.
Clearly from Table 1, the admittance matrix based approach (coupled
with spectral clustering) does not identify a suitable grouping of elec-
trical buses. For instance, the existing approaches groups buses 4 and 6
into same zone, however they appear mutually decoupled during events
of perturbations.

6.3. Rule-based supervisory voltage control

Each test system consists of generators, tap changers and shunt
capacitors. The ranges and steps in which these control actions are
varied is shown in Table 3.
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Fig. 5. Proposed decentralized rule-based scheme for voltage regulation in power systems. The scheme can be interpreted as a set of IF-ELSE rules.
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CASE 1: IEEE-14 bus system with 3.5 times the active load and 4.2 times
the reactive load

Desired
Voltage:

0.90 p.u. to 1.10 p.u.

Fault: Voltages at buses 9, 10 and 14 are 0.886 p.u., 0.884 p.u. and 0.833
p.u., respectively and are below the lower limit of 0.90 p.u. (shown in
column 3 of Table 4)

Action: Control actions and their steps are shown in Table 5.
Results: The bus voltages after correction are within the desired range and the

corresponding magnitudes are shown in column 4 of Table 4.

As seen in Table 4, a sudden increase in active and reactive loads
results in large violations in the bus voltages. In particular, voltage
magnitudes at buses 9, 10 and 14 fall below the allowable limit of 0.9
p.u.. These violations are subsequently corrected though a set of control
actions indicated in Table 5. Note that the faulty buses belong to green
(G) zone. The operating voltage of generator at bus 6, which lies in the
fault zone, is increased to compensate for low voltages at buses 9, 10
and 14. Once the generator bus voltage reaches the maximum allowable
limit of 1.1 p.u., the shunt capacitor at bus 9 is increased in steps of 0.1

Fig. 6. IEEE test systems approximating American Electric Power system.

Table 1
Clustering Results For IEEE-14 Bus Data Table 2

Clustering results for IEEE-30 bus data.

Table 3
Ranges and steps of control measures.

Serial # Control measure Range of control (p.u.) Control step (p.u.)

1 Generator voltage 0.9–1.1 0.01
2 Tap changer 0.9–1.1 0.02
3 Shunt capacitor 0.0–0.5 0.10
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p.u. until the capacitance cannot be increased further (max 0.5 p.u.).
Finally, the tap-changer between buses 4 and 9 is adjusted until all the
bus voltages are within the allowable limits.

Thus, the proposed rule-based scheme relies only on “local” inputs
and control actions for voltage correction and achieves the desired

performance in very few number (11 - see Table 5) of steps as compared
to similar rule-based schemes proposed in [27,35] which requires 25
steps for voltage correction.

CASE 2: IEEE-30 bus system with 2.1 times the active load and 3.1 times
the reactive load

Desired Volt-
age:

0.90 p.u. to 1.10 p.u.

Fault: Voltages at buses 18–27 and 29–30 are below the lower limit of 0.90
p.u. (shown in column 3 of Table 6)

Action: Control actions and their steps are shown in Table 7.
Results: The bus voltages after correction are within the desired range and the

corresponding magnitudes are shown in column 4 of Table 6.

Similar to the 14-bus system, increase in active and reactive loads
result in large violations in voltage magnitudes at buses 18–27, 29 and
30, all of which belong to green (G) zone. As before, corrective action
can be localized to green (G) zone for voltage control in the IEEE-30 bus
system using fewer number (18) of control actions. These control ac-
tions are indicated in Table 7. On the other hand, prior methods in
[27,35] require 21 steps for less severe perturbations.

6.4. Controlled islanding

Islanding is required whenever there is a fault and whenever the
maintenance is required in a power network. A controlled islanding can
not only prevent damage to customer equipment due to continued ex-
cessive generation, but also avoid widespread blackouts. Our classifi-
cation approach is very well suited for operations such as controlled
islanding. A simulated scenario is considered, where there is a fault at
one of the load buses in green (G) zone in the IEEE-14 bus system and it
is desired to avoid any cascading failure by appropriately isolating a
major part of the network. The identification obtained using the pro-
posed clustering algorithm provides a natural way to prevent such
cascading failure. Since, the clustering algorithm partitions a network
into mutually decoupled (loosely coupled) zones, it is natural to isolate
the zones not containing the faulty bus. As a consequence, zones (B) and
(Y) in the IEEE-14 bus are isolated system from zone (G). The effects of
isolating the buses belonging to zones (B) and (Y) are shown in Table 8.
Even though the 14-bus system is practically reduced to a 7-bus system,
the effect of such an isolation is minimal in terms of changes in p.u. bus
voltages. The largest increase in p.u. voltage is only 0.021 p.u. at bus 5.

Table 4
Supervisory control for IEEE-14 bus network.

Table 5
Control actions for 14-bus system.

Serial # Control action Steps

1 Generator at 6 3
2 Shunt capacitor at 9 4
3 Transformer between 4 and 9 4

Table 6
Supervisory control for IEEE-30 bus network.

Table 7
Control actions for 30-bus system.

Serial # Control action Steps

1 Generator at 13 3
2 Shunt capacitor at 10 4
3 Shunt capacitor at 24 5
4 Transformer between 6 and 9 4
5 Transformer between 28 and 27 2

Table 8
Controlled islanding for IEEE-14 bus network.
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7. Conclusion

In this article, the problem of partitioning an electrical network into
loosely coupled groups is considered. Such a classification enables easy
and flexible management of power systems. A novel notion of electrical
similarity between two buses is proposed and quantified and the clas-
sification problem is transformed into an equivalent combinatorial
graph clustering problem. A graph-theoretic DA algorithm is employed

to efficiently partition the resulting graph. A rule-based expert control
system is then suggested for synthesizing local control actions during
events such as overloading, underloading and islanding. The combined
approach (clustering + supervisory control) is then tested for various
scenarios for the IEEE-14 and IEEE-30 bus test systems and the results
corroborate the effectiveness of this approach. The algorithm is com-
putationally scalable [36] and can easily handle more complex systems,
such as IEEE-300 bus systems.

Appendix A. Relevant quantities for clustering of IEEE-14 bus test system

For the IEEE-14 bus test system, the matrix of attenuation , the matrix of association and the location of supernodes Z are obtained as:

=

1 1.03 1.02 1.03 1.03 . 90 . 94 . 90 . 92 . 89 . 87 . 84 . 87 . 85
. 94 1 . 99 . 99 . 99 . 87 . 91 . 87 . 89 . 86 . 84 . 81 . 84 . 82
. 90 . 95 1 . 96 . 95 . 84 . 88 . 84 . 86 . 83 . 81 . 78 . 81 . 80
. 92 . 97 . 98 1 . 98 . 87 . 91 . 87 . 89 . 86 . 84 . 80 . 84 . 82
. 93 . 97 . 98 . 99 1 . 88 . 91 . 87 . 89 . 86 . 85 . 81 . 85 . 83
. 98 1.03 1.03 1.06 1.05 1 . 99 . 94 . 97 . 95 . 95 . 92 . 96 . 92
. 94 . 99 . 99 1.02 1.01 . 91 1 . 96 . 95 . 92 . 89 . 84 . 88 . 88
. 91 . 96 . 96 . 99 . 98 . 88 . 96 1 . 92 . 89 . 86 . 81 . 85 . 84
. 97 1.02 1.02 1.05 1.04 . 94 1.01 . 96 1 . 97 . 93 . 88 . 92 . 91
. 97 1.02 1.03 1.05 1.04 . 96 1.01 . 96 . 99 1 . 95 . 88 . 92 . 92
. 97 1.02 1.03 1.06 1.05 . 98 . 99 . 95 . 98 . 98 1 . 90 . 94 . 92
. 98 1.02 1.03 1.05 1.05 . 99 . 99 . 94 . 97 . 95 . 95 1 . 97 . 92
. 98 1.03 1.03 1.06 1.05 . 99 . 99 . 95 . 98 . 95 . 95 . 94 1 . 94
. 97 1.02 1.03 1.05 1.04 . 96 1 . 96 . 99 . 96 . 94 . 90 . 95 1

= =Z

0 1 0
1 0 0
1 0 0
1 0 0
1 0 0
0 0 1
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1

,

0.9218 0.9503 0.9728
0.9718 0.9919 1.0226
0.9853 0.9950 1.0295
0.9896 1.0148 1.0536
0.9815 1.0042 1.0461
0.8649 0.8974 0.9756
0.9060 0.9700 0.9964
0.8655 0.9527 0.9518
0.8798 0.9306 0.9834
0.8555 0.9019 0.9651
0.8368 0.8755 0.9510
0.8002 0.8313 0.9176
0.8340 0.8679 0.9521
0.8168 0.8579 0.9322

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.ijepes.2019.02.025.
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