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Abstract— This paper presents a new heuristic approach for
multiple traveling salesmen problem (mTSP) and other variants
of the TSP. In this approach, the TSP and its variants are
seen as constrained resource allocation problems, where an
ordered set of resources is associated to the cities, and the
allocation is done through an iterative algorithm in such a
way that eventually each city gets associated with a resource.
The approach allows adding constraints on resources which
translate to objectives such as minimum tour length (or multiple
tour lengths as in mTSP) and other constraints that define the
variants on the TSP problem. The algorithm for the associated
resource allocation problem is based on maximum entropy
principle (MEP) and the deterministic annealing algorithm.
Besides mTSP, this article demonstrates this approach for
close enough traveling salesman problem (CETSP), which is
known to be computationally challenging since there is a
continuum of possible edges between a pair of cities. The
examples presented in this paper illustrate the effectiveness of
this new framework for use in TSP and many variants thereof.
Simulations demonstrate that the proposed MEP algorithm
achieves significantly better solutions than the ones provided by
the most commonly used simulated annealing algorithm with
only marginal increase in run-time.

I. INTRODUCTION
The Traveling Salesman Problem (TSP) [1] is one of

the most extensively studied optimization problems. A TSP
considers the following optimization problem: Given a set of
cities and the associated cost of travel between each pair of
cities, find the route that minimizes the total cost of travel
such that each city is visited exactly once and the route
ends at the origin city. Each route through all the cities
is referred to as a tour and the optimal tour is the one
that minimizes the total travel cost to the salesman. There
are several applications of the TSP to real world problems.
Common applications of the TSP are vehicle delivery route
planning and toolhead path planning for VLSI circuit boards.
Junger et al. [1] as well as Bektas [2] have explored many
more applications of the TSP to more specialized problems,
demonstrating the real world value and importance of devel-
oping effective solutions to the TSP.

The TSP belongs to the class of NP-hard problems [2].
Generally, finding the optimal solution requires a calculation
time given by O(n!), where n is the number of cities in the
problem. For TSPs with relatively few cities, the optimal
solution can be determined by solving associated linear
programs within a short period of time; but for larger data
sets the computations can become extremely time intensive.
Only with the development of more powerful computers the
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optimal solutions have been discovered for certain TSPs, as
computation times in the hundreds of CPU-years had made
those solutions infeasible in the past [3]. Many heuristics
have been developed for the TSP [1], [2] which offer sig-
nificant computational savings at the cost of some deviation
from the optimal solution.

Despite the success of heuristics for the basic TSP, there
are quite a few variants of the TSP that these methods cannot
efficiently address. Variants to the basic TSP are necessary
to appropriately model realistic situations. In this paper, we
present a new framework for solving two such variants of
the TSP - a) the multi-Traveling Salesmen Problem (mTSP)
which allows more than one ‘salesman’ to operate between
the cities, such that the solution to the mTSP is comprised of
several routes, one for each salesman, and the optimal tour
would be the set of routes such that the total distance trav-
eled is minimized. We also consider variants of this mTSP
problem, where additional constraints such as requiring each
salesman to start at the same point (representing a warehouse
or depot) are included. In [4], few transformations have been
suggested, using which a certain mTSP can be viewed as
an equivalent “asymmetric” single TSP, which then allows
using conventional heuristics for the single TSP; however
these transformations are restricted to only one type of mTSP
formulation presented in [4] and do not extend to a broader
class of variants of the basic TSP and mTSP. b) the Close
Enough Traveling Salesman Problem (CETSP) is a variant
where it suffices for a salesman to reach within a certain
radius of each city on the tour. This adds great complexity
to the problem; since there is a continuum of possible edges
between a pair of cities. Because of the significant increase
in the number of edges, many conventional heuristics are
unable to address this variant. Special formulations have
been developed to address this problem [5], [6]; however, the
formulation is not very general and requires uniform radii for
all the cities.

The central concept in the proposed framework is viewing
the TSP and its variants as resource allocation problems. In
this viewpoint, an ordered set of resources that are equal
to the number of cites are introduced, and constraints are
imposed on the resources that reflect objectives such as
minimum tour length that are specific to the TSP variant
of interest. Then a resource allocation problem is solved that
minimizes the sum of the distances of each resource to its
nearest city. This results in each resource being allocated
to a distinct city (and its location coincides with that of
the city), and consequently the order of the resource set
specifies the tour. This viewpoint allows efficient resource
allocation algorithms such as deterministic annealing (DA)



to be modified appropriately to address TSP and its variants.
DA is well-suited to combinatorial clustering/resource allo-
cation problems that require obtaining an optimal partition
of an underlying domain, and optimally assigning resources
to each cell of the partition. DA-based methods have been
reported in a vast number of applications such as mini-
mum distortion problems in data compression [7], routing
problems in multiagent networks [8], locational optimization
problems [9], and coverage control problems [10]. While
the original DA algorithm was developed in the context
of clustering, it was later adapted to the basic TSP as a
case of constrained clustering [7], [11], which serves as
the foundation for this extension to the mTSP. We recently
demonstrated the usefulness of DA in the context of capac-
itated vehicle routing problems (CVRPs) [12].

II. PROBLEM FORMULATION

In this section, we describe some variants of the TSP.
The set of locations of cities is denoted by {xi : xi ∈
R2, 1 ≤ i ≤ n}, where n is the number of cities. In
some variants of the basic TSP, the starting location (same
as the end-point location) is often specified. This starting
location is commonly referred to as depot and often show
up in the context of vehicle routing problems with route
of each vehicle starting and finishing at the depot. We use
α ∈ R2 to denote the location of depot. The distance between
any two cities i and j is denoted by di,j . For example, for
squared-euclidean distance, we have di,j = ‖xi−xj‖22. Any
routing sequence that visits each city (and depot) exactly
once is referred to as tour. Based on the requirements of
the underlying problem, a tour may or may not conclude
at the starting location. A tour is defined by the sequence
(σ1, . . . , σn+1) (or (σ1, . . . , σn) depending upon whether or
not the starting and end locations coincide), where σi ∈
{1, . . . , n} denotes the index of the ith city in the tour;
note that σi 6= σj when i 6= j and 1 ≤ i, j ≤ n and that
σn+1 = σ1. Therefore each tour is completely specified by
an index vector (ordered set) σ = (σ1, . . . , σn).

A. Non-Returning Multi-Traveling Salesmen Problem
In this problem, we are given a set of n cities {xi}

and m salesmen to traverse these cities. The objective is
to minimize the total tour-length such that each city is
visited just once by only one salesman. The starting and
ending city locations of each salesman can not coincide.
This formulation is applicable to problems pertaining to
non-recurring events, such as the scheduling of orders at a
steel rolling company [13]. The non-returning mTSP can be
viewed as an equivalent single TSP in which m−1 edges are
removed to give rise to m disjoint tours. The optimization
problem is mathematically described as

min
σ

{αkj }

{
n−1∑
i=1

dσi,σi+1 −
m−1∑
j=1

αkjdσkj ,σkj+1

}

s.t. ∀j,
∑
kj

αkj = 1, αkj ∈ {0, 1}, 1 ≤ kj ≤ n−1.

Note that the first term in the above cost function corre-
sponds to minimizing the total distance between the neigh-
boring cities (as in the basic TSP), while the second term

corresponds to removing m − 1 edges, thereby giving rise
to m disjoint tours. The quantity αkj = 1 if the edge
corresponding to the cities (σkj , σkj+1) is removed. This
optimization is explained in Fig. 1a.

B. Returning Multi-Traveling Salesmen Problem

In this problem, we are given a set of n cities {xi} and
m salesmen, and the objective is to minimize the total tour
length such that each city is visited by only one salesman,
and the start and end positions of each salesman must be
coincident. Many recurring events, such as job scheduling
[14] fall under this category. The returning mTSP can be
mathematically described as

min
σ

{αkj }

{
n∑
i=1

dσi,σi+1+

m∑
j=1

αkj

[
−dσkj ,σkj+1+dσkj ,σk(j−1)+1

]}

s.t. ∀j,
∑
kj

αkj = 1, αkj ∈ {0, 1}, 1 ≤ kj ≤ n; k0 = km.

As before, the first term in the above cost function
corresponds to minimizing the total distance between the
neighboring cities (as in the basic TSP). Removal of edge
σkj , σkj+1 accounts for separating the route between two
salesmen j and j + 1, while addition of edge σkj , σk(j−1)+1
ensures that a salesman j returns back to its starting city.
Fig. 1b shows a schematic of a returning mTSP. Note
that the dashed blue lines indicate the removal of edges
(−dσkj ,σkj+1

), while solid blue lines indicate the addition of
links (dσkj ,σk(j−1)+1

).

C. Single-Depot Returning Multi-Traveling Salesmen Prob-
lem

In this problem, we are given a set of n cities {xi}, a depot
(α) and m salesmen, and the objective is to determine the
optimal tour such that each city is visited once by only one
salesman. Each salesman must start and end at the depot. The
total distance traveled by all salesmen is minimized. Real-
world problems such as vehicle routing problem (VRP) with
single-depot [12] fall under this category. The single-depot
mTSP is mathematically described as

min
σ

{αkj }

{ n−1∑
i=1

dσi,σi+1 + dσ1,α + dσn,α

+

m−1∑
j=1

αkj

[
−dσkj ,σkj+1 + dσkj ,α + dσkj+1,α

]}
s.t. ∀j,

∑
kj

αkj = 1, αkj ∈ {0, 1}, 1 ≤ kj ≤ n−1.

where, dσl,α denotes the distance between the city located
at xσl and depot α. The first part of the cost function
corresponds to solving a single TSP with depot included
in the list of cities. Removal of edge σkj , σkj+1 accounts
for separating the route between two salesmen j and j + 1,
while addition of edges σkj , α and σkj+1, α ensure that the
route for salesman j finishes at the depot and the route for
salesman j+1 starts at the depot. Fig. 1c shows a schematic
of a single-depot returning mTSP.



(a) (b) (c) (d)
Fig. 1. Schematic of a (a) 9-cities non-returning 3TSP. The dashed blue lines indicate the removal of links, which corresponds to
αk1=3 = 1, αk2=7 = 1 (b) 9-cities returning 3TSP. The dashed blue lines indicate the removal of links (−dσkj ,σkj+1 ), while solid blue
lines indicate the addition of links (dσkj ,σk(j−1)+1 ). (c) 9-cities single-depot returning 3TSP. (d) Single salesman returning CETSP. Each
city xi is provided with a radius parameter ρi. The orange dots indicate rj such that vij = 1 for some city i.

D. Close Enough Traveling Salesmen Problem (CETSP)
In this problem, we are given a set of n cities {xi},

each with a specified radius {ρi}, and a set of m salesmen.
In CETSP, a city located at xi is considered to be visited
if a salesman reaches anywhere within ρi radius of the
city i. CETSPs are used to represent problems such as
aerial reconnaissance [6] and establishing a wireless meter
reader [5]. The CETSP variant may be applied to any of
the TSP class of problems. The most significant difference
between point-based TSPs and the CETSP is that due to
the radius associated with each city, the CETSP does not
define a specific edge between a pair of cities, rather there
is a continuum of possible edges between a pair of cities.
As a result, there are infinitely many possible solutions
to this problem. We use {rj}, j ∈ {1, . . . , n} to denote
locations where a salesman visits all the cities. Consequently,
a CETSP tour is mathematically described by a sequence
of locations (r1, r2, . . . , rn). A single salesman returning
CETSP is mathematically described as

min
{vij},{rj}

n∑
j=1

{
n∑
i=1

vijdCE(xi, rj)+d(rj , rj+1)

}
; rn+1 = r1

s.t. vij ∈ {0, 1},
n∑
i=1

vij = 1∀j,
n∑
j=1

vij = 1, ∀i

where, dCE(xi, rj) =

{
0 if‖rj − xi‖ < ρi
∞ else

Note that in this formulation the cost function becomes
infinity unless for each city i there is a location on salesman
tour within the radius ρi of its location xi. Also, in this
case, it is possible that the number of distinct locations on
salesman tour may be less than n, that is, it is possible
that one location on salesman tour can cover multiple cities;
for instance in cases when the distances between two cities
is less than the sum of the corresponding radii around the
respective cities. Fig. 1d shows a schematic of a single
salesman returning CETSP. Note that the current framework
is flexible in the sense that an mCETSP problem can also
be easily formulated by combining the CETSP cost function
with the cost functions from previous variants.

III. SOLUTION APPROACH: A MAXIMUM
ENTROPY PRINCIPLE FRAMEWORK

A distinct feature of our approach is to view TSP and its
variants as combinatorial resource allocation problems. The
primary advantages of reformulation in terms of resource
allocation are (i) it becomes possible to develop approaches

for many variants of TSP, and (ii) one can avail the vast
literature of combinatorial resource allocation problems. In
the next section, we present how TSP and its variants can
be reformulated as resource allocation problems.

In this section, we present a facility location problem
(FLP), which is a combinatorial resource allocation problem,
and the deterministic algorithm (DA) which addresses it.
Both the reformulation of the TSP variants considered in
this article, and our solution approach are closely related
to FLP and DA algorithm, and therefore we give here a
brief introduction to both (for more details see [7]). The FLP
is described as: For given n city locations, find K facility
(resource) locations such that the total sum of the distance of
each city to its nearest facility is minimized. In other words, if
xi and yj ∈ Ω ⊂ R2 denote the locations of ith city and jth
facility, respectively, then the FLP addresses the following
optimization problem

min
yj∈Ω,1≤j≤K

n∑
i=1

{
min

yj ,1≤j≤K
d(xi, yj)

}
, (1)

where d(xi, yj) ∈ R+ denotes the distance between the
ith city location xi and jth facility location yj , and Ω ⊂
R2 is a compact domain. Most algorithms for FLP (such
as Lloyd’s) are very sensitive to the initial facility locations.
This is primarily due to the distributed aspect of FLPs, where
any change in the location of the ith city affects d(xi, yj)
only with respect to the nearest facility j. The DA algorithm
suggested by Rose [7], overcomes this sensitivity by allowing
each city to be partially associated to every facility through
an association probability.

Below we briefly describe the DA algorithm (see [7] for
details). Note that a solution to FLP results in a partition of
the set Ω into K clusters {Cj} such that for any city xi ∈ Cj ,
the nearest facility is located at yj . Also any partition {Cj}
of Ω can be described in terms of set V = {vij} ∈ {0, 1}n×K
of association values given by

vij =

{
1 if xi ∈ Cj
0 else . (2)

Now if we define an instance (Y,V) of an FLP by the
set of facility locations Y = {yj}, and a partition via the set
V = {vij}, and for each instance associate a cost D(Y,V) =
n∑
i=1

K∑
j=1

vijd(xi, yj), then FLP in (1) can be rewritten as

min
(Y,V)

D(Y,V). (3)



In DA algorithm, a probability distribution P (Y,V) is
ascribed on the space of instances (the decision variables),
and it solves the following related problem

min
(Y,V)

〈D(Y,V)〉
subject to H(P (Y,V)) = H0,

(4)

where D = 〈D(Y,V)〉 =
∑
Y,V

P (Y,V)D(Y,V) is the

expected cost and H is the Shannon entropy of the prob-
ability distribution P (Y,V) and quantifies the randomness
of the distribution. Accordingly a Lagrangian 〈D〉 − 1

βH is
minimized. In DA the above problem is solved for many
values of the annealing parameter β as it is increased from
0 to a large value; where the solution at an iteration of β
is used as the initial guess for the next iteration. Note that
for each β, the cost function is convex in P (Y,V) (in fact it
is equivalent to the optimization problem in MEP), and the
optimal distribution can be shown to be a Gibbs distribution
given by

P (Y,V) = e−βD(Y,V)∑
Y′,V′

e−βD(Y′,V′) . (5)

Note that for large values of β, P (Y,V) is either approx-
imately 1 or 0, which reduces the cost function in (4) to
(3). DA seeks the most probable set of facility locations, it
considers the marginal probability, given by

P (Y) = e−βF (Y)∑
Y′
e−βF (Y′) , (6)

where F (Y) is the analog of free energy in statistical
mechanics and is given by,

F (Y) = − 1

β
logZ(Y) = − 1

β

n∑
i=1

log

(
K∑
j=1

e−βd(xi,yj)
)
. (7)

In the DA algorithm, this free energy function is then de-
terministically optimized at successively increased β values
over repeated iterations. The set Y of facility locations that
optimizes the free energy at each β satisfies

∂

∂yj
F = 0 ∀j ⇒

n∑
i=1

p(j|i) ∂

∂yj
d(xi, yj) = 0 ∀j, (8)

where p(j|i) =
e−βd(xi,yj)

K∑
k=1

e−βd(xi,yk)
. The readers are encouraged

to refer to [15] for detailed analysis on the complexity of the
DA algorithm.

Remark: It should be noted DA algorithm prescribes a
probability distribution on the space of decision variables
(instances) (Y,V) and then finds the most probable resource
locations Y by maximizing the marginal distribution P (Y).
The most probable Y is shown to be one that minimizes a
corresponding Free Energy F . In the next section this process
is repeated for the larger decision space related to the TSP
problems.

IV. METHODOLOGY: MODIFICATIONS OF THE
DA ALGORITHM

In this section, we develop a DA based generalized heuris-
tic for variants on the classical TSP. The framework in the
DA algorithm is modified to include routing as constrained

resource allocation problem. Rose has previously explored
the application of DA to the TSP [11]. The heuristic behind
the DA based TSP approach is that if we employ same
number of facilities as the number of cities, i.e. K = n, then
the optimal solution for the FLP is given by the case when all
the resource locations are coincident with the city locations;
therefore as β →∞ for the corresponding DA algorithm, the
resource locations {yj} will coincide with the city locations
{xi}. We can convert a TSP variant into a resource allocation
problem by including a constraint on tour length. For in-
stance, if we pose a problem of finding the resource locations
{yj} such that total distance of each city xi to its nearest
resource location yj , that is

∑
i minj d(xi, yj) is minimized

under a given constraint on tour length
∑
j d(yj , yj+1) = L;

it approximates the TSP problem. In fact, if L = optimal
tour length of the TSP, then the solution will be such that
each resource location will be coincident with a city location
and the jth city on the optimal tour will correspond to the
resource location yj .

Note that in the DA, adding this extra constraint to the
resource allocation problem will introduce a corresponding
extra Lagrange multiplier in addition to the first Lagrange
multiplier 1

β . Solving repeatedly as in the original DA by
changing these Lagrange multipliers ((annealing)) leads to a
solution of the TSP (and its variants). We also discuss an
effective scheme to vary the Lagrange multipliers and in this
section.

We now describe the problem setting. We are given a set of
n cities whose locations are given by {xi} ⊂ R2, 1 ≤ i ≤
n and a depot with coordinates α ∈ R2. These cities have
to be traversed by a maximum of m salesmen under several
constraints (which essentially constitute the variants on the
TSP) on the optimal tours. As before, we use Y = {yj}nj=1

and V = {vij}ni,j=1 to denote the set of facility locations
and set of associations, respectively. The distance function
d(xi, yj) between city i and facility j is considered to be
squared-euclidean, i.e., d(xi, yj) = ‖xi − yj‖22.

Remark: For brevity and ease of exposition, the results
are derived for a special case of m = 2 salesmen. The results
are easily extendable for any general m.
A. Approach for Non-returning mTSP

Unlike the basic FLP where an instance is defined by the
parameters (Y,V), in this case we modify the definition of
an instance to include three parameters, Y,V and R. Here
Y = {yj} represent the set of facilities located at yj , V =
{vij} is a set of associations and describes the membership
of city xi to facility yj (see Eq. 2), andR is a set of locations
of the partition representing the breaks between subsequent
salesmen in the chain of consecutive facilities (see Fig. 2a).
We consider the case for m = 2 salesmen. Therefore in this
case R ∈ {1, . . . ,m} such that

R = k; implies there is no link b/w yk and yk+1.

For a given instance of the problem (Y,V,R), the distortion
function in original DA formulation is modified as

D(Y,V,R) = D1(Y,V) +D2(Y) +D3(Y,R), (9)

where D1(Y,V) is same as defined in original DA formu-
lation. D2(Y) captures the tour length in the cost function



(a) (b) (c)
Fig. 2. Schematic of a (a) Non-returning 2TSP, with R = k. (b) Returning 2TSP, with R = {k, l}. (c) Returning 2TSP (with Depot),
with R = k. The dashed blue lines indicate the removal of links, while solid blue lines indicate the addition of links.

to represent a TSP and is given by

D2(Y) = θ

n−1∑
j=1

d(yj , yj+1). (10)

The final component D3(Y,R) represents the partition of
facilities for the independent salesmen and subtracts the
distance at the partition between the facilities yk and yk+1
from the original distortion function.

D3(Y,R) = −θd(yk, yk+1) (11)

Similar to the original formulation of the DA algorithm, the
probability of any instance (Y,V,R) is determined by the
MEP. Following the steps adopted in Sec. III, the free energy
of this system is obtained as

F = − 1

β

n∑
i=1

log

(
n∑
j=1

e−βd(xi,yj)
)

+ θ

n−1∑
j=1

d(yj , yj+1)

− 1

β
log

(
n−1∑
k=1

eβθd(yk,yk+1)

)
. (12)

Taking the derivative of (12) with respect to each facility
allows determination of the set of facilities that maximize
entropy in the system.

∂F

∂yj
= −2

n∑
i=1

p(j|i)(yj − xi) + 2θ(2yj − yj+1 − yj−1)

+2θ (yj+1 − yj)P(j) + 2θ (yj−1 − yj)P(j − 1) = 0

where p(j|i) is same as before (see Eq. (8)). P(j) represents
the probability that the partition occurs at facility j (i.e. R =
j) and is given by

P(j) = eβθd(yj ,yj+1)

n−1∑
j=1

eβθd(yj ,yj+1)

. (13)

Solving for each yj provides the solution to the system at
this pair of β and θ values, so that for every facility

yj =

n∑
i=1

p(j|i)xi + θyj+1(1−P(j)) + θyj−1(1−P(j−1))
n∑
i=1

p(j|i) + θ (2− P(j)− P(j−1))
(14)

Note that the Eq. (14) is only slightly more complex than
the basic TSP proposed in [11]. In fact, setting P(j) = 0,∀j
transforms the 2TSP into the basic TSP formulation.

B. Approach for Returning mTSP
In case of returning mTSP, the start and end positions of

each salesmen must be coincident. In this case, the partition
function D3(Y,R) not only considers the distance between
the facilities where the partition occurs, it must also account
for the distance incurred in completing the continuous tour
by reconnecting to the other end of the loop (see Fig. 2b).
Similar to the non-returning mTSP, we derive the results for
m = 2 salesmen. The partition parameter R in this case is
described by two parameters.

R = k, l if
{

no links b/w yk and yk+1, yl and yl+1;
links b/w yk and yl+1, yl and yk+1;

It should be noted that the facilities y1 and yn are considered
to be adjacent, i.e. y0 = yn and yn+1 = y1. The tour-length

distortion function is given by D2(Y) =
n∑
j=1

d(yj , yj+1).

The distortion function D3(Y,R) pertaining to the partition
parameter is defined as

D3 = θ
(
−d(yk, yk+1)−d(yl, yl+1)+d(yk, yl+1)+d(yl, yk+1)

)
.

An important consequence of this framework is that if
k = l, then the problem reduces to the classical returning
TSP. Thus, this framework allows automatic determination
of the optimal number of salesmen. With the above modified
distortion functions, the update equation for each facility yj
is given by

yj =

n∑
i=1

p(j|i)xi + 2θ
( ∑
l 6=j−1

P(j, l)yl+1 +
∑
l 6=j
P(j−1, l)yl

)
+ θ

[
(1−2

∑
l P(j, l))yj+1+(1−2

∑
l P(j−1, l))yj−1

]∑n
i=1 p(j|i) + 2θ

(
1− 2P(j, j − 1)

)
(15)

C. Approach for Single Depot Returning mTSP
Fig. 2c shows the schematic of the proposed framework

for the returning version of a single depot multiple salesmen
problem. We denote the depot location by α ∈ R2. We
formulate the framework for m = 2 salesmen. The partition
parameter R in this case is defined as

R = k,
{ no link b/w yk and yk+1;

links b/w yk and α, yk+1 and α.

The distortion function D3(Y,R) and the corresponding
probability distribution P(R = k) pertaining to the partition
parameter are given by

D3(Y,R) = θ (−d(yk, yk+1)+d(yk, α)+d(yk+1, α))

P(R) =
e−βθ{−d(yk,yk+1)+d(yk,α)+d(yk+1,α)}∑n−1
k=1 e

−βθ{−d(yk,yk+1)+d(yk,α)+d(yk+1,α)} .



The distortion function corresponding to the tour-
length constraint is modified to include the links be-
tween y1 and α, and between yn and α, i.e., D2(Y) =

θ
{∑n−1

j=1 d(yj , yj+1)+d(y1, α)+d(yn, α)
}

. If we define
P(0) = P(n) = 1, then the corresponding update equation
for each facility yj is given by

yj =

∑n
i=1 p(j|i)xi + θ {P(j)+P(j−1)}α
+ θ {1− P(j)} yj+1 ++θ {1− P(j−1)} yj−1

2θ +
∑n
i=1 p(j|i)

.

D. Approach for Close Enough TSP
In the close enough traveling salesman problem (CETSP),

an additional radius parameter (ρi) corresponding to each
city xi is included in the optimization framework. For ease
of exposition, we consider a single salesman CETSP in this
work, however, the framework can be modified to addition-
ally incorporate any of the aforementioned variants. Note
that there are no partition parameters for a single salesman
returning TSP. To simplify the calculations, distance between
the city and the facility pairs is modified as

dCE(xi, yj , ρi) = (‖yj − xi‖ − ρi)2 . (16)

Note that in case CETSP, the facility locations {yj} auto-
matically define the points of visit {rj} described in Sec. II-
D. The distortion functions corresponding to the city-facility
distances and the tour-length constraints are respectively
given by

D1(Y,V) =

n∑
i=1

n∑
j=1

vijdCE(xi, yj , ρi)

D2(Y) = θ

n∑
j=1

d(yj , yj+1) (17)

The free energy of this system is obtained as

F = − 1

β

n∑
i=1

log
( n∑
j=1

e−βdCE(xi,yj ,ρi)
)
+θ

n∑
j=1

d(yj , yj+1).

Taking derivative of the free-energy term and setting it to
0, we obtain the update equation for each facility given by

yj =

∑n
i=1 p(j|i)(xi + ρi sgn (yj − xi))+θ(yj+1 + yj−1)

2θ +
∑n
i=1 p(j|i)

,

where, the association probability distribution is now given
by p(j|i) =

(
e−βdCE(xi,yj,ρi)∑n
k=1 e

−βdCE(xi,yk,ρi)

)
and sgn(·) is a vector-

valued signum function.

E. Controlling Lagrange Multipliers

It is desirable to have a consistent and repeatable method
for varying the Lagrange multipliers β and θ which govern
the distortion function and the tour length. In this study,
the β multiplier is considered as the main driver, and the θ
multiplier is secondary. As such, the θ parameter is decreased
according to an exponential function until a stable tour
length is reached, at which point β is increased according
to an exponential function. This process is repeated until a
sufficiently high β value and sufficiently low θ value are both
reached, leaving the final solution. This is addressed by Rose
[11] in the context of classical TSP, which is generalized to
mTSP case in this work; not presented here due to lack of
space.

V. RESULTS AND DISCUSSIONS
This section provides an overview of the results of the

MATLAB implementations of the proposed heuristic. As
yet, the MATLAB code used for this implementation has
not been optimized for minimum computation time, so valid
comparisons on the basis on run time are not currently
available, however the heuristic is shown to achieve high
quality results based on tour lengths in fairly reasonable
amount of time. The heuristics are evaluated on synthetic
data. We also compare the proposed MEP based approach
against the optimized simulated annealing implementation
( [16]) on synthetic dataset of 30 different instances, each
comprising of total number of cities ranging from 100 to 200,
uniformly spanned in an area of [−30, 30]× [−30, 30] ∈ R2.

Non-returning 2TSP: Fig. 3a shows the non-returning
2TSP result for a synthetic 59 cities data. The tours of the
two salesmen are shown in red and black respectively, with
cyan dashed line indicating the partition.

Returning 2TSP: Fig. 3b shows the returning 2TSP result
for a randomly generated 30 cities data. The heuristic is able
to find the two largest links to be removed from the sequence
of facilities. Fig. 3c shows the returning 2TSP result for a
30 cities in concentric rings arrangement. The DA based
heuristic finds the two most optimal routes for this config-
uration. Note that this dataset is particularly challenging for
heuristics such as cluster-first route-second, where clustering
the data first will either result in two symmetric subsets or
the only cluster identified will be at the origin and when the
two salesmen are allocated to the cities, there is no way to
effectively partition the set into two distinct subsets based
on the information provided by the clustering solution.

Single depot returning 2TSP: Fig. 4a shows the imple-
mentation results for the 59 cities (and a depot) data. The
two tours are shown in cyan and black colors respectively.

Returning CETSP: Fig. 4b shows the implementation re-
sults for the CETSP on a randomly generated 10 cities data
with the additional radius parameter. It is difficult to deter-
mine whether the algorithm arrives at an optimal solution
because this is much more difficult to check manually and
unlike the standard TSP, there is no database of optimal tours
for the CETSP. We have compared the heuristic against one
of the 100 cities sets (kroD100 from TSPLIB [17]) tested by
Mennell for equal radii of 11.697 [6]. Mennell achieves a
tour length of 58.54 units with a 0.3 overlap ratio on the data.
However, there are no details on the calculation time. Our
MEP based heuristic finds an optimal tour length of 64.99
units in 949 seconds. Note that in the current formulation,
there is a penalty for a facility existing either inside or outside
of the circle. However, according to the problem formulation,
there should be no penalty when the facility exists within
the radius of the city. This can be addressed by setting
the derivative of the distance function dCE(xi, yj , ρi) with
respect to yj to zero whenever yj exists within ρi distance
from the city xi. This negates the penalty incurred for placing
a facility within the radius of a city and should help this
heuristic identify more accurate solutions.

Comparison with SA: Fig. 4c shows the comparison of
the proposed MEP based approach against the simulated



(a) (b) (c)

Fig. 3. (a) Result for non-returning 2TSP for 59 cities data. The dashed line indicates the removal of the link. (b) Result for returning
2TSP for 59 cities data. The dashed lines indicate the removal of links, while the black solid lines indicate the addition of links. (c)
Returning 2TSP version for concentric rings.

(a) (b) (c)

Fig. 4. (a) Single-depot returning 2TSP solution to a 59 cities data. The depot location is denoted by red marker. (b) CETSP result
for single salesman 10 cities returning TSP. The red markers denote the city locations, while the black ‘×’ denote the facility locations.
The cyan circles correspond to the radii ρi. (c) Comparison between MEP based deterministic annealing (DA) approach and simulated
annealing (SA) approach for the non-returning 2TSP (NR2TSP).

annealing (SA) based approach for 30 randomly generated
instances for the non-returning 2TSP (NR2TSP). It should
be remarked that both the algorithms require similar average
computational time for each of the scenarios. We plot the
total tour-lengths for each of the instances for the two ap-
proaches. Clearly the proposed MEP algorithm outperforms
the most widely used simulated annealing algorithm with
marginal increase in run-time. Similar comparisons exist for
the other scenarios too.

VI. CONCLUSIONS AND FUTURE WORKS
In this paper we explore the Maximum-Entropy-Principle

as a heuristic for the TSP, as well as many variants. Because
the algorithm is independent of the edges between cities, it
has more flexibility to address variants such as the CETSP
and the mTSP. The algorithm produces high-quality solutions
for some challenging scenarios, such as, concentric rings.
The next steps for this heuristic framework should be de-
veloping the formulation for further variants on the basic
TSP. There remain significant opportunities to optimize the
code implementation of the MEP framework to achieve more
favorable computation times, at which point this algorithm
can be run on benchmark mTSP cases and compared against
many of the conventional heuristics.
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