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26 Abstract
27
28 Objective: Preterm birth (PTB) is one of the leading issues concerning infant health and is a problem that 
29 plagues all parts of the world. Vaginal microbial communities have recently garnered attention in the context 
30 of PTB, however, the vaginal microbiome varies greatly from individual to individual, and this variation is 
31 more pronounced in racially, ethnically and geographically diverse populations. Additionally, microbial 
32 communities have been reported to evolve during the duration of the pregnancy, and capturing such a signature 
33 may require higher, more complex modeling paradigms. In this study, we develop a neural controlled 
34 differential equations (CDEs) based framework for identifying early PTBs in racially diverse cohorts from 
35 irregularly sampled vaginal microbial abundance data. 
36 Methods: We obtained relative abundances of microbial species within vaginal microbiota using 16S rRNA 
37 sequences obtained from vaginal swabs at various stages of pregnancy. We employed a recently introduced 
38 deep learning paradigm known as “Neural CDEs” to predict PTBs. This method, previously unexplored, 
39 analyzes irregularly sampled microbial abundance profiles in a time-series format. 
40 Results: Our framework is able to identify signatures in the temporally evolving vaginal microbiome during 
41 trimester 2 and can predict incidences of PTB (mean test set ROC-AUC = 0.81, accuracy = 0.75, f1 score = 
42 0.71) significantly better than traditional ML classifiers, thus enabling effective early-stage PTB risk 
43 assessment. 
44 Conclusion and Significance: Our method is able to differentiate between term and preterm outcomes with a 
45 substantial accuracy, despite being trained using irregularly sampled microbial abundance profiles, thus 
46 overcoming the limitations of traditional time-series modeling methods.
47
48 1. Introduction
49
50 Preterm births (PTBs) are live births that occur before 37 weeks of pregnancy and are a major public health 
51 concern worldwide. It is estimated that about 15 million babies are born pre-term globally each year, putting 
52 the global PTB rate at about 11% (Blencowe et al., 2012). PTB is among the leading causes of neonatal 
53 mortality and morbidity, especially in low- and middle-income economies (Perin et al., 2022). The global PTB 
54 rate is also on a steady rise, thus making it a significant burden (Chawanpaiboon et al., 2019). Approximately 
55 18% of the deaths among children under the age of 5 years happen within the first 28 days of life and can be 
56 attributed to complications arising from PTB (Walani, 2020). Additionally, it can lead to long-term health 
57 complications such as respiratory illnesses, neurodevelopmental disorders and learning disabilities, arising 
58 from the developmental issues associated with PTB (Townsi et al., 2018; Chung et al., 2020). PTB is also not 
59 a problem that is specific to underdeveloped or developing countries, although the ill-effects of it may be more 
60 pronounced in low-income countries. Incidences of PTB are also found in high-income parts of the world, 
61 albeit with a lower frequency, and the rates of PTB have not been on the decline either in most parts of the 
62 world (Chawanpaiboon et al., 2019).
63 The pathophysiology behind PTB is not completely understood yet, although certain risk factors, 
64 including but not limited to smoking habits, alcohol intake and reproductive history, have been identified to 
65 be associated with increased pre-term delivery risk (Blencowe et al., 2012; Pfinder et al., 2013; Stock et al., 
66 2020). The ill-effects of PTB can be mitigated, and a healthy, full-term gestation outcome may also be achieved 
67 if appropriate interventions are administered (Newnham et al., 2014). Their success, however, depends on 
68 identifying at-risk subjects at earlier stages of their pregnancy, as these approaches are effective when 
69 administered during the earlier stages (Blencowe et al., 2012; Newnham et al., 2014). Current methods for 
70 assessing pre-term pregnancy outcomes involve the use of physical and biochemical markers, which are not 
71 accurately determinative of a potential incidence of premature culmination of pregnancy in the future 
72 (Georgiou et al., 2015).
73 Many non-pathogenic bacteria, viruses and fungi inhabit various areas of the human body, such as the 
74 gut, mouth, and reproductive tracts (Sender et al., 2016), and are collectively referred to  as the “microbiome”. 
75 Microbiomes are essential for normal functioning of the respective organs, and maintain a symbiotic 
76 relationship with the human body and drive key biochemical reactions, (Gordon et al., 1971) and dysregulated 
77 microbiomes are often implicated in various diseases. These microbial communities are also present in the 
78 reproductive tracts, and have been reported to influence the pregnancy outcome (MacIntyre et al., 2015). There 
79 is evidence linking the composition of vaginal microbiomes to risk of PTB, and the abundance levels of 
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80 specific microbiota, such as various species of the Lactobacillus genus, have the potential to be indicative of 
81 PTB even at earlier stages of pregnancy (Brown et al., 2019; Romero et al., 2014). Vaginal microbial 
82 communities can be categorized into specific Community State Types (CSTs), which are typically 
83 characterized by abundances of various Lactobacillus species (Romero et al., 2014). CSTs are associated with 
84 increased or decreased risk of abnormalities such as Bacterial Vaginosis (BV), Urinary Tract Infections (UTIs) 
85 and even PTB (Gudnadottir et al., 2022). Moreover, alpha-diversity indices, such as Shannon and Simpson 
86 diversity, which can quantify the diversity of vaginal microbiota, have been harnessed for predicting PTB 
87 (DiGiulio et al., 2015; Haque et al., 2017). However, the vaginal microbiome differs considerably from 
88 individual to individual, especially across races (Sun et al., 2022; Gupta et al., 2017). Additionally, the 
89 microbial abundance may further vary depending on the sequence processing methods used on 16S ribosomal 
90 RNA (rRNA) data, which is typically used to estimate taxonomic abundance at various levels of classification 
91 (Bharti et al., 2019). Consequently, the success of diversity indices for estimating PTB risk may be specific to 
92 certain cohorts, or be influenced by the sequence processing pipeline and consequently, may not translate 
93 across cohorts, as is our observation in this study. Machine Learning (ML)-based approaches have also been 
94 explored in this context, which leverage features such as abundance of various taxa, phylotype counts, CST of 
95 the vaginal microbiome, age, race and more, for PTB risk assessment.
96 The vaginal microbiome evolves as the pregnancy progresses (MacIntyre et al., 2015; Romero et al., 
97 2014), and the numerous changes that it undergoes may contain a signature for identifying PTB risk. Currently, 
98 there is a severe lack of approaches that exploit the temporal dynamics of vaginal microbiomes, by looking at 
99 it as a time-series problem, for PTB risk assessment, and most current predictive methodologies use static data. 

100 Deep learning approaches such as recurrent neural networks (RNNs), have previously been used for modeling 
101 the dynamics of gut and other microbiota in various contexts (Baranwal et al., 2022; Fung et al., 2023; Medina 
102 et al., 2022) and have found success. To the best of our knowledge, such methods have not been applied to 
103 vaginal microbiota, especially in the context of PTB risk assessment, so far. This may be partly attributed to 
104 the fact that RNN-based approaches demand data sampled at regular intervals, which is challenging to collect 
105 as study subjects are often irregular in clinical visits. With this study, we present a deep learning-based 
106 approach, “neural controlled differential equations (CDEs)” that is capable of differentiating between term and 
107 preterm births using time-series vaginal microbiome data, which overcomes the dependence on regularly 
108 sampled microbial data. We also highlight the limitations of alpha diversity indices and traditional ML methods 
109 for PTB prediction in racially and ethnically diverse patient cohorts. We show that modeling the temporal 
110 dynamics of microbiota using deep learning methods results in more reliable PTB risk scoring than simple 
111 ML-based methods. Our best model, utilizing neural CDEs, outperforms any ML-based PTB prediction 
112 approaches so far. On the basis of this study, we show the potential of vaginal microbiota for PTB prediction, 
113 and that such approaches can be pushed towards complete clinical viability with further efforts.
114
115 2. Materials and Methods
116
117 2.1. Dataset
118
119 We obtained 16S rRNA sequences collected from human patient samples. The data was sourced from a 
120 previously published study by Callahan et al. on refinement of a vaginal microbiome signature of preterm birth 
121 (Callahan et al., 2017). The dataset is publicly available under the open access category in the Sequence Read 
122 Archive (SRA), BioProject ID PRJNA393472. It consists of 16S rRNA sequence samples, spread across 133 
123 racially and ethnically diverse subjects, and sampled at different points of time during the pregnancy.
124
125 2.2. 16S rRNA Sequence Processing
126
127 It has been widely established that the hypervariable regions (V1-V9) within 16S rRNA gene can be used for 
128 phylogenetic studies and genus or species-level classification in diverse microbial populations (Weisburg et 
129 al, 1991). Furthermore, certain hypervariable regions (such as the V4) are semi-conserved and can reliably 
130 predict specific taxonomic levels (Yang et al., 2016). The procedure to convert the 16S rRNA sequence data 
131 to microbial abundance involves various stages of processing. In the first step, quality control checks are 
132 performed and sequencing artifacts, low quality reads, etc. are removed from the read sequences. Secondly, 
133 the preprocessed sequences are aligned against a chosen reference database, and a taxonomic class is assigned

Page 4 of 34Accepted Manuscript published as MAH-23-0024.R1. Accepted for publication: 21-Mar-2024

Copyright © 2023 the authors
Downloaded from Bioscientifica.com at 03/23/2024 07:52:24AM

via Open Access. This work is licensed under a Creative Commons Attribution
4.0 International License

http://creativecommons.org/licenses/by/4.0/deed.en_GB

h#DiGiulio
h#MacIntyre
h#Baranwal
h#Weisburg
h#Weisburg
http://creativecommons.org/licenses/by/4.0/deed.en_GB


4

134
135 to each sequence. The sequences are then grouped into clusters, which represent Operational Taxonomic Units 
136 (OTUs), based on sequence similarities. Lastly, the abundances of each OTU in samples are estimated (Schloss 
137 et al., 2009; Edgar, 2013; Estaki et al., 2020; Callahan et al., 2016). The microbial abundance obtained depends 
138 on the specific processing steps, and variations in processing steps can result in different abundance values 
139 (Schloss et al., 2009; Edgar, 2013; Estaki et al., 2020; Callahan et al., 2016).
140 The dataset (PRJNA393472) derived from SRA contains sequences generated after amplifying and 
141 sequencing the V4 hypervariable region of the 16S rRNA gene. We used the DADA2 processing pipeline 
142 (Callahan et al., 2016) to derive microbial abundance data from the sequence reads. The metadata and 
143 taxonomic abundance tables were generated using the SRA cloud (Katz et al., 2021) and abundances were 
144 obtained at various levels of taxonomic classification. We retained genus-level abundances for all our analyses 
145 since abundances at further levels were captured at a much lower resolution.
146
147 2.3. Processing Taxonomic Abundance Data
148
149 We eliminated the samples for which metadata information for certain key fields, viz., gestational age at the 
150 time of sample collection, gestational age at delivery, etc., was missing. We eliminated the genera abundance 
151 for samples collected during trimester 3 (gestational age > 24 weeks) for our analyses, with the intention of 
152 being able to predict instances of preterm delivery sufficiently early. Furthermore, we removed samples 
153 collected during or before the 8th week of gestation, as they were present for very few (6 out of 133) subjects. 
154 Furthermore, for some of the analyses, we transformed the genera abundance data to sample-wise relative 
155 abundance, and filtered out genera with high skewness and high kurtosis, thus removing some of the genera 
156 whose abundances contributed to noise. We retained 70% of the subjects (90 out of 133) as the training dataset 
157 and the rest were used for validating the approaches. The training and test datasets were kept consistent across 
158 all the analyses. The processed taxonomic abundance data and the corresponding metadata are made available 
159 in the code repository (see “Code Availability”, Section 5).
160
161 2.4. Diversity Metrics
162
163 Alpha diversity metrics have been reported to be potentially indicative of preterm birth, and a highly-diverse 
164 vaginal microbiome is correlated with increased risk of preterm delivery (DiGiulio et al., 2015; Hyman et al., 
165 2014; Haque et al., 2017). We computed Shannon, Simpson, Chao1 and Gini alpha diversity indices, as well 
166 as Taxonomic Composition Skew (TCS) (Haque et al., 2017), a diversity index specifically tailored for the 
167 vaginal microbiome. Unlike other diversity indices, TCS takes into account that vaginal microbiomes are 
168 usually dominated by the Lactobacillus species and other genera are in the minority. TCS responds in a 
169 different manner, to changes in abundances of sparse and dominant taxa, and thus is possibly more suitable for 
170 quantifying the diversity in vaginal microbiomes. We checked for statistically significant differences in alpha-
171 diversity index values between the term and preterm classes during various gestational periods using a two-
172 sided, independent t-test. The standard diversity metrics were computed using the scikit-bio python library 
173 (version 0.5.8).
174
175 2.5. Traditional ML Approaches
176
177 We used two ML classifiers: Decision Tree (DT) and Random Forest (RF), to predict term/preterm outcomes. 
178 This constituted a secondary baseline for benchmarking the performance of higher, more complex deep 
179 learning-based prediction approaches. For each patient subject, the microbial abundance profile closest to the 
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180 week of delivery and obtained during the period between the 9th and the 24th week of gestation, following the 
181 hypothesis that composition of vaginal microbial communities closer to the period of delivery are better 
182 indicative of preterm delivery risk. The resultant training and test sets contained 93 and 40 samples respectively.
183
184 2.6. Deep Learning Approaches
185
186 Machine learning classifiers, such as Support Vector Classifiers (SVCs), as well as tree-based classifiers such 
187 as DT and RF have been explored extensively for preterm birth prediction using vaginal microbiota, most often 
188 in tandem with other features such as physical markers and patient history. However, these classifiers have 
189 largely lacked the capability of making reliable predictions. Surprisingly, deep learning models have hardly 
190 been explored for this particular problem. Given the time-series nature of the data, we focused on deep learning 
191 algorithms for sequential data in this study.
192
193 2.6.1. Recurrent Neural Networks
194
195 Recurrent Neural Network (RNN) is a type of neural network designed to handle sequential or time-series 
196 data. The issue with standard RNNs however, is that they have difficulty in learning long-term dependencies 
197 in long sequences, due to the issue of vanishing/exploding gradients (Pascanu et al., 2012). Long Short-Term 
198 Memory (LSTM) is a type of RNN that is capable of learning long sequences, and are possibly more 
199 appropriate for the week-wise taxonomic abundance dataset. LSTM maintains a hidden state, which stores 
200 short-term information, and a cell state, which stores long-term information. The initial hidden and cell states 
201 are generally set to zero vectors. A LSTM cell at each time step updates the hidden and cell states based on 
202 the states at the previous time step and the input data at the current time step.
203
204                                              (ℎ𝑡0,𝑐𝑡0

) = (0,0)

205                                                         𝑧𝑡𝑖 = {𝑥𝑡𝑖, if 𝑥𝑡𝑖 is available
𝑥𝑡𝑖, if 𝑥𝑡𝑖 is unavailable

206                                                (ℎ𝑡𝑖,𝑐𝑡𝑖
) = LSTM(𝑧𝑡𝑖,[ℎ𝑡𝑖 ― 1,𝑐𝑡𝑖 ― 1

]),  for all 𝑖 ∈ {1,2,…,𝑇}
207                                                            𝑦 = 𝜎(𝑊 ⋅ ℎ𝑡𝑇 + 𝑏)
208
209 However, the conventional LSTM system demands a continuous and uniform time-series dataset, i.e., 
210 the time-steps must represent uniform intervals and the input data should be available for each step. While the 
211 taxonomic abundance data is uniformly sampled (week-wise), data for some subjects is not present for some 
212 weeks. Additionally, the first week for which data is available is different for each subject, and thus, a zero-
213 vector initialization will not be appropriate for the initial hidden state. To address these issues, we modified 
214 the LSTM network accordingly. Firstly, we initialized the hidden state, , with a trainable embedding layer, ℎ𝑡0

215 and the cell state, , was initialized as a zero vector. Secondly, at each time step, we had the LSTM cell 𝑐𝑡0

216 generate the taxonomic abundance forecast, , at each time step, and used the forecast whenever the input 𝑥𝑡𝑖

217 data  was not available. The final hidden state, , was fed to a linear layer with parameters  and   𝑥𝑡𝑖 ℎ𝑡𝑇 𝑊 𝑏
218 followed by a sigmoid activation, , to predict the term/pre-term outcome . The entire network was 𝜎( ⋅ ) (𝑦)
219 trained end-to-end. 
220 Figure 1 outlines the described LSTM network. The LSTM implementation assumes that the input 
221 data is continuously and regularly sampled. However, in our case, data for some intervals may be missing. To 
222 overcome this, we masked the data for missing time steps by using zero vectors to substitute the missing data 
223 points. In parallel, we also used a vector indicating the coordinates of the masked time intervals for each sample, 
224 for which the model used the forecast, i.e., the model-predicted microbial abundance instead of the ground 
225 truth values. Additional method details are provided in the supplementary material (Section 2.1) and the 
226 hyperparameter values are listed in supplementary Table 3. The LSTM model was implemented using the 
227 pytorch library (Paszke et al., 2019) (version 2.0.1, cuda version 11.8).
228
229 2.6.2. Neural Differential Equations
230
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231 A significant limitation associated with clinical data pertains to its irregular sampling of data points, which 
232 presents challenges in constructing effective machine learning models that can effectively harness the inherent 
233 time-series information. The irregularity in data sampling introduces two notable drawbacks: firstly, the size 
234 of input data, contingent upon the number of sampling instances, differs among various subjects; secondly, the 
235 timing of sampling instances is not strictly discrete, thereby restricting the applicability of commonly 
236 employed RNN models that assume uniform intervals between sampled data points. To overcome this, we 
237 leverage a recently introduced class of deep learning models - Neural Ordinary Differential Equations (ODEs) 
238 that combine a neural network with ODEs and allow for continuous interpolation between two randomly 
239 spaced sampling instants.
240 Notably, Neural ODEs exclusively consider the evolution of time-series data commencing at a fixed 
241 time point, denoted as , which is accompanied by an initial condition represented as . In the context of 𝑡0 𝑥𝑡0

242 our research,  signifies the initial abundance of genera at this specific time , which might correspond to 𝑥𝑡0 𝑡0
243 the onset of gestation week 9. Regrettably, the trajectory of microbial abundance varies from subject to subject, 
244 and the initial abundance data for all subjects may not be accessible for subsequent analysis, as the microbial 
245 profiles of each subject were not uniformly sampled at the same time point, namely t0. Consequently, while 
246 Neural ODEs excel in interpolation tasks, they cannot be seamlessly integrated into our framework due to the 
247 absence of consistent initial abundance data. Nevertheless, it transpires that addressing this problem, 
248 specifically how to integrate incoming information, has already been thoroughly explored within the realm of 
249 mathematics, particularly in the field of rough analysis, which is dedicated to the examination of CDEs (Lyons, 
250 1994; Lyons et al., 2007). Kidger et al. (Kidger et al., 2020) have introduced a novel framework known as 
251 Neural CDEs, which extends CDEs to Neural ODE models. To put it simply, Neural CDEs can be seen as 
252 continuous-time counterparts of Recurrent Neural Network (RNN) models. These models can be trained 
253 efficiently using a method called “adjoint backpropagation”, which is elaborated on briefly in the 
254 supplementary materials (Section 3.1), and detailed mathematical representation of it can be found in (Chen et 
255 al., 2018). In brief, the Neural CDE model can be summarized through the following sequence of operations:
256
257 (Initialization)        ℎ𝑡0 = 𝜓𝜃(𝑡0,𝑥𝑡𝑜

)
258   (CDE)   

𝑑ℎ
𝑑𝑡(𝑡) = 𝑓𝜃(ℎ𝑡)

𝑑𝑋
𝑑𝑡(𝑡)

259            (Result)           𝑦 = 𝑙𝜃(ℎ𝑡𝑇
)

260
261 Here,  and  correspond to linear models responsible for transforming the initial taxa abundance (along 𝜓𝜃 𝑙𝜃
262 with the time-stamp ) into the initial hidden state, , and the final hidden state, , into the output label, 𝑡0 ℎ𝑡0 ℎ𝑡𝑇

263 respectively. The map,  is used to avoid translational invariance to first sampled time instant.  is the natural 𝜓𝜃 𝑋
264 cubic spline with knots at  such that . Natural cubic splines allow for smooth interpolation 𝑡0,…,𝑡𝑇 𝑋𝑡𝑖 = (𝑥𝑖,𝑡𝑖)
265 and minimum regularity for handling certain edge cases.  is neural network model depending on parameters, 𝑓𝜃
266 . Due to its dependence on cubic splines, Neural CDEs (Kidger et al., 2020) can be applied to irregularly 𝜃
267 sampled time series, even with temporally-scattered initial conditions. Thus, we chose to apply Neural CDEs 
268 to predicting preterm birth using the irregularly-sampled microbial abundance dataset. A comprehensive 
269 mathematical introduction to Neural CDEs is outside the scope of this paper. For those interested in delving

270 deeper into the mathematical details, we recommend consulting (Kidger et al., 2020) for a more thorough 
271 explanation. The torchcde library (version 0.2.5) was used to implement the Neural CDE model in python. 
272 Hyperparameter values for the model are listed in supplementary Table 4.
273
274 3. Results
275
276 3.1. Microbial abundance dataset contains racially and ethnically diverse subjects
277
278 The 16S rRNA sequence data was converted to taxonomic abundance (Methods, Section 2.2), which led to 
279 approximately 290,000 abundance counts, spanning taxonomic counts at various levels of classification, out 
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280 of which approximately 65,000 corresponded to genus-level, belonging to 2,326 unique samples which 
281 collected at various weeks of gestation throughout the pregnancy, spread across 133 subjects of diverse race 
282 and ethnicities (Figure 2a), out of which 85 subjects delivered at term and 48 subjects delivered preterm (Figure 
283 2 b, d). We aligned the abundance counts subject- and gestational week-wise for ease of interpretation (Figure 
284 2c). Abundance counts for multiple samples derived from the same subject collected during the same week of 
285 gestation, if any, were replaced by the mean of those counts to ensure consistency, as future analyses were 
286 carried out on week-wise data. The distribution of number of genera present in each sample (i.e., number of 
287 genera with non-zero abundance in each sample) is visualized in Figure 2e. Microbial abundance profiles 
288 corresponding to 43 out of the 133 subjects were reserved as the test set. (refer methods Section 2.3).
289
290 3.2. Diversity metrics do not reliably identify at-risk PTB subjects
291
292 Alpha-diversity indices were computed on samples collected during trimester 1 and trimester 2 (gestational 
293 weeks 9 to 24, see methods Section 2.3). The visualization of Chao1, Gini, Shannon, Simpson and TCS alpha-
294 diversity indices computed at various weeks of gestation for subjects who delivered at term and preterm is 
295 presented in Figure 3 a-e, respectively. The results of two-sided, independent t-tests to examine differences in 
296 diversity index values across term and preterm groups are presented in Table 1. Although t-test reveals a 
297 statistically significant difference in the Chao1 diversity index between term and preterm groups during 
298 gestational weeks 9-12 (p = 0.005) and 13-17 (p = 0.02), there are too few samples in the preterm group during 
299 these gestational periods to draw reliable conclusions (see Figure 3). No signature that can distinguish 
300 term/preterm birth is observable from these metrics. As can be seen from the plot, the alpha-diversity indices 
301 are not predictive of a preterm delivery outcome, and perform worse than random classifiers (prediction 
302 accuracy on test set < 50%, refer methods Section 2.4).

303

304
305 3.3. Statistical analyses indicate presence of signatures for PTB prediction in evolving 
306 microbiomes
307
308 To reduce the set of features used for the classification task, we removed the genera with high skewness and 
309 kurtosis. Skewness and kurtosis were computed on relative abundance of microbial genera during the period 
310 of trimester 1 - trimester 2 (gestational weeks 9 to 24). The abundance distributions of a large number of genera 
311 have a high positive skewness and kurtosis (see Figure 4 a, b), and may contribute to noise. Thus, we excluded 
312 the genera which had highly skewed relative abundances (i.e., skewness > 10) as well as genera with high 
313 kurtosis (kurtosis > 10). As a result, only 6 genera were retained, namely, Lactobacillus, Anaerococcus, 
314 Gardnerella, Peptoniphilus, Finegoldia and Prevotella. Except for Finegoldia, these genera have been identified 
315 to be linked to PTB risk previously. Lactobacillus is the most dominant genus within the vaginal microbiome, 
316 and low counts of Lactobacillus have previously been stated to be indicative of increased PTB risk (Bayar et 
317 al., 2020; Gudnadottir et al., 2022). Certain species of Anaerococcus are found to be associated with increased 

318
319 PTB risk (Ansari et al., 2021), however, there are also reports that Anaerococcus species may be protective in 
320 nature (dos Anjos Borges et al., 2023). There is strong evidence linking high Gardnerella vaginalis presence 
321 with PTB and bacterial vaginosis, which also increases PTB risk (Nelson et al., 2009; Ng et al., 2023). In some 
322 populations, increased counts of certain Peptoniphilus species were also found to be associated with high PTB 
323 risk (Park et al., 2022a). Similar evidence exists associating 
324 high Prevotella abundances with increased PTB risk (Freitas et al., 2018; Fettweis et al., 2019; Park et al., 
325 2022b). However, there is insufficient evidence to establish a link between these observations and the changes 
326 that vaginal microbiota undergo throughout the duration of the pregnancy.
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327 We further re-computed the relative abundance based on the abundance counts of these 6 genera only, 
328 and visualized the gestational week-wise abundances and corresponding term/preterm delivery outcomes. The 
329 results are presented in Figure 5 a-f. This analysis highlights that the composition of the 6 genera mentioned 
330 above, changes significantly during the period from end of trimester 1 to trimester 2 of pregnancy. The trends 
331 indicate that low abundance of the Lactobacillus genus during trimester 2 (gestational
332 Gardnerella counts with PTB risk (Figure 5c, p = 0.0073), and the effect is more pronounced during gestational 
333 weeks 16-18. Most of the samples with increased Prevotella counts during weeks 19-21 belonged to subjects 
334 who went on to deliver preterm (Figure 5e, p ≈ 10-6).
335
336 3.4. ML classifiers do not make adequate PTB risk assessment
337
338 We tested the performance of two ML classifiers, viz., RF and DT towards prediction of preterm birth. For 
339 this, we isolated the latest available microbial abundance profiles of training set subjects as well as the test set 
340 subjects, collected during the period between the 9th and the 24th week of gestation, with the rationale that the 
341 state of the microbiome closer to the period of delivery should be better predictive of term/preterm delivery. 
342 Optimal hyperparameters for both RF and DT were identified by performing a grid search on pre-defined 
343 parameter search spaces using 3-fold cross-validation on the training set, and are listed in supplementary Table 
344 2. The resultant models were validated on the test set by computing ROC-AUC, accuracy, precision-recall and 
345 f1 score. The RF model performed significantly better (Figure 6 b, d) compared to DT (Figure 6 a, c) which 
346 performs worse than a random predictor. The detailed results of both classifiers are presented in Table 2 
347 Neither of the models, however, make adequately reliable predictions on the test set.
348

349
350 3.5. LSTMs do not decode the temporal dynamics of vaginal microbiomes
351
352 LSTM was trained on the week-wise genera abundance data sampled during gestational weeks 9 to 24, after 
353 making appropriate adjustments to account for the irregularity in sampling (see Methods, Section 2.6.1, Figure 
354 1). When trained on the entire set of genera with non-zero variance in the training set, the model overfits and 
355 does not generalize well to making predictions on the test set (training set accuracy = 100%, test set accuracy 
356 < 60%). Even when trained on the set of genera with low skewness and kurtosis, the model fails to make 
357 sufficiently accurate predictions on the test set (accuracy = 63%), and is outperformed by the RF model 
358 described above. We attribute this lack of predictivity to the increased estimations that the model makes to fill 
359 the temporal gaps in the data, and it may necessitate availability of additional data samples to be able to make 
360 these estimations more accurately, either in terms of more patient subjects or increased density of samples per 
361 subject.
362
363
364 3.6. Neural CDEs are capable of achieving PTB prediction with a substantial accuracy
365
366 The neural CDE model trained on relative abundances of genera selected by the skewness and kurtosis filtering 
367 outperforms all other models described above. The resultant model performs reasonably well on the test set 
368 (mean test set ROC-AUC = 0.82, accuracy = 74.5% precision = 0.65, recall = 0.71, f1 score = 0.71). The results 
369 are presented in Figure 7 a, b. We then trained the model after shuffling the term/preterm labels for subjects in 
370 the training set. As expected, the model behaved similar to a random predictor on the test set (ROC-AUC < 
371 0.5). Albeit not on the same validation dataset, our approach describes better results than the best submission 
372 in the DREAM challenge for term vs preterm prediction (ROC-AUC = 0.68, accuracy = 67%, sensitivity = 
373 0.48, specificity = 0.79) (Golob et al., 2023), despite using microbial abundances only up to the end of the 2nd 
374 trimester, i.e., the 24th week of gestation, as opposed to the 32nd week of gestation in the DREAM challenge.

375
376
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377 4. Discussion
378
379 Current in vitro or in vivo approaches lack the ability to detect PTB incidences at earlier stages reduces the 
380 effectiveness of prophylactic or therapeutic interventions that can be administered to mitigate neonatal health 
381 concerns associated with it. Current risk assessment approaches involve physical examinations, and factors 
382 such as cervical length may be used to estimate the risk. Additionally, abnormality in levels of biochemical 
383 markers such as Pregnancy-Associated Protein A (PAPP-A) (Smith et al., 2002; Gundu et al., 2016), 
384 Cervicovaginal Interleukins (Manning et al., 2019; Park et al., 2020), etc., may help detect PTB as well. 
385 However, there is a lack of definitive confidence intervals for these physical or biochemical tests. Recent 
386 studies have highlighted the utility of diversity of vaginal microbial communities towards PTB prediction, by 
387 establishing correlations between alpha-diversity indices associated with abundances of various microbial 
388 species (or genera) and incidences of PTB (DiGiulio et al., 2015; Hyman et al., 2014; Haque et al., 2017). 
389 However, microbial communities are highly diverse across various individuals, and more so for individuals 
390 belonging to different ethnic populations (Sun et al., 2022; Gupta et al., 2017). We have demonstrated above, 
391 that in a heterogenous dataset, with microbial profiles derived from ethnically and racially diverse subjects, 
392 diversity metrics could not accurately estimate PTB risk. This indicates that previously reported success of 
393 diversity indices in identifying subjects at high risk of PTB may be dataset dependent, either with respect to 
394 the subject cohort or to the pipeline used in computation of microbial abundance from 16S rRNA sequences, 
395 based on our observations on a mixed-race dataset with 16S rRNA sequences transformed using a standardized 
396 method.
397 Traditional ML methods, which have been explored previously in the context of predicting PTB using 
398 vaginal microbial species abundance, fail to learn an abundance signature associated with PTB in our dataset. 
399 While others (Park et al., 2022a) report success with machine learning methods in ethnically homogenous 
400 cohorts, we found that the predictive performance did not translate to mixed-race cohorts. As we have 
401 demonstrated above, vaginal microbial communities evolve throughout the duration of pregnancy, and 
402 abundance levels of certain species or genera may change significantly as the pregnancy progresses. Learning 
403 a PTB-associated signature in an evolving microbiome may be out of scope of such models as they are not 
404 designed to handle time-series datasets. We explored the utility of LSTM, a type of RNN, which is able to 
405 work with sequential datasets. The architecture of RNN-based approaches requires input datasets to be 
406 regularly and continuously sampled. As far as human patient subject data is concerned, obtaining such a dataset 
407 is a challenge, as study subjects may not be regular or consistent in clinical visits. For this purpose, we filtered 
408 the dataset such that a single sample was present across each of the gestational weeks, which constituted the 
409 time intervals for LSTM. We suitably modified the LSTM workflow to overcome missing time intervals, 
410 however it proved to be incapable of learning any signature associated with PTB.
411 Neural differential equations have recently gained traction with regards to analyzing sequential data. 
412 Since it uses differential equations to model the temporal dynamics, it can handle irregularly and/or 
413 inconsistently sampled data. Neural CDEs are more efficient than neural ODEs (Kidger et al., 2020), and are 
414 even capable of working with partially sampled datasets, although we have not harnessed that in this study. 
415 We found considerable success in using Neural CDEs to predict PTB, in spite of working with a dataset sourced 
416 from an ethnically varied population (refer Figure 2), and outperformed all other approaches that we tested. 
417 To the best of our knowledge, this is the first effort towards modeling the temporal dynamics of vaginal 
418 microbial communities using deep learning, and the first instance of applying neural differential equations for 
419 a problem of this kind.
420 The DREAM challenge for PTB prediction (Golob et al., 2023), was issued in 2019 with the goal of 
421 driving efforts for PTB prediction using the vaginal microbiome. One of the sub-problems for the DREAM 
422 challenge consisted of predicting term births (>= 37 weeks of gestation) and preterm births (< 37 weeks of 
423 gestation) using vaginal microbiomes. The dataset for this challenge was derived from 9 different studies, and 
424 amounted to 3578 samples collected from 1268 individuals (Golob et al., 2023). The dataset used in this study 
425 was also part of the DREAM challenge. We also considered using some of the other datasets in the DREAM 
426 challenge while outlining this study, but dropped either due to not being labelled week-wise or due to 
427 insufficient week-wise samples per patient, for modeling the temporal dynamics. Most of the top submissions 
428 in the challenge used tree-based classifiers. On our test dataset, neural CDEs show better predictivity (mean 
429 test set ROC-AUC = 0.82, accuracy = 75%, sensitivity = 0.71, specificity = 0.85) than the best submission in 
430 the DREAM challenge on their validation dataset (ROC-AUC = 0.69, accuracy = 67%, sensitivity = 0.48, 
431 specificity = 0.79) (Golob et al., 2023), despite using microbial abundances only up to the end of the 2nd 
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432 trimester, i.e., the 24th week of gestation. The DREAM challenge for PTB prediction used taxonomic 
433 abundance data upto the 32nd week of gestation. Our emphasis was on early-stage PTB prediction, and we were 
434 able to achieve better predictive performance in spite of restricting the input data till the 2nd trimester.
435 Predictive approaches using data other than microbial communities also exist. For instance, Tarca et 
436 al. (Tarca et al., 2021) report the results of the DREAM challenge for PTB prediction using the maternal blood 
437 transcriptome and the proteome. The top performing models report better results than what was reported on 
438 microbial communities, with a ROC-AUC of 0.76 when proteomics data from weeks 27-33 was used. However, 
439 in another sub-challenge where early-stage data (weeks 17-22) was used, the top performing model had a 
440 ROC-AUC of 0.62. Obtaining blood transcriptomic or proteomic data may pose difficulties due to the 
441 involvement of invasive procedures requiring clinical expertise to perform. On the other hand, microbial 
442 abundance data is sourced from vaginal swabs, which can be obtained without invasive procedures, by patient 
443 subjects themselves. Several attempts have been made at predicting PTB using biochemical marker (Aung et 
444 al., 2019; Leow et al., 2020), however, obtaining such data may require regular clinical visits, and their viability 
445 in racially-diverse populations is unknown.
446 Poorer and remote parts of the world may even lack the medical infrastructure or presence of adequate 
447 facilities that are required for PTB assessment and prevention. For example, in remote areas in India, there are 
448 clinics called Anganwadis, which roughly translates to courtyard shelter. As of 2018, the Ministry of Women 
449 and Child Development reports the existence of 1.4 million Anganwadi centres spread out across the country. 
450 Anganwadis provide limited healthcare facilities for maternal and infant health and lack the funding and 
451 facilities, or even trained medical personnel required to mitigate PTB and its ill-effects. Given the simplicity 
452 of obtaining samples from which microbial abundance is derived, reliable approaches for PTB risk assessments 
453 developed on microbiota will greatly help such remote clinics.
454 While we have demonstrated the capability of Neural CDEs towards PTB prediction using the vaginal 
455 microbiome, further effort can be made for increasing its clinical viability. Firstly, our dataset is limited in size 
456 (133 patient subjects), and we believe that larger datasets with better racial and ethnic representation may help 
457 learn signatures which take into account the diversity of vaginal microbiomes across individuals/races. 
458 Secondly, predicting the extent of preterm birth (extremely preterm, very preterm, moderate to late preterm) 
459 is also important as far as administering interventions is concerned, as they may have varying impact on 
460 maternal and infant health and may require different strategies. This may be achieved by predicting the 
461 gestational week of delivery, or by treating PTB as a multi-class problem with different extents of PTB as the 
462 classes, on more high-quality datasets. We strongly believe that vaginal microbial communities may be the 
463 key to achieving early-stage PTB prediction, and our findings strongly encourage future efforts for pregnancy 
464 microbiome data generation and further refinements in modeling procedures, which may take us closer to 
465 achieving full clinical viability.
466
467 5. Data & Code Availability
468
469 The code and data files for this study have been made available on https://tinyurl.com/3427p6y4. The 
470 repository contains a readme file which describes the contents of the individual data files along with the 
471 demographics of the train and test data, as well as a brief description of the code files. 
472
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502 Figure 1: Visualization of the LSTM Network. Week 0 represents the earliest week of gestation for which microbial data 
503 is available. This is passed through an embedding layer, which generates the initial hidden state. Subsequent hidden states 
504 are determined by the previous hidden and cell states, and the microbial data at the respective time step. If the microbial 
505 data is not available, the output of the previous hidden state is used instead. The final hidden state is passed through a 
506 linear layer with a single output neuron to predict the term/preterm outcome, and the entire network is trained end-to-end.
507
508 Figure 2: Distribution of (a) race, (b) number of subjects who delivered at term/pre-term, (c) sample gestational age at the 
509 time of collection, (d) gestational age of subject at the time of delivery, and (e) number of unique genera detected in each 
510 sample in the microbial abundance dataset
511
512 Figure 3: (a) Chao1, (b) Gini, (c) Shannon, (d) Simpson and (e) TCS diversity metrics computed on microbial abundance 
513 data collected during trimester 1 and trimester 2 of pregnancy. Blue and red points represent samples derived from subjects 
514 who delivered at term and pre-term, respectively.
515
516 Figure 4: Distribution of (a) skewness and (b) kurtosis: computed on relative abundances of genera.
517
518 Figure 5: (a)-(f): Variation in relative abundances for Anaerococcus, Finegoldia, Gardnerella, Lactobacillus, 
519 Peptoniphilus and Prevotella, respectively, during gestational weeks 9-24.
520
521 Figure 6: Receiver operating characteristic (ROC) curve for the (a) decision tree (DT) and (b) random forest 
522 (RF) classifiers on the training and test datasets, and validation metrics (AUC, accuracy, precision, recall and 
523 f1 score) computed for the (c) DT and (d) RF classifiers.
524
525
526 Figure 7: (a) ROC curves and (b) classification metrics on the training and test datasets for the Neural CDE model.
527

Table 1: p-values representing significance of differences between diversity metric values across the term and 
preterm groups for gestational weeks (a) 9-12, (b) 13-16, (c) 17-20 and (d) 21-24.

528
529 Table 2: Comparative performance of various machine learning methods
530
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Table 1: P-values representing significance of differences between diversity metric values across 
the term and preterm groups for gestational weeks 9-12, 13-16, 17-20 and 21-24.

Gestational week/Metric P-value
Gestation weeks 9 – 12 

Shannon 0.8034
Simpson 0.9271
Gini 0.4074
Chao1 0.0049
TCS 0.0931

Gestation weeks 13 – 16 
Shannon 0.7225
Simpson 0.4616
Gini 0.9042
Chao1 0.0190
TCS 0.5035

Gestation weeks 17 – 20 
Shannon 0.6221
Simpson 0.4852
Gini 0.7739
Chao1 0.3352
TCS 0.8353

Gestation weeks 21 – 24 
Shannon 0.3058
Simpson 0.2270
Gini 0.2935
Chao1 0.5482
TCS 0.3751
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Metrics
Method ROC-AUC Accuracy Precision Recall F1-score

Decision Tree 0.46 ± 0.09 0.45 ± 0.12  0.39 ± 0.11  0.58 ± 0.22  0.41 ± 0.14
Random Forest 0.60 ± 0.10  0.59 ± 0.09  0.42 ± 0.10  0.48 ± 0.13  0.44 ± 0.12

Ours (Neural-CDE) 0.82 ± 0.02  0.74 ± 0.04  0.65 ± 0.05  0.71 ± 0.12  0.71 ± 0.03
Table 2: Comparative performance of various machine learning methods
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Deep Learning Enables Early-Stage Prediction of 
Preterm Birth Using Vaginal Microbiota

Supplementary Material

1 Machine Learning Classifiers: Hyperparameters

1.1 Hyperparameter search spaces

Hyperparameters for both, the Random Forest (RF) and Decision Tree (DT) models were tuned by carrying out 
3-fold cross-validation on the training set. For each set of hyperparameters, the training set was divided into 3 
folds, and classification performance was evaluated on each fold after training on the 2 remaining folds. 
Accuracy, ROC-AUC, precision, recall and F1-score was computed for each fold. Finally, the optimal 
hyperparameters were selected based on mean F1-score (i.e., the hyperparameter set with the highest mean 
F1-score was selected as the optimal set). The search spaces of the hyperparameters are presented in 
supplementary table 1. The explanation and significance of parameters can be found in the scikit-learn 
documentation.

1.2 Optimal Hyperparameter Values

The optimal values of the hyperparameters, as identified by grid search, are listed in supplementary table 2.

2. Long Short-Term Memory (LSTM):

2.1 Implementation details

To facilitate the LSTM model to make predictions on a non-continuous and irregularly sampled dataset, we made 
two modifications to it. Let w0 be the first time step for which data is available. Firstly, the hidden state is 
initialized by an embedding layer, which takes w0 as input, and the cell state is initialized as a zero vector. Since 
week 9 is the earliest possible time point for which data is used, we denote it as t = 0. The LSTM model is run 
from weeks 9 to 24 (t = 0 to t = 15). From t = 0 to t = w0 - 1, the LSTM cells at each time step do not update the 
hidden state, and simply act as dummy cells. At t = w0, the hidden state is still the same as what was initialized 
with the embedding, and the LSTM cell at t = w0 updates the hidden state based on the input data.

The LSTM cell at each time step is followed by a linear layer which generates the “forecast”, or the predicted 
genera abundance at that time step. As part of our second modification, for the time steps beyond t = w0 for 
which input data is missing, we use this forecast to update the hidden state. Since the missing sampling intervals 
are different for each subject, we have to process each subject with its own set of rules to update the model 
weights. Thus, the batch size is restricted to 1.

2.2 Model Parameters

We used the Adam optimizer implemented within pytorch for training the model. The model parameters for 
LSTM are listed in supplementary table 3.

3. Neural Controlled Differential Equations (CDEs)

3.1 Training using adjoint backpropagation

Neural differential equation models are solutions to a time-dependent system whose function is a neural 
network that can be learned. This neural network is typically a linear fully connected network, however, a non-
linearity can be introduced by using a tanh or a relu activation. In case of CDEs, there exists a “hidden state” (h), 
essentially a parametrized version of the input data, and the ODE can be represented as:
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Where  is the neural network with parameters . Training the model essentially refers to update these �� �
parameters based on the gradient of the cost function (J) with respect to the parameter vector, scaled by a 
learning rate ( ).�

�� + 1  =  ��  +  � 
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And the gradient of the cost function can be represented as:
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Where g is the loss function (binary cross-entropy in our case). The above expression essentially maps this 
gradient to a scalar, using which the parameters are updated. This can be further represented as: 
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+
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Adjoint sensitivity analysis or the adjoint state method essentially refers to computing the cost function gradient 
using the above expression in an efficient manner. The exact mathematical derivation for this is comprehensively 
described in Chen et al. [1].

3.2 Model parameters

Neural CDE model parameters are listed in supplementary table 4.
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Supplementary Figures

Supplementary Fig. 1: Distribution of (a) Ethnicity, (b) Race, (c) Number of subjects who delivered at 
term/pre-term, (d) Sample gestational age at the time of collection, (e) Gestational age of subject at the 
time of delivery (f) Number of unique genera detected in each sample, in the microbial abundance dataset

Page 27 of 34 Accepted Manuscript published as MAH-23-0024.R1. Accepted for publication: 21-Mar-2024

Copyright © 2023 the authors
Downloaded from Bioscientifica.com at 03/23/2024 07:52:24AM

via Open Access. This work is licensed under a Creative Commons Attribution
4.0 International License

http://creativecommons.org/licenses/by/4.0/deed.en_GB

http://creativecommons.org/licenses/by/4.0/deed.en_GB


Supplementary Fig. 2: (a) Shannon, (b) Simpson, (c) Gini, (d) Chao1 and (e) TCS diversity metrics computed 
on microbial abundance data collected during trimester 1 and trimester 2 of pregnancy. Blue and red points 
represent samples derived from subjects who delivered at term and pre-term, respectively.
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Supplementary Fig. 3: (a) Skewness and (b) Kurtosis distribution computed on the relative abundance of 
each microbial genus during the period from gestational weeks 9 to 24.
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Supplementary Tables

Parameter Search Spaces
n_estimators (RF only) 50, 100, 150
max_depth None, 2, 3, 4
min_samples_split 0.25, 0.33, 0.5, 2, 4
max_features sqrt, log2, 0.25, 0.33, 0.5, 2, 4
max_leaf_nodes None, 2, 4
min_samples_leaf 0.25, 0.33, 0.5, 2, 4
criterion entropy, gini, log_loss
splitter (DT only) best, random
class_weight balanced, balanced_subsample

Supplementary Table 1: Hyperparameter search spaces for the Random Forest and Decision Tree classifiers. 
The search spaces for both models are common unless specified otherwise.
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Optimal ValueParameter
Random Forest Decision Tree

n_estimators 50 -
max_depth 4 3
min_samples_split 0.33 0.5
max_features 0.25 0.25
max_leaf_nodes 2 4
min_samples_leaf 0.33 0.2
criterion entropy gini
splitter - best
class_weight balanced_subsample balanced

Supplementary Table 2: Optimal hyperparameter values for the Random Forest and Decision Tree classifiers.
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Parameter Value Explanation
Input channels 30 Dimension of the input (number of genera in the input 

dataset)
Hidden channels 128 Dimension of the hidden state
Embedding input 

dimensions
14 Number of possible inputs to embedding layer (i.e., number 

of unique weeks between 9 and 24 which serve as first 
available data sample)

Learning rate 1e-4 Learning rate for updating weights
Learning rate decay 1 (No decay) Reduction in learning rate across epochs

Loss function Binary cross-entropy The function to minimize while optimizing the LSTM model
Number of epochs 35 Number of epochs (iterations) for which the model is trained

Batch size 1 (Fixed) Number of samples per training batch. Batch size is restricted 
to 1 due to different time steps for which data is missing, 
which forces handling each sample individually

Supplementary Table 3: Parameters for the long short-term memory model
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Parameter Value Explanation
Input channels 6 Dimension of the input (number of genera in the input 

dataset)
Hidden channels 64 Dimension of the hidden state
Output channels 1 (Fixed) Dimension of the output (fixed to 1, since we are only 

outputting a single probability)
Interpolation type Cubic Method of interpolation of missing data from nearest 

observations
Learning rate 1e-4 Learning rate for updating weights

Learning rate decay 0.5 Reduction in learning rate across epochs
Learning rate decay 

step size
15 Number of epochs after which learning rate decay is applied

Loss function Binary cross-entropy The function to minimize while optimizing the LSTM model
Positive class 

weight
1.5 Weighted penalty to apply to negative class predictions (i.e., 

encourage predictions of positive class)
Batch size 10 Number of samples per training batch

Supplementary Table 4: Parameters for the Neural CDE model.

Page 33 of 34 Accepted Manuscript published as MAH-23-0024.R1. Accepted for publication: 21-Mar-2024

Copyright © 2023 the authors
Downloaded from Bioscientifica.com at 03/23/2024 07:52:24AM

via Open Access. This work is licensed under a Creative Commons Attribution
4.0 International License

http://creativecommons.org/licenses/by/4.0/deed.en_GB

http://creativecommons.org/licenses/by/4.0/deed.en_GB


References

[1]. R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differential equations. ArXiV, 
2018.

Page 34 of 34Accepted Manuscript published as MAH-23-0024.R1. Accepted for publication: 21-Mar-2024

Copyright © 2023 the authors
Downloaded from Bioscientifica.com at 03/23/2024 07:52:24AM

via Open Access. This work is licensed under a Creative Commons Attribution
4.0 International License

http://creativecommons.org/licenses/by/4.0/deed.en_GB

http://creativecommons.org/licenses/by/4.0/deed.en_GB

