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Abstract

This thesis is divided into two parts. In the first part, I describe efficient meta-heuristic algorithms for a se-

ries of combinatorially complex optimization problems, while the second part is concerned with robust and

scalable control architecture for a network of paralleled converter/inverter systems (DC/AC microgrids).

Combinatorial optimization problems arise in many applications in various forms in seemingly unre-

lated areas such as data compression, pattern recognition, image segmentation, resource allocation, rout-

ing, and scheduling, graph aggregation, and graph partition problems. These optimization problems are

characterized by a combinatorial number of configurations, where a cost value can be assigned to each

configuration, and the goal is to find the configuration that minimizes the cost. Moreover, these optimiza-

tion problems are largely non-convex, computationally complex and suffer from multiple local minima that

riddle the cost surface. Most heuristics to these optimization problems are very sensitive to initial guess so-

lutions, and efforts to make them robust to initializations typically come at significant computational costs

such that the algorithms lose practicality in many applications. In our work, we are motivated by solutions

that are employed by nature to similar combinatorial optimization problems; well described in terms of

laws such as maximum entropy principle (MEP) in statistical physics literature. We propose to use MEP in

solving a variety of combinatorial optimization problems.

Our main current contributions are threefold - (i) First we provide a clustering or resource allocation

viewpoint to several combinatorial optimization problems: (a) data clustering, (b) graph partitioning (such

as clustering of power networks), (c) traveling salesman problem (TSP) and its variants, and (d) hard prob-

lems on graphs, such as multiway k-cut. This viewpoint enables a unified approach to handle a broad class

of problems, and therefore efficient MEP based heuristics can be leveraged to obtain high-quality solutions.

(ii) Second, we explore MEP based ideas to clustering problems specified by pairwise distances. Many

problems in graph theory are indeed specified in terms of the corresponding edge-weight matrices (and

not in terms of the nodal locational coordinates). (iii) Finally, our framework allows for inclusion of several

constraints in the clustering/resource allocation problems. These constraints may correspond to capacity

constraints in case of resource allocations where capacity of each resource is limited, or minimum-tour
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length constraints in case of traveling salesman problems (TSPs) and its variants.

In the second part of this thesis, we describe a novel distributed, robust and optimal control architecture

for both DC as well as AC microgrids. Microgrids are grid systems that allow integration of local power

sources, such as photovoltaics (PVs), wind, battery and other distributed energy resources (DERs) with

local loads connected at the DC-link or the point of common coupling (PCC). Microgrids are hypothesized

as viable alternatives to the traditional electric grid. In a microgrid, the main goals of the control design are

to regulate voltage and frequency at the PCC and ensuring a prescribed sharing of power among different

sources; for instance, economic considerations can dictate that power provided by the sources should be in

a certain proportion or according to a prescribed priority. The main challenges arise from the uncertainties

in the size and the schedules of loads, the complexity of a coupled multi-converter network, the uncertain-

ties in the model parameters at each converter, and the adverse effects of interfacing DC power sources

with AC loads, such as the 120Hz ripple that must be provided by the DC sources. A systematic control de-

sign that addresses all the challenges and objectives for the multi-converter/inverter control is still lacking

in the existing literature. The main contribution of the control architecture proposed by us is its capability

to addresses all the primary objectives - a) voltage and frequency regulation at the PCC with guaranteed

robustness margins, b) prescribed time-varying power sharing in a network of parallel converters, c) con-

trolling the tradeoff between 120Hz ripple on the total current provided by the power sources and the ripple

on the DC-link voltage. An important contribution of our work is that our control architecture allows for

closed-loop analysis and robust control synthesis for the entire grid network. We introduce a structure in

the control architecture, whereby, we show that analysis of the entire multi-component microgrid can be

simplified to that of an equivalent single-component system. Besides analysis, this simplification facilitates

using robust and optimal control tools for achieving multiple objectives simultaneously; in contrast in exist-

ing architectures, closed-loop analysis for entire networks is typically difficult, and posing optimal control

and robustness objectives for the entire network practically untenable.
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Chapter 1

Introduction: Combinatorial
Optimization Problems

1.1 Historical Overview

Optimization problems are ubiquitous in science and engineering, and even in our daily life, for instance,

in how we optimize our budget over different kinds of expenses, in how we allocate our time to various

activities, or how we allocate our resources for future investments. A subset of these optimization problems,

also referred as combinatorial optimization problems, deal with finding an optimal object from a finite set

of objects. Combinatorial optimization problems operate on the domain of those optimization problems, in

which the set of feasible solutions is discrete or can be reduced to discrete, and the aim is to find the best

such solution. An example of combinatorial optimization problems is the knapsack problem, in which we

are given a finite set of objects with non-negative values and weights and a knapsack of finite capacity. The

goal is to choose items to be put in the knapsack such that the sum total capacity of all the items inside the

knapsack does not exceed the capacity of the knapsack, and the total value of the items inside the knapsack

is maximized. Note that if there are N items in a knapsack problem, there are 2N ways in which a knapsack

can be filled, i.e., there are combinatorial number of ways to arrange N items in a knapsack. Each such

way defines a total value in the sack. Evaluating all possible ways to arrange N items in a knapsack is

NP-hard, as is often the case with most combinatorial optimization problems, where exhaustive search is

not feasible. In this thesis, we consider a more generalized view of combinatorial optimization problems,

where we also encompass mixed-variable (both continuous and discrete variables) optimization problems,

such as a facility location problem (FLP).

Combinatorial optimization problems find their relevance in many applications in various forms in

seemingly unrelated areas such as data compression [3], pattern recognition [4], image segmentation [5],

resource allocation [6], routing [7], and scheduling [8], graph aggregation [9], and graph partition prob-

lems [10]. While problems, such as, shortest paths, flows and circulations, spanning trees, matching, and

matroid problems admit polynomial-time algorithms for finding an optimal solution, there are still a large

variety of combinatorial optimization problems for which are provably non-solvable in polynomial time,
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unless P=NP. These optimization problems are largely non convex, computationally complex and suffer

from multiple local minima that riddle the cost surface [11]. There is a vast literature on commonly used

approaches to efficiently recover high-quality solutions of combinatorial optimization problems. These

approaches range from exact methods, such as, branch-and-bound [12] and branch-and-cut [13], which

work well in practice, however, may require exponential number of evaluations depending on the problem

instance, to inexact methods (heuristics). These heuristics include repeated optimization with random ini-

tialization (such as Lloyd’s algorithm [14]), single solution metaheuristics such as simulated annealing (SA)

[15], and population-based approaches such as particle swarm optimization (PSO) [16] and genetic algo-

rithms (GA) [17]. However, the algorithms resulting from these heuristics are very sensitive to initial guess

solutions, and efforts to make them robust to initializations typically come at significant computational

costs such that the algorithms lose practicality in many applications.

Our approach to solving combinatorial optimization problems is motivated by solutions that are em-

ployed by nature to similar problems; well described in terms of laws such as minimum free energy princi-

ple in statistical physics literature. E.T Jaynes [18] was a pioneer in this direction and made close analogies

between information theory and statistical mechanics. In fact he expounded the maximum entropy prin-

ciple (MEP), which is analogous to the minimum free-energy principle. In our work, we propose to use

MEP in solving the underlying combinatorial optimization problems. The MEP based approach has two

significant advantages: (a) the approach is not biased to a starting solution, in fact the approach does not

start with a feasible solution, but rather assumes a uniform distribution over all possible solutions and con-

verges to a feasible (favored) solution in the limiting case. (b) the algorithm makes very few computations

during its exploration to converge to final sub-optimal solutions.

1.2 Main Contributions

The first part of this thesis develops a unifying framework for addressing a wide range of discrete or com-

binatorial optimization problems. The work exploits tools, such as, maximum entropy principle/ mini-

mum free-energy principle and annealing, from the statistical physics literature [18] to convert a discrete

optimization problem into continuous optimization problem. By appropriately modifying the Lagrange

multiplier, the continuous variables are forced to mimic discrete (binary) variables in the limiting case. Our

main contributions can be summarized as follows:

(a) Development of a unifying framework: Combinatorial problems arise in several contexts, such as, data

clustering, scheduling, vehicle routing, minimum cuts, unit commitment, etc. and are often NP-hard.
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While there are some efficient heuristics for solving problems belonging to different domains, there

is a lack of common viewing point among them. The absence of such a unifying framework limits

the advantages a heuristic leverages in a specific problem to generalize to other problems. In this

work, we have developed a common resource allocation viewpoint to a wide range of combinatorial

optimization problems. This unification enables problems from different domains to be handled using

the proposed approach.

For instance, this thesis presents a unifying resource allocation viewpoint to a classical traveling sales-

man problem (TSP) and its variants. These variants comprise of multiple traveling salesman prob-

lem (mTSP) with varying constraints, such as, mTSP with single depot, non-returning mTSP and

close-enough traveling salesman problem (CETSP). Note that a solution to mTSP comprises of sev-

eral routes, one for each salesman, and the optimal tour would be the set of routes such that the total

distance traveled is minimized. On the other hand, a solution to CETSP consists of a route containing

each city, where it suffices to reach within a certain radius of each city in the route. CETSPs have ad-

ditional computational complexity as they consider a discrete optimization problem over continuous

variables (points-of-visit). All the above variants of TSP are addressed in a resource allocation frame-

work, where a resource is allocated for each city and the constrained optimization is performed over

these resource locations. Thus, our approach provides a way to view discrete optimization problems

as equivalent continuous optimization problems which are then addressed using tools from statistical

physics, such as maximum entropy principle (MEP).

(b) Convergence proof : The MEP based approach suggested in this work is shown to converge to a mini-

mum. In fact, it is shown that the update rule in our algorithm boils down to gradient-descent on the

free-energy function.

(c) Incorporating physics of the underlying problem: Combinatorial optimization problems, such as, cluster-

ing of power networks should incorporate physics of electrical networks based on Kirchoff’s laws for

efficient partitioning. Most existing approaches on partitioning power networks completely ignore

the physics of the underlying problem. We have proposed a novel metric for incorporating physics

of the concerned problem.

(d) Statistical physics meets machine learning: The original DA algorithm proposed by Rose [19, 3] fails

to cluster points that are non-linearly separable in the input space. We overcome this limitation by

incorporating kernel-trick [20] from the machine learning literature. We call the modified algorithm

the weighed kernel deterministic annealing (WKDA) algorithm. In fact, several spectral clustering
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algorithms, such as, normalized-cut [5], or ratio-cut [21] can be viewed as special cases of the WKDA

objective function.

(e) Generalization to other problems: As part of the ongoing and future work, we plan to extend the pro-

posed approach to more general problem of mixed-integer optimization. Our initial evaluations sug-

gest a great scope of the proposed MEP based approach.

1.3 Organization

The organization of the first part of the thesis is as follows. In chapter 2, we describe the maximum en-

tropy principle (MEP) in the context of combinatorial optimization problems. In particular, we describe

the deterministic annealing (DA) algorithm [3, 19] that was developed primarily to address a clustering or

facility location problem. We then discuss the extension of the MEP idea to a wide range of discrete and

combinatorial optimization problems - (a) multiple traveling salesman problem and its variants, (b) cluster-

ing of large power networks into loosely coupled smaller networks, (c) clustering with pairwise distances

using kernel trick, and (d) multiway k-cut problem. Many theoretical and practical tools are developed in

the treatment of each of these problems. A variety of experiments are considered and MEP based methods

exhibit state-of-the-art results. We finally conclude our discussion with interesting directions to ongoing

and future work.
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Chapter 2

Maximum Entropy Principle: Overview

Maximum entropy principle (MEP) was first expounded by E. T. Jaynes [18] in 1957 as a natural correspon-

dence between statistical mechanics and information theory. MEP states that of all the probability distributions

that satisfy a given set of constraints on the expected value of a function of a random variable, the distribu-

tion with the largest entropy is the best representative of the current state of knowledge (constraints).

Let X ∈ X be a random variable and f be a function of that random variable. Let P(X) be any proba-

bility distribution on X. Moreover, the expected value of f (X) is known to be f0 ∈ R, i.e.,

< f (X) >= E[ f (X)] = f0. (2.0.1)

There are possibly infinitely many probability distributions that satisfy (2.0.1). However according to MEP,

the fairest distribution that satisfies (2.0.1) is the one that is obtained by maximizing entropy. The idea

behind MEP is that since entropy is considered as the measure of randomness, by choosing another distri-

bution one implicitly makes extra restrictive assumptions.

MEP considers the following optimization problem,

max
{P(X)}

−∑
X

P(X) log P(X)︸ ︷︷ ︸
H(P(X))

, such that, ∑
X

P(X) f (X) = f0, (2.0.2)

where H(P(X)) is Shannon-entropy term [22]. The probability distribution that maximizes the Shannon

entropy term in (2.0.2) is equivalently obtained by considering the following optimization problem:

min
{P(X)}

∑
X

P(X) f (X) +
1
β ∑

X
P(X) log P(X)︸ ︷︷ ︸

L(P(X))

, (2.0.3)

where L(P(X)) is the associated Lagrangian and β is the Lagrange multiplier. Note that ∑X P(X) = 1. The
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probability distribution {P(X)} that solves (2.0.3) is given by:

P(X) =
e−β f (X)

∑X′ e−β f (X′)
. (2.0.4)

The probability distribution in (2.0.4) is also referred as Gibbs distribution. Note that at small values of β,

i.e., β ≈ 0, P(X) =
1
|X | , i.e., the optimizing distribution is uniform (completely random). This makes sense

since optimizing the Lagrangian at small values of β is equivalent to maximizing the Shannon entropy, and

the Shannon entropy is maximized when the distribution is random. On the other hand, as β → ∞, the

optimizing distribution becomes hard (0-1). This forms the basis for using MEP for solving combinatorial

optimization problems.

Thus in our approach to combinatorial optimization problems, we aim to optimize the entropy con-

strained objective function at successively increased values of β. Maximization of entropy is a convex

problem and there is a unique deterministic global optimum (i.e., uniform distribution) to this problem.

Thus β defines homotopy between maximization of entropy and minimization of original (non-convex)

objective function. This process is referred as annealing in the statistical physics literature [18]. As β is

gradually increased, the aim is to keep track of optimizers at all β such that in the limiting case (β → ∞)

the approach recovers high-quality hard solutions. Rose [19] proposed a similar MEP-based algorithm,

known as deterministic annealing (DA) algorithm, in the context of facility location problem (FLP). Below

we describe the DA algorithm, which forms the basis of our approach to solving a variety of combinatorial

optimization problems, in detail. Note that the MEP is easily generalizable to multi-variable optimization

of the form:

min
{Xi}

f (X1, X2, · · · , Xn),

where a probability distribution of the form P(X1, · · · , Xn) = ∏n
i=1 P(Xi) is considered and application of

MEP results in following Gibbs distribution:

P(Xi) =
e−β f (Xi)

∑X′i
e−β f (X′i )

for all i ∈ {1, 2, · · · , n}.

2.1 Deterministic Annealing (DA) Algorithm

The MEP based algorithm proposed in this thesis is an extension of the deterministic annealing algorithm

[19, 3], which concerns with the facility location problem (FLP). Since the DA algorithm forms the basis for
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the work discussed in this thesis, it is worthwhile to describe to present the DA algorithm in detail so as to

gain a lot of intuitions for our proposed framework. In an FLP, we seek optimal placement of facilities to

minimize the transportation costs from a given set of points to their nearest facilities. More precisely, given

a set of N ∈N points X = {xi : xi ∈ RM, 1 ≤ i ≤ N}, the objective of an FLP is to find optimal locations of

k ∈N facilities denoted by Y = {yj : yj ∈ RM, 1 ≤ j ≤ k} such that the aggregate weighted sum of distances of

each point from its nearest facility location is minimized. If pi denotes the relative significance of point xi, then

an FLP considers the following objective:

min
Y={yj}
T ={χij}

k

∑
j=1

N

∑
i=1

χij pid(xi, yj)︸ ︷︷ ︸
D(X ,Y)

, (2.1.1)

where T = {χij : χij ∈ {0, 1}} is a set of associations with χij = 1 if facility yj is allocated to point

xi, otherwise χij = 0, and d(xi, yj) = ‖xi − yj‖2. Borrowing from data compression literature [22], the

quantity D(X ,Y) in (2.1.1) is often referred as distortion between set of data points X and facility locations

Y . Then the equivalent optimization problem is to minimize the distortion function. Solution to an FLP, for

squared-Euclidean distance functions, results in a set of clusters, where facility j is located at the centroid

yj of the jth cluster, and each data point is associated only to its nearest facility (Voronoi partitions).

Most algorithms for FLP (such as Lloyd’s [14]) start with some initial distribution of facility locations Y

and iteratively optimize over them as the algorithm proceeds. However, such approaches are sensitive to

the choice of initial facility locations, primarily die to the distributed aspect of the FLPs, where any change

in the location of xi affects d(xi, yj) only with respect to the nearest facility located at yj. The DA algorithm

suggested by Rose [3], overcomes this sensitivity by allowing fuzzy association of every data point to each

facility through an association probabilities {p(j|i)}. This results in a modified distortion measure to reflect

the weighted average distance of data points to all the facilities:

D̄(X ,Y) =
N

∑
i=1

pi

k

∑
j=1

p(j|i)d(xi, yj). (2.1.2)

The probability distribution {p(j|i)} assesses the trade-off between decreasing the local influence and

the deviation of the modified distortion D̄ from the original distortion measure D. The uncertainty in

associating facility locations Y = {yj} to locations of data points X = {xi} is captured by Shannon entropy
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term, widely used in data compression literature:

H(Y|X ) = −
N

∑
i=1

pi

k

∑
j=1

p(j|i) log (p(j|i)). (2.1.3)

Note that maximizing the entropy is commensurate with decreasing the local influence. The trade-off be-

tween maximizing the entropy and minimizing the modified distortion in (2.1.2) is addressed by seek-

ing the probability distribution {(p(j|i)} that minimize the free-energy function (or equivalent Lagrangian)

given by

F , D̄(X ,Y)− 1
β

H(Y|X ) +
N

∑
i=1

µi

(
k

∑
j=1

p(j|i)− 1

)
, (2.1.4)

where the last term corresponds to {p(j|i)} being a valid probability distribution. The Lagrange multiplier

β bears a direct analogy to the inverse of the temperature variable in an annealing process [18]. Minimizing

F at small values of β is equivalent to maximizing entropy H (a convex optimization problem). As β is

increased gradually, minimization of F lays more emphasis on minimization of the distortion function. The

association weights {p(j|i)} that minimize the free-energy function are given by the Gibbs distribution

p(j|i) = e−βd(xi ,yj)

∑k
j′=1 e−βd(xi ,yj′ )

. (2.1.5)

By substituting the Gibbs distribution into (2.1.4), the corresponding free-energy function is obtained as

F(Y) = − 1
β

N

∑
i=1

pi log

(
k

∑
j=1

e−βd(xi ,yj)

)
. (2.1.6)

In the DA algorithm, the free-energy function is deterministically optimized at successively increased values

of the annealing parameter β. The optimal facility locations Y are obtained by setting the derivative of

F(Y) with respect to yj to zero, thereby resulting in following update equation

yj =
∑N

i=1 pi p(j|i)xi

∑N
i=1 pi p(j|i)

for d(xi, yj) = ‖xi − yj‖2
2. (2.1.7)

Note that the above equation has a form similar to computing centroids in k-means clustering algorithm.

However in k-means clustering, the association between xi and yj are hard (0-1). The DA algorithm alter-

nates between (2.1.5) and (2.1.7) at each β until convergence. In fact, the convergence of (2.1.6) is guaranteed

as a consequence of coordinate descent on the free-energy function [23].

Since its inception, DA has been successfully applied to larger class of optimization problems such as,

9



pattern classification [24], image segmentation [25], graph aggregation [9], robust speech recognition [26],

expectation-maximization [27], coverage control [28] and scheduling problems [8].

Shortcomings of the DA algorithm:

The DA algorithm is developed primarily in the context of FLPs, where the locations of site-points are

required, and not the pairwise distances between them. On the other hand, many combinatorial optimiza-

tion problems on graphs deal with instances where edge-weights between two nodes reflect the pairwise

(dis)similarity between them. The DA algorithm proposed by Rose, lacks its generalization ability to han-

dle problems with pairwise constraints. Moreover, the original DA algorithm does not allow for inclusion

of general constraints, such as, capacity constraints, and it is often infeasible to derive convergence to sub-

optimal solutions using MEP-based ideas. The first part of the thesis addresses these drawbacks for a wide

range of combinatorial optimization problems, described in the next chapter.
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Chapter 3

Applications of Maximum Entropy
Principle

3.1 Traveling Salesman Problems and its Variants

The traveling salesman problem (TSP) [29, 30, 31] is one of the most extensively studied involving combi-

natorial optimization. TSP is an NP-hard problem and appears in operations research, computer science

and manufacturing. A TSP is defined by a set of nodes or cities, and the edges connecting them which

define the cost of travel between each city. Each solution to a TSP is referred as a tour and is made up of

a combination of edges such that each node is visited sequentially. The optimal tour is the combination of

edges that minimizes the total cost to the salesman.

A generalization of the TSP in which more than one salesman is allowed is referred as the Multiple

Traveling Salesman Problem (mTSP). Note that a solution to mTSP comprises of several routes, one for each

salesman, and the optimal tour would be the set of routes such that the total distance traveled is minimized.

Additional constraints may be imposed on the system such as requiring each salesman to start at the same

point, representing a warehouse or depot. These variants find applications in job-shop scheduling, such

as, scheduling of orders at a steel rolling company [32], printing press scheduling [33], and vehicle routing

problems [7].

Another important variant of the TSP is close-enough TSP (CETSP) [34], which is a variant where the

salesman must only come within a certain radius of each city on the tour. This adds great complexity to

the problem. Because of the significant increase in the number of edges, many conventional heuristics

are unable to address this variant. CETSPs appear in the context of aerial reconnaissance, or monitoring

wireless electric meters where it suffices to visit anywhere within the communication range of a meter.

Unlike other variants of TSPs, CETSPs admit a continuum of feasible solutions and therefore are relatively

complex to be addressed efficiently. Some special formulations are adopted to address CETSPs [34, 35]. Fig.

3.1 shows the schematic of variants of mTSP and CETSP.

In this thesis, we present a resource allocation viewpoint to TSP. This viewpoint enables to employ a

modified version of the previously described deterministic annealing algorithm to TSP and its variants. In
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(a) (b) (c) (d)

Figure 3.1: Schematic of a (a) 9-nodes non-returning 3TSP. The dashed blue lines indicate the removal of links, which
corresponds to αk1=3 = 1, αk2=7 = 1 (b) 9-nodes returning 3TSP. The dashed blue lines indicate the removal of links
(−dσkj ,σkj+1 ), while solid blue lines indicate the addition of links (dσkj ,σk(j−1)+1 ). (c) 9-nodes single-depot returning 3TSP.
(d) Single salesman returning CETSP. Each node xi is provided with a radius parameter ρi. The orange dots indicate yj
such that vij = 1 for some node i.

this viewpoint we consider an ordered set of facilities, where each facility is regarded as a copy of one of the

cities. The MEP is used to consider every potential tour of the cities, and through the optimization process

of DA the shortest tour through every city is determined. While the original DA algorithm was developed

in the context of clustering, it was later adapted to the basic TSP as a case of constrained clustering [19],

which serves as the foundation for our proposed extension to variants, such as mTSP and CETSP. Below

we describe our approach to TSP and its variants in detail.

A primer on notations used in this section: The set of node (city) locations is denoted by X = {xi : xi ∈

R2, 1 ≤ i ≤ n}, where n is the number of cities. We use α ∈ R2 to denote the location of depot. The distance

between any two nodes (cities) i and j is denoted by di,j. Unless stated otherwise, we consider squared-

Euclidean distance between two nodes, i.e., di,j = ‖xi− xj‖2
2. We use Sn to denote the set of all permutations

of {1, . . . , n}. An element of Sn is denoted by µ. An element σ = [σ1, . . . , σn, σn+1] in S̃n := Sn ∪ {n+1} is

given by:

σi := σ(i) =

 µ(i) if i ∈ {1, 2, . . . , n}

µ(1) if i = n + 1.

3.1.1 TSP: Problem Formulation and Approach

Given a set X of n cities, the objective of TSP is to minimize the total length of a tour connecting the

cities such that each city is visited just once and the salesman must return to his starting location on the
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completion of tour. A TSP is mathematically described as:

min
σ∈S̃n

n

∑
i=1

dσi ,σi+1 .

The idea behind MEP based approach to classical TSP is that if we employ the same number of facilities as

the number of nodes for clustering, i.e., if the number of facilities K in the DA algorithm are set to number

of nodes n, then in the limiting case (β → ∞), each node becomes a potential cluster, and the facility

locations {yj} coincide with node locations {xi}. The distortion function in the DA algorithm is modified

to include the tour length. This requires then a second Lagrange multiplier θ for the tour length component

of the distortion function, in addition to the first Lagrange multiplier β. for the original component of the

distortion function. Solving through the gradual change in both Lagrange multipliers leads to a solution of

the TSP (and its variants). We now describe the proposed modification to the DA algorithm for solving a

TSP. As before, we use Y = {yj}n
j=1 and T == {χij}n

i,j=1 to denote the set of facility locations and the set

of associates, respectively.

Recall that an instance of an FLP is given by the tuple (Y , T ). Following Equation 2.1.1, to every instance

we associate a distortion-measure given by:

Dcluster(Y , T ) ,
n

∑
i=1

n

∑
j=1

χijd(xi, yj), (3.1.1)

which is the distortion of specific hard-clustering solution. To this distortion measure, we must augment

another term that penalizes the current length of the tour, i.e., we consider a second distortion measure of

the form:

DTSP(Y) , θ
n

∑
j=1

d(yj, yj+1). (3.1.2)

Thus, the total distortion of a TSP is given by:

D(Y , T ) , Dcluster(Y , T ) + DTSP(Y) =
n

∑
i=1

n

∑
j=1

χijd(xi, yj) + θ
n

∑
j=1

d(yj, yj+1). (3.1.3)

Note that (3.1.3) is the distortion associated with an instance (Y , T ). However, we aim to recover the

instance with least distortion by ascribing a probability distribution over the set of all feasible instances.

Let P(Y , T ) denote the probability of an instance (Y , T ). In the spirit of MEP formulation, we therefore
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consider the expected distortion measure:

D̄ ,< D(Y , T ) >= ∑
Y ,T

P(Y , T )D(Y , T ). (3.1.4)

Since we have no prior knowledge on P(Y , T ), we use MEP to estimate them. The MEP objective can thus

be formulated as:

min
Y ,{P(Y ,T )}

∑
Y ,T

P(Y , T )D(Y , T ) + 1
β ∑
Y ,T

P(Y , T ) log P(Y , T )︸ ︷︷ ︸
−H(P(Y ,T ))

, s.t. ∑
Y ,T

P(Y , T ) = 1, (3.1.5)

where H(P(Y , T )) is the Shannon entropy term and β is the annealing parameter. The probability distri-

bution (Gibbs distribution) that optimizes the objective function in (3.1.5) is given as:

P(Y , T ) = e−βD(Y ,T )

∑
Y ′ ,T ′

e−βD(Y ′ ,T ′) . (3.1.6)

Since we are interested in estimating the most probable set of facility locations, we consider the marginal

probability, given by:

P(Y) = ∑
T

P(Y , T ) = e−βF(Y)

∑
Y ′

e−βF(Y ′) , (3.1.7)

where F(Y) is the analog of statistical free-energy and is given as:

F(Y) = − 1
β

n

∑
i=1

log

(
n

∑
j=1

e−βd(xi ,yj)

)
+ θ

n

∑
j=1

d(yj, yj+1), with yn+1 = y1. (3.1.8)

In order to obtain the optimal facility location Y , we must set the derivative of the free-energy function to

zero, i.e.,

∂F
∂yj

= 0⇒
n

∑
i=1

p(j|i)(yj − xi) + θ(2yj − yj+1 − yj−1) = 0, (3.1.9)

where p(j|i) =
e−βd(xi ,yj)

∑j e−βd(xi ,yj)
denote the association probabilities. Thus the update equations for facility
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(a) (b) (c)

Figure 3.2: Pictorial representation of the working methodology of the DA algorithm for routing. Note that the desired
number of resources (depicted by triangles) are same as the number of cities (depicted by squares). (a) At very low
values of β, each city is uniformly associated with all the resources - all the resources are located at the centroid of
the customer locations. (b) At an intermediate value of β, the fuzziness in the associations decreases and as a result
resources start developing affinity to unique customer locations. (c) When β → ∞, the resource associations become
hard resulting in hard-clustered solutions as desired. At each value of β, the resources are constrained to maintain
tension in the loop connecting them.

locations are given as:

yj =

n
∑

i=1
p(j|i)xi + θ(yj−1 + yj+1)

n
∑

i=1
p(j|i) + 2θ

. (3.1.10)

In the proposed approach, the association probabilities and update equations for {yj} are iterated at each

β until convergence. The second Lagrange multiplier θ is related to the tour-length.

It is desirable to have a consistent and repeatable method for varying the Lagrange multipliers β and

θ. In our proposed approach, the β multiplier is considered as the main driver, and the θ multiplier is sec-

ondary. As such, the θ parameter is decreased according to an exponential function until a stable tour length

is reached, at which point β is increased according to an exponential function. This process is repeated until

a sufficiently high β value and sufficiently low θ value are both reached, leaving the final solution. This

approach is discussed in detail in Sec. 3.1.6.

Fig. 3.2 represents a snapshot of the working methodology of the enhanced DA-algorithm for TSPs.

Note that at each value of β, the resources are constrained to maintain tension in the loop connecting them.

3.1.2 Non-Returning mTSP: Problem Formulation and Approach

In a non-returning mTSP (NR-mTSP), we are given a set of n cities and m salesmen to traverse these cities.

The objective is to minimize the total tour-length such that each city is visited just once by only one sales-

15



(a) (b) (c)

Figure 3.3: Schematic of a (a) Non-returning 2TSP, with R = k. (b) Returning 2TSP, with R = {k, l}. (c) Returning
2TSP (with Depot), with R = k. The dashed blue lines indicate the removal of links, while solid blue lines indicate the
addition of links.

man. The starting and ending node locations of each salesman do not coincide. This formulation is ap-

plicable to problems pertaining to non-recurring events, such as the scheduling of orders at a steel rolling

company [32]. The non-returning mTSP can be mathematically described as:

min
σ∈S̃n
{αkj
}

{
n−1

∑
i=1

dσi ,σi+1 −
m−1

∑
j=1

αkj
dσkj

,σkj+1

}

s.t. ∀j, ∑
kj

αkj
= 1, αkj

∈ {0, 1}, 1 ≤ k j ≤ n−1.

Unlike the classical TSP, in a NR-mTSP an instance is defined by three parameters, Y , T andR. Here Y

corresponds to the set of facility locations yj, T = {χij} is a set of associates and describes the membership

of node xi to facility yj, and R is a set of locations of the partition representing the breaks between subse-

quent salesmen in the chain of consecutive facilities (see Fig. 3.3a). We first consider the case for m = 2

salesmen. Therefore an instanceR is mathematically described as:

R = k; if there is no link b/w yk and yk+1.

As this is the non-returning version of the mTSP, there is no connection between y1 and yn. Therefor

y0 = yn+1 = 0 when they do appear in the equations. For a given instance of the problem (Y , T ,R), the

distortion function in (3.1.3) is modified as:

D(Y , T ,R) = Dcluster(Y , T ) + DTSP(Y) + DNR(Y ,R), (3.1.11)

where the new component DNR(Y ,R) represents the partition of facilities for the independent salesmen

and subtracts the distance at the partition between the facility locations yk and yk+1 from the original
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distortion function.

DNR(Y ,R) = −θd(yk, yk+1) (3.1.12)

Following our approach to classical TSP, we ascribe a probability distribution P(Y , T ,R) over the set of all

instances and then use MEP to estimate them. The associated free-energy function in this case is given by:

F = − 1
β

n

∑
i=1

log

(
n

∑
j=1

e−βd(xi ,yj)

)
+ θ

n−1

∑
j=1

d(yj, yj+1)−
1
β

log

(
n−1

∑
k=1

eβθd(yk ,yk+1)

)
. (3.1.13)

Setting the derivative of (3.1.13) with respect to each yj allows determination of the set of facility locations

that maximize entropy in the system.

∂F
∂yj

=
n

∑
i=1

p(j|i)(yj − xi) + θ(2yj − yj+1 − yj−1) + θ
(
yj+1 − yj

)
P(j) + θ

(
yj−1 − yj

)
P(j− 1) = 0,

where p(j|i) is same as with classical TSP formulation. P(j) represents the probability that the partition

occurs at facility j (i.e. R = j) and is given by:

P(j) =
eβθd(yj ,yj+1)

n−1
∑

j=1
eβθd(yj ,yj+1)

. (3.1.14)

Solving for each yj provides the solution to the system at this pair of β and θ values, so that for every facility

location

yj =

n
∑

i=1
p(j|i)xi + θyj+1(1−P(j)) + θyj−1(1−P(j−1))

n
∑

i=1
p(j|i) + θ (2−P(j)−P(j−1))

(3.1.15)

Note that the (3.1.15) is only slightly more complex than the basic TSP formulation in (3.1.10). In fact, setting

P(j) = 0, ∀j transforms the 2TSP into the basic TSP formulation.

Extension to mTSP for a general m ≥ 2

Now that our approach to non-returning 2-TSP is established, we aim to generalize this approach to any

general m. In this case, the partition set R contains m−1 points, i.e., R= {k1, k2, · · · , km−1}. The distortion

function DNR(Y ,R) in (3.1.12) and the probability of a partition P(k1, .., km−1) in (3.1.14) are thus obtained
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as:

DNR(Y ,R) = −θ
m−1

∑
i=1

d(yki , yki+1)

P(k1, .., km−1) =
eβθ ∑m−1

i=1 d(yki
,yki+1)

∑
R

eβθ ∑m−1
i=1 d(yki

,yki+1)
.

Note that the probability P(k1, .., km−1) is symmetric in its arguments, i.e.,

P(k1, k2, .., km−1) = · · · = P(km−1, k1, .., km−2) .

Let us define R̃ = R \ {k1} and denote P(j, k2, .., km) by P(j, R̃). Then the characteristic equation for each

facility location is given by:

yj =

n
∑

i=1
p(j|i)xi + θyj+1

(
1−(m− 1)∑

R̃
P(j, R̃)

)
+ θyj−1

(
1−(m− 1)∑

R̃
P(j−1, R̃)

)
n
∑

i=1
p(j|i) + θ

(
2−(m−1)∑

R̃

(
P(j, R̃) + P(j− 1, R̃)

))

3.1.3 Returning mTSP: Problem Formulation and Approach

Fig. 3.1b shows a schematic of a returning mTSP. In a returning m-TSP (R-mTSP), we are given a set of n

nodes ({xi}) and m salesmen, and the objective is to minimize the total tour length such that each node

is visited by only one salesman, and the start and end positions of each salesman must be coincident.

Many recurring events, such as job scheduling [33] fall under this category. The returning mTSP can be

mathematically formulated as:

min
σ∈S̃n
{αkj
}

{
n

∑
i=1

dσi ,σi+1+
m

∑
j=1

αkj

[
−dσkj

,σkj+1+dσkj
,σk(j−1)+1

]}

s.t. ∀j, ∑
kj

αkj
= 1, αkj

∈ {0, 1}, 1 ≤ k j ≤ n; k0 = km.

Following on our approach to NR-mTSP, the distortion corresponding to partition function DR(Y ,R)

must not only consider the distance between the facility locations where the partition occurs, it must also

account for the distance incurred in completing the continuous tour by reconnecting to the other end of the

loop (see Fig. 3.3b). Similar to the non-returning mTSP, we first derive the results for m = 2 salesmen and
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then later extend it for a general m. The partition parameterR in this case is described by two parameters.

R = k, l if
{ no links b/w yk and yk+1, yl and yl+1;

links b/w yk and yl+1, yl and yk+1;

It should be noted that the facility locations y1 and yn are considered to be adjacent, i.e. y0 = yn and

yn+1 = y1. The tour-length distortion function is given by DTSP(Y) =
n
∑

j=1
d(yj, yj+1). The distortion

function DR(Y ,R) pertaining to the partition parameter is defined as:

DR = θ
(
−d(yk, yk+1)− d(yl, yl+1) + d(yk, yl+1) + d(yl, yk+1)

)
.

An important consequence of this framework is that if k = l, then the problem reduces to the classical

returning TSP. Thus, this framework allows automatic determination of the optimal number of salesmen.

As before, we ascribe the probability distribution P(Y , T ,R) over the space of all instances and use MEP

to estimate them. MEP results in following update equations for facility locations:

yj =

n
∑

i=1
p(j|i)xi+2θ

(
∑

l 6=j−1
P(j, l)yl+1+ ∑

l 6=j
P(j−1, l)yl

)
+θ
[
(1−2 ∑l P(j, l))yj+1+(1−2 ∑l P(j−1, l))yj−1

]
∑n

i=1 p(j|i) + 2θ
(
1− 2P(j, j− 1)

)
(3.1.16)

Extension to mTSP for a general m ≥ 2

We now extend out formulation for returning mTSP to a general m ≥ 2. The partition setR is defined as:

R = {k1, k2 . . . km}
{ no links b/w yki and yki+1;

links b/w yki and yk(i−1)+1;

with the understanding that k0 = km. The distortion function and the corresponding probability distribu-

tion pertaining to the partition parameter are given by:

DR(Y ,R) = θ ∑
R

{
d(yki , yk(i−1)+1)− d(yki , yki+1)

}

P(R) = ∑m
i=1 e

−βθ

{
d(yki

,yk(i−1)
+1)−d(yki

,yki+1)

}

∑R ∑m
i=1 e

−βθ

{
d(yki

,yk(i−1)+1)−d(yki
,yki+1)

} .
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As before, it must be noted that the probability distribution P(k1, . . . , km) is symmetric in its arguments.

Let us define R̃ = R \ {k1, k2}. Then the corresponding update equation for each facility location yj is

given by:

yj =

mθ ∑R̃ P(j, j−1, R̃)(yj+1+yj−1)+∑n
i=1 p(j|i)xi +mθ ∑n

k 6=m−1 ∑R̃ P(j, k, R̃)(yk+1 − yj+1)

+mθ ∑n
k 6=m ∑R̃ P(j−1, k, R̃)(yk − yj−1)

∑n
i=1 p(j|i)+θ

{
1−2m

[
∑R̃ P(j, j−1, R̃)

]} .

3.1.4 Single Depot mTSP: Problem Formulation and Approach

Fig. 3.1c shows a schematic of a single-depot returning mTSP. In a single depot m-TSP (SD-mTSP), we are

given a set of n nodes ({xi}), a depot (α) and m salesmen, and the objective is to determine the optimal tour

such that each node is visited by only one salesman. Each salesman must start and end at the depot. The

total distance traveled by all salesmen is minimized. Real-world problems such as vehicle routing problem

(VRP) [7, 8] with single-depot fall under this category. If x0 = α denotes the location of depot and I is the

indexed-set of nodes, then the single-depot mTSP is mathematically described as:

min
σ∈S̃n ,{αkj

}

{ n−1

∑
i=1

dσi ,σi+1 + dσ1,α + dσn ,α +
m−1

∑
j=1

αkj

[
−dσkj

,σkj+1 + dσkj
,α + dσkj+1,α

] }

s.t. ∀j, ∑
kj

αkj
= 1, αkj

∈ {0, 1}, 1 ≤ k j ≤ n−1,

where dσl ,α denotes the distance between the node xσl and depot α.

Fig. 3.3c shows the schematic of the proposed framework for the returning version of a single depot

multiple salesmen problem. We first formulate the framework for m = 2 salesmen. The partition parameter

R in this case is defined as:

R = k,

{
no link b/w yk and yk+1;

links b/w yk and α, yk+1 and α.

The distortion function Ddepot(Y ,R) associated with partitioning parameter and the corresponding prob-

ability distribution P(R = k) pertaining to the partition parameter are given by:

Ddepot(Y ,R) = θ (−d(yk, yk+1)+d(yk, α)+d(yk+1, α))

P(Y) = e−βθ{−d(yk ,yk+1)+d(yk ,α)+d(yk+1 ,α)}

∑n−1
k=1 e−βθ{−d(yk ,yk+1)+d(yk ,α)+d(yk+1 ,α)} .

The distortion function corresponding to the tour-length constraint is modified to include the links be-
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tween y1 and α, and between yn and α, i.e., DTSP(Y) = θ
{

∑n−1
j=1 d(yj, yj+1)+d(y1, α)+d(yn, α)

}
.If we define

P(0) = P(n) = 1, then the corresponding update equation for each facility location yj is given by:

yj =
∑n

i=1 p(j|i)xi + θ {P(j)+P(j−1)} α+θ {1−P(j)} yj+1 ++θ {1−P(j−1)} yj−1

2θ + ∑n
i=1 p(j|i) .

Extension to mTSP for general m ≥ 2

In this case, the partition set R consists of m−1 points, i.e., R = {k1, . . . , km−1}. The distortion and the

probability distribution pertaining to the partition parameter are modified as:

Ddepot(Y ,R) = θ
m−1

∑
i=1

{
−d(yki , yki+1)+d(yki , α)+d(yki+1, α)

}
P =

e−βθ ∑m−1
i=1

{
−d(yki

,yki+1)+d(yki
,α)+d(yki+1 ,α)

}

∑R e−βθ ∑m−1
i=1

{
−d(yki

,yki+1)+d(yki
,α)+d(yki+1 ,α)

}

Note that the probability distribution P(k1, . . . , km−1) is symmetric in its arguments. If we define R̃ by

R̃ = R \ k1, then the corresponding update equation for each facility location yj is given by:

yj =

∑n
i=1 p(j|i)xi + (m−1)θ ∑R̃

(
P(j, R̃)+P(j−1, R̃)

)
α

+θ
{

1−(m−1)∑R̃ P(j, R̃)
}

yj+1+θ
{

1−(m−1)∑R̃ P(j− 1, R̃)
}

yj−1

∑n
i=1 p(j|i) + 2θ

.

3.1.5 CETSP: Problem Formulation and Approach

Fig. 3.1d shows a schematic of a single salesman returning CETSP. In a CETSP, we are given a set of n

nodes ({xi}), each with a specified radius ({ρi}), and set of m salesmen with the objective of determining

the optimal tour such that at least one salesman comes within ρi distance from each node xi. CETSPs are

used to represent problems such as aerial reconnaissance [35] and establishing a wireless meter reader [34].

The CETSP variant may be applied to any of the TSP class of problems. The most significant difference

between point-based TSPs and the CETSP is that due to the radius associated with each node, the CETSP

does not define a specific edge between a pair of nodes, rather there is a continuum of possible edges

between a pair of nodes. As a result, there are infinitely many possible solutions to this problem. A single
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salesman returning CETSP is mathematically described as:

min
{χij},{yj}

n

∑
j=1

{
n

∑
i=1

χijdCE(xi, yj) + d(yj, yj+1)

}
; yn+1 = y1

s.t. χij ∈ {0, 1},
n

∑
i=1

χij = 1∀j,
n

∑
j=1

χij = 1, ∀i

where, dCE(xi, yj) =

 0 if‖yj − xi‖ < ρi

(‖yj − xi‖ − ρi)
2 else

For ease of exposition, we consider a single salesman CETSP in this work, however, the framework

can be modified to additionally incorporate any of the aforementioned variants. Note that there are no

partition parameters for a single salesman returning TSP. The distance between the node and the facility

location pairs is modified as:

dCE(xi, yj, ρi) =
(
‖yj − xi‖ − ρi

)2 (3.1.17)

The distortion functions corresponding to the node-facility distances and the tour-length constraints are

respectively given by:

Dcluster(Y ,V) =
n

∑
i=1

n

∑
j=1

vijdCE(xi, yj, ρi) (3.1.18)

DTSP(Y) = θ
n

∑
j=1

d(yj, yj+1) (3.1.19)

The free energy of this system is obtained as:

F = − 1
β

n

∑
i=1

log
( n

∑
j=1

e−βdCE(xi ,yj ,ρi)
)
+ θ

n

∑
j=1

d(yj, yj+1).

Taking derivative of the free-energy term and setting it to 0, we obtain the update equation for each facility

location given by:

yj =
∑n

i=1 p(j|i)(xi + ρi sgn (yj − xi)) + θ(yj+1 + yj−1)

2θ + ∑n
i=1 p(j|i) ,

where, the association probability distribution is now given by p(j|i) =
(

e−βdCE(xi ,yj ,ρi)

∑n
k=1 e−βdCE(xi ,yk ,ρi)

)
and sgn(·)

is a vector-valued signum function.
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3.1.6 Controlling the Lagrange Multiplier

Our approach to TSP involves a cost function with two Lagrange multipliers β and θ. While the primary

Lagrange multiplier β is varied geometrically and is the primary driver for the proposed optimization

algorithm, the secondary Lagrange multiplier θ is varied as a function of β. Many suggestions for varying

the second Lagrange multiplier are suggested in the existing literature, such as, θ ∝ 1/
√

β [36] or θ = const.

[37].

Note that the secondary Lagrange multiplier θ is related to the tour length. We aim to constrain the

tour-length at each β in order to avoid obtaining just the clustering solution. Since it is easier to work the

Lagrange multiplier θ than the tour-length directly, the method adopted in this thesis uses a two-step op-

timization procedure [19]: (a) At a given β, gradually reduce θ until θ reaches some θmin, which maintains

some “tension” in the net connecting the cities, (b) Keeping tour-length constant, update β and simultane-

ously obtain a new initial value of θ, and repeat (a).

We now describe how to determine a new initial value of θ during each β update, such that the free tour-

length is kept constant. For the sake of brevity, the update procedure is derived only for the non-returning

mTSP. The approach is quite general and is easily extended to address any of the variants of the classical

TSP. For notational convenience, we use θ∗,Y∗ and L to denote the optimum value of secondary Lagrange

parameter, optimal set of facility locations and optimal free tour-length at a given value of β, respectively.

Finally, let F∗ , F(Y∗, θ∗) = F(Y∗) denote the optimal value of the free-energy function in (3.1.13).

It can be shown [38] that for such constrained optimization, we have:

θ∗ = −∂F∗

∂L
. (3.1.20)

Therefore from (3.1.13) and (3.1.20), we have:

∂θ∗

∂β
= − ∂

∂β

[
∂F∗

∂L

]

= − ∂

∂L

∂F∗

∂β
+ ∑

k

∂F∗

∂yk

∂yk
∂β

∣∣∣∣∣
yk=y∗k


= − ∂

∂L

[
∂F∗

∂β

]
, (3.1.21)

where the last statement is a consequence of the fact that
∂F
∂yj

= 0 for all j at the optimum. Using the
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function form of F from (3.1.13),
∂F
∂β

evaluates to:

∂F
∂β

=
1
β2

n

∑
i=1

log

(
n

∑
j=1

e−βd(xi ,yj)

)
+

1
β

n

∑
i=1

n

∑
j=1

e−βd(xi ,yj)

n
∑

j′=1
e−βd(xi ,yj′ )

d(xi, yj)

+
1
β2 log

(
n−1

∑
j=1

eβθd(yj ,yj+1)

)
− θ

β

eβθd(yj ,yj+1)

n−1
∑

j′=1
eβθd(yj′ ,yj′+1)

d(yj, yj+1), (3.1.22)

which can be re-written as:

∂F
∂β

= − F
β
+

1
β

[
θ

n−1

∑
j=1

d(yj, yj+1) +
n

∑
i=1

n

∑
j=1

p(j|i)d(xi, yj)− θ
n−1

∑
j=1
P(j)d(yj, yj+1)

]
︸ ︷︷ ︸

,E

, (3.1.23)

where P(j) and p(j|i) are as defined in (3.1.14). Note that the expression E in (3.1.23) is basically related to

the free-energy F by:

E =
∂

∂β
(βF). (3.1.24)

Thus from (3.1.21), (3.1.23) and (3.1.24), we have:

∂θ∗

∂β
= − ∂

∂L

(
E∗ − F∗

β

)

=
1
β

−∂E∗

∂L
+

∂F∗

∂L︸︷︷︸
=−θ∗

 [from (3.1.20)] (3.1.25)

Therefore, we consider the following first-order approximation for θ update:

θ′ ≈ θ∗ +
∂θ∗

∂β
∆β

⇒ θ′ = θ∗ +
∆β

β

(
−∆E∗

∆L
− θ∗

)
[from (3.1.25)], (3.1.26)

where ∆E∗/∆L is estimated using the last two iterations in θ (before the moment to update β arrives). Note

that (3.1.26) holds true for any TSP variant, however, the formulations of free-energy function F and free

tour-length L are different for each variant. For instance, in a classical TSP, the free tour-length is simply

the cumulative distance between consecutive facility locations, whereas in an mTSP the free tour-length
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(a) (b) (c)

Figure 3.4: (a) Result for non-returning 2TSP for 59 nodes data. The dashed line indicates the removal of the link. (b)
Result for returning 2TSP for 59 nodes data. The dashed lines indicate the removal of links, while the black solid lines
indicate the addition of links. (c) Returning 2TSP version for cocentric rings.

includes the total length of all individual tours.

3.1.7 Experimental Evaluation

This section provides an overview of the results of the MATLAB implementations (on an Intel i5− 4200U @

2.30GHz machine) of the proposed heuristic. As yet, the MATLAB code used for this implementation has

not been optimized for minimum computation time, so valid comparisons on the basis on run time are not

currently available, however the heuristic is shown to achieve high quality results based on tour lengths in

fairly reasonable amount of time. Tests are performed on both the mTSP heuristic and the CETSP variation.

The heuristics are evaluated on synthetic data. We also compare the proposed MEP based approach against

the optimized simulated annealing implementation ([39]) on a synthetic dataset of 30 different instances,

each comprising of total number of nodes ranging from 100 to 200 nodes uniformly spanned in an area of

[−30, 30]× [−30, 30] ∈ R2.

Non-returning 2TSP: Fig. 3.4a shows the non-returning 2TSP result for a synthetic 59 nodes data. The

tours of the two salesmen are shown in red and black respectively, with cyan dashed line indicating the

partition.

Returning 2TSP: Fig. 3.4b shows the returning 2TSP result for a randomly generated 30 nodes data. The

heuristic is able to find the two largest links to be removed from the sequence of facility locations. Fig. 3.4c

shows the returning 2TSP result for a 30 nodes cocentric rings arrangement. The DA based heuristic finds

the two most optimal routes for this configuration. Note that this dataset is particularly challenging for

heuristics such as cluster-first route-second, where clustering the data first will either result in two symmetric

subsets or the only cluster identified will be at the origin and when the two salesmen are allocated to the

nodes, there is no way to effectively partition the set into two distinct subsets based on the information
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(a) (b)

Figure 3.5: (a) Single-depot returning 2TSP solution to a 59 nodes data. The depot location is denoted by red marker.
(b) Solution to the same 59 nodes data with equality constraint. Note that the optimal length is only slightly bigger
than the earlier case.

provided by the clustering solution.

Single depot returning 2TSP: Fig. 3.5a shows the implementation results for the 59 nodes (and a depot)

data. The two tours are shown in cyan and black colors respectively. Fig. 3.5b shows the result with an

additional equality constraint. Note that the optimal length in this case is only marginally greater than the

optimal length in the previous case.

Returning CETSP: Fig. 3.7 shows the implementation results for the CETSP on a randomly generated 10

nodes data with the additional radius parameter. It is difficult to determine whether the algorithm arrives

at an optimal solution because this is much more difficult to check manually and unlike the standard TSP,

there is no database of optimal tours for the CETSP. We have compared the heuristic against one of the 100

node sets (kroD100 from TSPLIB [40]) tested by Mennell for equal radii of 11.697[35]. Mennell achieves

a tour length of 58.54 units with a 0.3 overlap ratio on the data. However, there are no details on the

calculation time. The MEP based heuristic finds an optimal tour length of 64.99 units in 949 seconds. Note

that in the current formulation, there is a penalty for a facility location existing either inside or outside of

the circle. However, according to the problem formulation, there should be no penalty when the facility

location exists within the radius of the node. This can be addressed by setting the derivative of the distance

function dCE(xi, yj, ρi) with respect to yj to zero whenever yj exists within ρi distance from the node xi.

This negates the penalty incurred for placing a facility location within the radius of a node and should help

this heuristic identify more accurate solutions.

Comparison with SA: Fig. 3.6 shows the comparison of the proposed MEP based approach against the

simulated annealing (SA) based approach for 30 randomly generated instances for the multiple scenarios.
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(a) (b) (c)

Figure 3.6: Comparison between MEP based deterministic annealing (DA) approach and simulated annealing (SA)
approach for - (a) the usual traveling salesman problem (TSP), (b) non-returning 2TSP (NR2TSP), and (c) 2TSP returning
to depot.

Figure 3.7: CETSP result for single salesman 10 nodes returning TSP. The red markers denote the node locations, while
the black ‘×’ denote the facility locations. The cyan circles correspond to the radii ρi.

It should be remarked that both the algorithms require similar average computational time for each of

the scenarios. We plot the total tour-lengths for each of the instances for the two approaches. Clearly the

proposed MEP algorithm outperforms the most widely used simulated annealing algorithm with marginal

increase in run-time.
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3.2 Clustering of Power Networks

The North American electrical grid is regarded as the most significant engineering achievement of the 20th

century [41], and yet the modern power transmission system faces major challenges due to ever increasing

complex interconnections among multiple elements in the grid. Existence of strong links between under-

lying topological structure and performance in electrical networks have motivated for better strategies for

managing and mitigating risks related to network failures. An electrical power transmission system can

be represented as a network with nodes and links representing buses and impedance between the buses,

respectively. Decomposing a large interconnected power network into smaller loosely-coupled groups fa-

cilitates easy and flexible management of the power transmission systems by allowing secondary voltage

control at regional levels [42], controlled islanding that aims to prevent the spreading of large-area black-

outs, and making the network robust to power and load fluctuations [43].

In this context, it is required to develop interpretable classifications of a given power network. More

specifically, the aim of this project is to identify mutually decoupled (or loosely coupled) clusters (or zones)

in a network such that in any unforeseen event of blackout or catastrophic failure, it is possible to control

the spread of power outage and simultaneously identify the nodes that are most affected by the failure. In

fact, we propose a clustering metric and approach such that any given node in a network is tightly coupled

to the nodes within its cluster, while bearing loose coupling with nodes in other clusters. Thus the proposed

approach reveals the underlying topological structure in the network by decomposing the large network

into small number of tractable sub-networks.

Several recent works have looked at the problem of partitioning of electrical networks using varied

approaches. From an abstract viewpoint, an electrical network can be represented by a directed-weighted

graph where nodes represent electrical buses in the network, edges representing some notion of electrical

connectivity, and weights representing the corresponding strength of connectivity. An important element

of any graph-clustering approach is the quantification of the notion of similarity between any two nodes in

a network. These quantifications include but not limited to - (1) structural similarity: based on quantities

such as degree distribution of nodes and degree assortativity [44], graph diameter [45] and characteristic

path length [46], (2) topological similarity: Here electrical distance is derived either from offline (non realtime)

quantities such as nodal conductance matrix [47, 48] or power flow matrix [42] and online quantities, such

as derived time-series phase angle data from phase measurement units (PMUs). While the measures of

structural similarity are useful for comparing power grids with other graph structures, the absence of any

underlying dynamics (arising from Kirchhoff’s laws) fails to capture any electrical coupling among nodes

of the network. Topological similarity measures alleviate this problem by introducing notion of electrical
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distance obtained using circuit laws and network theorems. Furthermore, offline measures of similarity are

preferred since the online methods rely on the observed data after the disturbance has occurred.

This thesis quantifies the electrical similarity between any two nodes based on the first-order perturba-

tion matrix obtained by solving power flow equations [42]. We aim to cluster an electrical network such

that nodes within each cluster have similar influence over the entire network. The proposed approach is

general in the sense that different notions that quantify similarity and that quantify influence can be used.

For ease of exposition, the approach is presented for a particular practical notion of influence; more pre-

cisely the influence of one node on another is characterized in terms sensitivity of voltage fluctuations at

one node due to reactive power perturbations at the other node. This notion of influence is particularly

useful since it encompasses electrical connectivity rather than only the network structure; for instance, two

nodes that are strongly electrically coupled through the network even though not directly physically con-

nected to each other will be considered similar in this notion, since voltage variation at one node brings

about similar variation at the other node. Note that sensitivity to reactive perturbations strongly assesses

the electrical coupling between buses, and not other features such as the amount of power being generated

or consumed in the network. The proposed notion of similarity gives a measure of the electrical coupling

between buses for a given reactive power circulation in the network. The approach proposed in this thesis

is general and can easily accommodate other notions of similarity that depend both on active and reactive

powers.

Furthermore, we show that the grouping of nodes (buses) achieved after clustering using this notion

of influence is such that the voltage fluctuations at a node due to perturbations at nodes within the same

cluster are more than voltage fluctuations due to perturbations at nodes from other clusters. That is, not

only that perturbations at two nodes in the same cluster have similar effects on the entire network, the

resulting voltage fluctuations at buses from other clusters are much smaller than the voltage fluctuations at

the buses from the same cluster. Therefore, the algorithm partitions the electrical network into clusters or

zones that are weakly coupled.

The algorithm to cluster nodes of a network is based on vector quantization (similar to DA), however,

the algorithm deals with clustering of graphs and not the individual data points. Finally, a rule-based ap-

proach for decentralized voltage control is proposed, which exploits mutual decoupling of the partitioned

network and requires only local control actions only at the local level. Similar rule-based expert system for

voltage control is proposed in [49], albeit the control actions were not confined at local level.
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Figure 3.8: An example of a four-bus network. Bus 1 is a Slack bus whose voltage and angle are specified. Bus 2 is
a Generator bus (PV bus) whose real output power P and commanded output voltage V are specified. Generators are
set to regulate their own bus to a commanded voltage (by adjusting reactive power). Bus 3 is a connecting bus with
zero load. The load power is known, and this is a PQ bus. Bus 4 is a load bus (PQ bus) with per unit (p.u.) active and
reactive powers P = 0 : 2; Q = 0 : 4 both given. The buses are connected by line impedances Zij. The impedance
matrix is denoted by Zbus. The inverse matrix Ybus := Zbus

1 denotes the admittance matrix.

3.2.1 Quantification of Electrical Distance

Our approach for the quantification of electrical proximity of any two nodes is based on computation of the

Jacobian matrix obtained by solving power flow equations [42]. In this context, we first describe the fun-

damental electrical quantities and matrix equations linking them, followed by quantification of electrical

distances. Fig. 3.8 shows a four-bus electrical network, an example network with nodes and links repre-

senting buses and corresponding electrical connections, respectively. The buses can be of different types

- Slack bus, Generator bus (or PV bus) and Load bus (or PQ bus). Each node i is completely specified by

four physical variables - voltage magnitude Vi, phase θ, real power flow Pi, reactive power flow Qi. The

links are specified by line impedances Zij. Zbus denotes the impedance matrix of the network. The inverse

matrix Ybus := [Yij] is the admittance matrix of the network. The current injection at node i is given by Ii.

V and I are the column vectors of voltage and current magnitudes, respectively. Similarly, P, Q, Θ are the

column vectors depicting real power flows, reactive power flows and the voltage phase angles at the buses

of an electrical network.

Recall that the admittance Yij is generally complex with real part (conductance) Gij and imaginary part
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(susceptance) Bij, i.e. Yij = Gij + jBij. These physical variables are related by the following governing

equations

I = YbusV, V = ZbusI,

Pj = ∑N
k=1 VkVj

(
Gkj cos(θk − θj) + Bkj sin(θk − θj)

)
,

Qj = ∑N
k=1 VkVj

(
Gkj sin(θk − θj)− Bkj cos(θk − θj)

)
, (3.2.1)

where, N is the number of nodes (buses) in the network and j ∈ {1, . . . , N}. The last two equations are

called the power flow equations, and they are necessary to address the power flow problem [50]. In a power

flow problem, the voltage magnitudes and angles for one set of buses are desired when voltage magnitudes

and power levels for another set of buses are known and when a model of the network configuration is

available. In order to quantify electrical distance between any two nodes of a network, we consider small

variations around an operating point (a power flow solution). The first order perturbations in the above

electrical quantities are given by,

∆I = Ybus∆V, ∆Q = [∂Q/∂V]∆V,

∆V = Zbus∆I, ∆V = [∂V/∂Q]∆Q, (3.2.2)

where matrices [∂Q/∂V] and [∂V/∂Q] ∈ RN×N are inverses of each other. While the former matrix appears

as a Jacobian during a load-flow computation, the elements of the latter matrix (also known as sensitivity

matrix) reflect the propagation of voltage variations due to reactive power injection at a node throughout

the electrical transmission system.

Note that (3.2.2) not only represents the dynamical behavior of an electrical system, it also captures the

couplings between different nodes of the grid. Using these equations, it is possible to study the sensitivity

of an electrical variable (V, I, P, or Q) or any combination of them to perturbations of electrical variables

at other nodes. Grouping of nodes based on such sensitivities prove very useful for subsequent resource

allocation or power network management problems. For instance, (3.2.2) can be used to study the effect of

injecting power at a particular node on the voltage magnitudes at the remainder of the network. Alterna-

tively since reactive power management is critical to voltage control for inductive grids, one can study the

effect of perturbations of reactive power at a node on the voltages at different nodes in the network. The

proposed methodology in this thesis can address grouping of nodes based on a combination of sensitivity

measures such as above. For ease of illustration, in this thesis we investigate the case where we are in-
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terested in studying the sensitivity of voltage fluctuations caused at a node with respect to reactive power

fluctuations at another node; in particular we consider inductive power networks where the effect of phase-

angle perturbations on reactive power at each node is negligible. Most high power electrical networks are

indeed largely inductive and therefore exhibit active-reactive decoupling, i.e., P primarily depends on Θ

and is almost independent of V and similarly Q depends primarily on V and is independent of Θ [51].

The influence of one node on another node is given by the magnitude of voltage coupling between the

two nodes, which is quantified in terms of matrix of attenuation [αij] ∈ RN×N , that is

∆Vi = αij∆Vj, where αij :=

[
∂Vi
∂Qj

]/[ ∂Vj

∂Qj

]
, (3.2.3)

which quantifies the voltage fluctuation at node i per unit voltage fluctuation at jth node, when reactive

perturbations are applied at node j. Note that the normalization in the definition of αij has two distinct

advantages - (i) making the quantities dimensionless, (ii) assigning equal importance to all the nodes (i.e.

αii = 1 for all i). If αi, αj denote the ith and jth columns of the matrix of attenuation, respectively, then the

electrical distance between nodes i and j is defined as

d(i, j) = ‖αi − αj‖2
2 =

N

∑
k=1

(αki − αkj)
2; (3.2.4)

Qualitatively, two nodes i and j are close, when the influence of these nodes on the network (including

the nodes i and j themselves) are commensurate with one another. Note that from the definition (3.2.3), the

diagonal terms of the attenuation matrix satisfy αkk = 1, for all 1 ≤ k ≤ N, and therefore for any ε > 0, if

d(i, j) < ε ⇒ |αii − αij| = |1− αij| < ε

Similarly, we have |1− αji| < ε. Therefore |αij − αji| < 2ε. Therefore, if two nodes i and j are close, then

as a consequence the influence of perturbations at nodes i and j on each other are similar. This observation

implies that if we partition the nodes of a network in terms of how similar they are in influencing the

network, then the influence of nodes on each other from the same cell in a partition will be large, that is

close to 1.

3.2.2 Graph Clustering and Determining Zones in Electrical Network

With the notion of distance between buses proposed in the previous section, we view an electrical network

as a weighted directed graph (digraph), where buses represent the nodes, the elements αij represent the

32



edge weights. This makes it amenable to a graph aggregation method developed in [9], where a large

weighted directed graph Gx with N nodes is approximated by a smaller weighted directed graph Gy (with

K � N nodes) such that the smaller graph is the best representation of the larger graph; the extent of repre-

sentation is quantified in terms a dissimilarity measure. In the resulting smaller graph, each node of Gy can

be viewed as representative of a set of nodes on the larger graph Gx; in fact, the algorithm explicitly gives

the set of nodes in Gx that each node of Gy represents. Thus this graph aggregation can be used to cluster

nodes in Gx into K clusters, for a given notion of distance between two nodes. Accordingly we use the

graph aggregation method to group the buses in the electrical network into clusters for the above notion of

electrical distance. In the next section, we briefly present this graph aggregation algorithm and present its

important features. A more rigorous and exhaustive treatment can be found in [9]. An important aspect of

this thesis is that we reinterpret this algorithm in terms of a specific information theoretic view point. This

reinterpretation enables answering questions such as identifying the most influential edges or couplings in

the electrical network; disrupting which can cause the maximum change to the behavior of the electrical

network.

A digraph G(V , E , W) is described in terms of V , E ∈ V × V and W ∈ R
|V|×|V|
+ which represent the set

of nodes, edges and the edge-weight matrix, respectively. Furthermore, |V| = N ∈ N and the relative node

weights are denoted by {pi}, i ∈ {1, . . . , N}, which satisfy pi ≥ 0 with ∑i pi = 1. The incoming vector of

the ith node is described by the weights of its incoming edges and is denoted by Wi , [W1i, . . . , WNi]
T , the

ith column of the matrix W. We consider a distance between two nodes i and j based on edge connectivity

given by d(Wi, Wj). Note that this distance measures similarity between nodes; for example, small value of

d(Wi, Wj) implies that nodes i and j have similar connectivity in the graph.

In graph clustering problems, a small representative graph Gy with |Vy| = K is obtained from a large

graph Gx with |Vx| = N � K by aggregating similar nodes in Vx into K supernodes and then determining

the resulting connections among these supernodes. This partition of the nodes Vx into K clusters, where

each cluster is represented by a supernode in Vy is represented by partition function φ : Vx → Vy which is

such that for any 1 ≤ j 6= l ≤ K, φ−1(j) ⊂ Vx is non-empty, φ−1(j) ∩ φ−1(l) = Ø and ∪K
j=1φ−1(j) = Vx.

Each partition function φ defines an aggregation matrix Φ ∈ {0, 1}N×K as:

Φij := [Φ]i,j =

 1 if φ(i) = j,

0 otherwise.
(3.2.5)

Before we state the graph aggregation problem precisely, we present an example for ease of exposition of

the subsequent concepts. Consider the graph Gx shown in Fig. ?? with Vx = {1, 2, 3, 4} with |Vx| = N = 4
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nodes. The corresponding edge-weight matrix is given by

X =



0 0 0 0.5

0 0 0 1.5

0 0 0 1

2 2 2 0


.

Suppose we want to determine a graph Gy with two supernodes (|Vy| = K = 2), that is Vy = {1′, 2′},

which aggregates the graph Gx. In this example, note that X contains duplicated columns, which indicates

{1, 2, 3} are similar; in fact have identical connectivities. Therefore it is easy to see that the a supernode

(say 1′) should correspond to the three nodes 1, 2, and 3 and another (2′) should correspond to the node

4; that is we have the partition function given by φ : {1, 2, 3, 4} → {1′, 2′} with φ−1(1′) = {1, 2, 3} and

φ−1(2′) = {4}. Therefore the corresponding aggregation matrix Φ is given by:

Φ =



1 0

1 0

1 0

0 1


.

In this construct, we also define a weight matrix Z ∈ RN×K given by:

Z =



0 0.5

0 1.5

0 1

2 0


.

Note here that the column Zφ(i) approximates the ith column of X; in fact, in this example they are exactly

the same. The element Zkl in this weight matrix can be interpreted as a directed weight from the kth

supernode to lth node. Since the first three rows correspond to the first supernode, this matrix can again

be aggregated to obtain the weight matrix Y of Gy, that is

Y = ΦTZ =

 0 3

2 0

 ,

which defines the aggregated graph. In this example, the graph aggregation essentially required aggre-
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gation of of the columns of the matrix X; more precisely, it required finding a partition matrix Φ and a

corresponding weight matrix Z such that the cost function minΦ,Z d(Xi, Zφ(i)) is minimized. Once the op-

timal double (Φ, Z) are obtained the aggregated graph weight matrix is given by Y = ΦTZ. Accordingly a

general problem of aggregating a large graph Gx(Vx, Ex, X) with |Vx| = N into a graph Gy(Vy, Ey, Y) with

|Vy| = K < N is given by:

min
Φ∈χ,Z∈RN×K

pid(Xi, Zφ(i)), (3.2.6)

where χ represents the set of all {0, 1}N×K aggregation matrices; the edge-weight matrix Y is then given

by Y = ΦTZ. Here {pi}, with ∑i pi = 1 have been added in the problem formulation to represent relative

weights of the nodes of Gx, which are known a priori; in the case where all nodes are equally important, we

can choose pi =
1
N for 1 ≤ i ≤ N.

Interestingly, the cost function in the aggregation problem (3.2.6) is algebraically the same as the cost

function that arises in source coding problem from information theory that we now describe. By making

this connection, it becomes possible to avail the existing methods for the source coding problem to solve

(3.2.6).

In the context of clustering of power networks, the matrix of attenuation α = [αi,j] in (3.2.3) is regarded

as the edge-weight matrix of a given graph Gx, i.e., X = α. Application of the DA algorithm results in

determination of the weight matrix Z and the aggregation matrix Φ, which result in a smaller representa-

tive graph Gy with Y = ΦTZ. The aggregation matrix Φ in this case determines the zones (or underlying

partition) in the electrical network. Note that from (3.2.5), the aggregation matrix Φ is defined through a

corresponding partition function φ : Vx → Vy. The inverse map φ−1(j) ⊂ Vx for all j ∈ Vy defines a zone

(or set of buses aggregated in a cluster) in the network.

3.2.3 Rule-Based Supervisory Voltage Control

The proposed clustering algorithm provides a classification of a power network intended for easy and

flexible management of bus voltages in the network. The “local” voltage control is achieved using a rule-

based expert system, similar to the work proposed in [49]. However in our work, we rely only on local

(comprising of buses belonging to the same zone in a network) measurements and control actions to achieve

desired voltage control. Thus the task of a large network-wide voltage control is reduced to control of many

sub-networks with very few number of buses. The overall rule-based strategy is implemented as a set of

IF-THEN rules, as described below:
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Rule 1 : IF There are no voltage violations,

THEN Exit.

Rule 2 : IF There are voltage violations,

THEN Identify the bus with the largest

violations as the target bus.

Rule 3 : IF Target bus has been identified,

THEN Identify zone to which target bus belongs.

Rule 4 : IF PV bus in the zone with largest control

margin has been identified,

THEN Adjust PV bus generation voltage until

*reactive generation limits are reached

*OR voltage limit on PV bus is reached

*OR bus voltage has been corrected

Rule 5 : IF Target bus voltage has been corrected,

THEN Start over from Rule 1.

Rule 6 : IF PV generation/voltage limit is reached,

THEN Identify next available generator in the

zone with the largest control margin.

Rule 7 : IF Next PV bus has been identified,

THEN Start over from Rule 4.

Rule 8 : IF PV bus hasn’t been identified,

THEN Identify shunt bus with largest margin.

Rule 9 : IF Shunt bus has been identified,

THEN Adjust shunt capacitance until

*shunt capacitance limit is reached,

*OR bus voltage has been corrected

36



Rule 10 : IF Target bus voltage has been corrected,

THEN Start over from Rule 1.

Rule 11 : IF Shunt capacitance limit is reached,

THEN Identify next available shunt bus.

Rule 12 : IF Next shunt bus has been identified,

THEN Start over from Rule 9.

Rule 13 : IF Shunt bus hasn’t been identified,

THEN Identify zonal tap-changer corresponding

to largest sensitivity for target bus.

Rule 14 : IF Tap-changer has been identified,

THEN Adjust tap-ratio until

*limit on tap-ratio is reached

*OR bus voltage has been corrected

Rule 15 : IF Target bus voltage has been corrected,

THEN Start over from Rule 1.

Rule 16 : IF Tap-ratio limit is reached,

THEN Identify next available tap-changer.

Rule 17 : IF Next tap-changer has been identified,

THEN Start over from Rule 14.

The above rule-based expert system is successfully applied to IEEE-14 and IEEE-30 bus systems for voltage

correction and is discussed below.

3.2.4 Evaluation on IEEE Test Systems

The graph clustering algorithm in combination with rule-based control 3.2.3 is tested on some standard

network configurations - IEEE-14 bus system and IEEE-30 bus system. Figs. 3.9a and 3.9b show the net-

work configuration of the IEEE-14 bus and IEEE-30 bus test cases, respectively. The IEEE-14 bus test case

represents a portion of the American Electric Power System (in the Midwestern US) as of February, 1962.

The test case includes all different kinds of buses - Slack, PV and PQ comprising of 5 generator buses, 3
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(a) (b)

Figure 3.9: Network Configuration of (a) IEEE-14 bus, (b) IEEE-30 bus

tap changers and 1 shunt capacitor. The IEEE-30 bus test case represents a simple approximation of the

American Electric Power system as it was in December 1961, and comprises of 8 generators, 4 tap changers

and 2 shunt capacitors. The matrices of attenuation
[
αij
]

are first obtained by load-flow computations using

Newton-Raphson method for the two test cases. The obtained matrices are then clustered into 3 partitions

for the IEEE-14 bus test case and 2 partitions for the IEEE-30 bus test case. Tables 3.1 and 3.2 denote the

clustering results for the two test systems. These partitions are marked by different colors in the ‘Bus Type’

columns and also indicated by corresponding initials. The results for various overloading and islanding

scenarios are summarized below.

Effect of perturbations on inter and intra-cluster elements

The power-flow solutions in per unit (p.u.) at nominal loading conditions for the two test systems are

indicated in column 3 of Tables 3.1 and 3.2, whereas columns 4, 5 and 6 indicate the effects of perturbing

generator voltages at different buses. It is observed that the influence of these perturbations is larger at

the buses belonging to the same group (cluster) where the perturbations originate. For instance, in the

IEEE-14 bus system, doubling the generator voltage at bus 2 results in change in voltage magnitudes at

buses 4 and 5 by about 0.4 p.u. The effect of this perturbation is less severe at other buses, which do not

belong to the group formed by the buses 2, 3, 4 and 5. Note that bus 3 is a generator bus (PV bus) where

voltage is set a priori, and hence there is no change in its voltage magnitude. Similar effects are seen in

columns 5 and 6 when perturbing the generator voltages at buses 6 and 3, respectively. Interestingly, buses

{6, 9, 10, 11, 12, 13, 14} in the IEEE-14 bus system are labeled as low-voltage (LV) buses, whereas buses 7
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Table 3.1: Clustering Results For IEEE-14 Bus Data

Bus
#

Bus
Type

Volt
mag.
Oper-
ating

pt

Volt
mag.

(2×V2)

Volt
mag.

(1.5×V6)

Volt
mag.

(2×V3)

1 Slack
(B)

1.060 1.060 1.060 1.060

2 PV (Y) 1.045 2.090 1.045 1.045
3 PV (Y) 1.010 1.010 1.010 2.020
4 PQ (Y) 1.018 1.408 1.107 1.241
5 PQ (Y) 1.020 1.411 1.130 1.152
6 PV (G) 1.070 1.070 1.605 1.070
7 PQ (B) 1.062 1.238 1.188 1.162
8 PV (B) 1.090 1.090 1.090 1.090
9 PQ (G) 1.056 1.226 1.280 1.151

10 PQ (G) 1.051 1.192 1.331 1.130
11 PQ (G) 1.057 1.129 1.462 1.097
12 PQ (G) 1.055 1.068 1.572 1.063
13 PQ (G) 1.050 1.075 1.546 1.064
14 PQ (G) 1.036 1.144 1.382 1.096

and 8 are marked as tertiary-voltage (TV) buses. Remaining buses are indicated as high-voltage (HV)

buses. This underlying electrical structure is naturally captured by the proposed clustering algorithm.

The proposed approach generalizes to larger bus systems too. Similar to the 14-bus test system, per-

turbing generator buses in the IEEE-30 bus test system result in large perturbations in buses belonging to

the same cluster where the perturbations originate. While the algorithm was also tested for the IEEE-300

bus system, the details of it are excluded in this manuscript for the sake of brevity.

3.2.5 Effect of perturbations at buses within the same cluster over the remainder of

the network

By construction, we have that two buses are considered close (electrically) when they have similar influence

over the entire network. This is very well captured in the resulting partitions for the two test systems. We

perturb generator voltages at buses 2 and 3 separately in the IEEE-14 bus system. Both these buses belong

to the same cluster and result in similar perturbations over the entire network. For instance, both these

buses have a very small influence on bus 12, affecting the voltage magnitudes by 0.013 p.u. and 0.008 p.u.,

respectively. However, the effect is large on buses such as bus 7, where the changes in voltage magnitudes

are 0.176 p.u. and 0.100 p.u., respectively.

Similar conclusions can be drawn for the IEEE-30 bus test system. Doubling generator voltages at buses
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Table 3.2: Clustering Results For IEEE-30 Bus Data

Bus
#

Bus
Type

Volt
mag.
Oper-
ating

pt

Volt
mag.

(2×V2)

Volt
mag.

(2×V11)

Volt
mag.

(2×V13)

1 Slack (G) 1.060 1.060 1.060 1.060
2 PV (Y) 1.045 2.090 1.045 1.045
3 PQ (Y) 1.021 1.234 1.057 1.094
4 PQ (Y) 1.012 1.286 1.057 1.103
5 PV (Y) 1.010 1.010 1.010 1.010
6 PQ (Y) 1.011 1.203 1.066 1.063
7 PQ (Y) 1.003 1.117 1.036 1.034
8 PV (Y) 1.010 1.010 1.010 1.010
9 PQ (G) 1.051 1.165 1.488 1.187

10 PQ (G) 1.045 1.174 1.343 1.296
11 PV (Y) 1.082 1.082 2.164 1.082
12 PQ (G) 1.057 1.070 1.150 1.654
13 PV (G) 1.071 1.071 1.071 2.142
14 PQ (G) 1.043 1.159 1.160 1.597
15 PQ (G) 1.038 1.157 1.177 1.550
16 PQ (G) 1.045 1.165 1.224 1.497
17 PQ (G) 1.040 1.167 1.303 1.354
18 PQ (G) 1.028 1.153 1.225 1.452
19 PQ (G) 1.026 1.152 1.256 1.396
20 PQ (G) 1.030 1.157 1.277 1.371
21 PQ (G) 1.033 1.164 1.318 1.295
22 PQ (G) 1.034 1.164 1.314 1.299
23 PQ (G) 1.027 1.154 1.202 1.451
24 PQ (G) 1.022 1.156 1.242 1.325
25 PQ (G) 1.018 1.161 1.177 1.230
26 PQ (G) 1.000 1.146 1.162 1.215
27 PQ (G) 1.024 1.172 1.144 1.177
28 PQ (Y) 1.007 1.155 1.059 1.061
29 PQ (G) 1.004 1.155 1.126 1.160
30 PQ (G) 0.992 1.145 1.116 1.150
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Table 3.3: Ranges and steps of control measures

Serial
#

Control measure Range of control
(p.u.)

1 Generator voltage 0.9 - 1.1
2 Tap changer 0.9 - 1.1
3 Shunt capacitor 0.0 - 0.5

2 and 11, both of which belong to the same cluster, have similar effect over the entire network. Their effects

are large on buses such as bus 28, where the changes in voltage magnitudes are 0.148 p.u. and 0.052 p.u.,

respectively.

3.2.6 Rule-based supervisory voltage control

Each test system consists of generators, tap changers and shunt capacitors. The ranges and and steps in

which these control actions are varied is shown in Table 3.3.

CASE 1: IEEE-14 bus system with 3.5 times the active load and 4.2 times the reactive load

Desired Voltage: 0.90 p.u. to 1.10 p.u.

Fault: Voltages at buses 9, 10 and 14 are 0.886

p.u., 0.884 p.u. and 0.833 p.u.,

respectively and are below the lower

limit of 0.90 p.u. (shown in column 3 of

Table 3.4)

Action: Control actions and their steps are

shown in Table 3.5.

Results: The bus voltages after correction are

within the desired range and the

corresponding magnitudes are shown

in column 4 of Table 3.4.

As seen in Table 3.4, a sudden increase in active and reactive loads results in large violations in the bus

voltages. In particular, voltage magnitudes at buses 9, 10 and 14 fall below the allowable limit of 0.9 p.u..

These violations are subsequently corrected though a set of control actions indicated in Table 3.5. Note that

the faulty buses belong to green (G) zone. The operating voltage of generator at bus 6, which lies in the fault

zone, is increased to compensate for low voltages at buses 9, 10 and 14. Once the generator bus voltage

reaches the maximum allowable limit of 1.1 p.u., the shunt capacitor at bus 9 is increased in steps of 0.1 p.u.

until the capacitance can not be increased further (max 0.5 p.u.). Finally, the tap-changer between buses 4
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Table 3.4: Supervisory Control for IEEE-14 Bus Network

Bus
#

Bus
Type

Volt
magnitude

(Before
correction)

Volt
magnitude

(After
correction)

1 Slack
(B)

1.060 1.060

2 PV (Y) 1.045 1.045
3 PV (Y) 1.010 1.010
4 PQ (Y) 0.945 0.956
5 PQ (Y) 0.954 0.965
6 PV (G) 1.070 1.100
7 PQ (B) 0.956 0.995
8 PV (B) 1.090 1.090
9 PQ (G) 0.886 0.960

10 PQ (G) 0.884 0.952
11 PQ (G) 0.960 1.011
12 PQ (G) 0.998 1.034
13 PQ (G) 0.966 1.007
14 PQ (G) 0.833 0.900

and 9 is adjusted until all the bus voltages are within the allowable limits. Thus, the proposed rule-based

scheme relies only on “local” inputs and control actions for voltage correction and achieves the desired

performance in fewer number of steps as compared to similar rule-based schemes proposed in [49, 52].

CASE 2: IEEE-30 bus system with 2.1 times the active load and 3.1 times the reactive load

Desired Voltage: 0.90 p.u. to 1.10 p.u.

Fault: Voltages at buses 18-27 and 29-30 are

below the lower limit of 0.90 p.u.

(shown in column 3 of Table 3.6)

Action: Control actions and their steps are

shown in Table 3.7.

Results: The bus voltages after correction are

within the desired range and the

corresponding magnitudes are shown

in column 4 of Table 3.6.

Similar to the 14-bus system, increase in active and reactive loads result in large violations in voltage

magnitudes at buses 18-27, 29 and 30, all of which belong to green (G) zone. As before, corrective action can

be localized to green (G) zone for voltage control in the IEEE-30 bus system using fewer number of control

actions. These control actions are indicated in Table 3.7.

42



Table 3.5: Control actions for 14-bus system

Serial
#

Control action Steps

1 Generator at 6 3
2 Shunt Capacitor at 9 4
3 Transformer between 4

and 9
4

Table 3.6: Supervisory Control for IEEE-30 Bus Network

Bus
#

Bus
Type

Volt
magnitude

(Before
correction)

Volt
magnitude

(After
correction)

1 Slack (G) 1.060 1.060
2 PV (Y) 1.045 1.045
3 PQ (Y) 0.966 0.978
4 PQ (Y) 0.956 0.970
5 PV (Y) 1.010 1.010
6 PQ (Y) 0.969 0.978
7 PQ (Y) 0.961 0.967
8 PV (Y) 1.010 1.010
9 PQ (G) 0.973 1.057

10 PQ (G) 0.914 1.034
11 PV (Y) 1.082 1.082
12 PQ (G) 0.972 1.034
13 PV (G) 1.071 1.100
14 PQ (G) 0.925 1.003
15 PQ (G) 0.908 0.999
16 PQ (G) 0.924 1.013
17 PQ (G) 0.901 1.013
18 PQ (G) 0.873 0.979
19 PQ (G) 0.862 0.975
20 PQ (G) 0.872 0.988
21 PQ (G) 0.874 1.009
22 PQ (G) 0.875 1.013
23 PQ (G) 0.866 0.997
24 PQ (G) 0.837 1.019
25 PQ (G) 0.844 0.992
26 PQ (G) 0.785 0.943
27 PQ (G) 0.877 0.999
28 PQ (Y) 0.958 0.974
29 PQ (G) 0.815 0.947
30 PQ (G) 0.780 0.918
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Table 3.7: Control actions for 30-bus system

Serial
#

Control action Steps

1 Generator at 13 3
2 Shunt Capacitor at 10 4
3 Shunt Capacitor at 24 5
4 Transformer between 6

and 9
4

5 Transformer between 28
and 27

2

Table 3.8: Controlled islanding for IEEE-14 Bus Network

Bus
#

Bus
Type

Volt mag.
before

islanding

Volt mag.
after

islanding
1 Slack

(B)
1.060 1.060

2 PV (Y) 1.045 1.045
3 PV (Y) 1.010 1.010
4 PQ (Y) 1.018 1.037
5 PQ (Y) 1.020 1.041
7 PQ (B) 1.062 1.076
8 PV (B) 1.090 1.090

Controlled Islanding

Islanding is required whenever there is a fault and whenever the maintenance is required in a power net-

work. A controlled islanding can not only prevent damage to customer equipment due to continued exces-

sive generation, but also avoid widespread blackouts. Our classification approach is very well suited for

operations such as controlled islanding. We consider a simulated scenario, where there is a fault at one of

the load buses in green (G) zone in the IEEE-14 bus system and it is desired to avoid any cascading failure

by appropriately isolating a major part of the network. The identification obtained using the proposed clus-

tering algorithm provides a natural way to prevent such cascading failure. Since, the clustering algorithm

partitions a network into mutually decoupled (loosely coupled) zones, it is natural to isolate the zones not

containing the faulty bus. As a consequence we isolate the zones (B) and (Y) in the IEEE-14 bus system

from zone (G). The effects of isolating the buses belonging to zones (B) and (Y) are shown in Table 3.8. Even

though the 14-bus system is practically reduced to a 7-bus system, the effect of such an isolation is minimal

in terms of changes in p.u. bus voltages. In fact, the largest such increase in p.u. voltage is imperceptible

(only 0.021 p.u. at bus 5).
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3.3 Clustering Nonlinearly Separable Data

The basic DA algorithm by Rose [19, 3] lacks the ability to cluster data points that are not linearly separable

in the Euclidean space. Kernel k-means and spectral clustering methods have both been used extensively

to cluster data that are non-linearly separable in input space. While there has been significant research

since their inceptions, both the methods have some drawbacks. Similar to the basic k-means algorithm, the

Kernel k-means algorithm is sensitive to initialization [53]. On the other hand, the spectral methods are

based on finding eigenvectors and can be computationally prohibitive [5, 21]. We thus propose a novel,

MEP-inspired algorithm that enjoys the best of both worlds. On one hand, similar to spectral clustering

algorithms, the algorithm is independent of initialization; and on the other hand, the proposed algorithm

does not require computation of eigenvectors. We refer to this algorithm as the weighted-kernel deter-

ministic annealing (WKDA) algorithm. The WKDA algorithm has the ability to avoid poor local minima.

Additionally, we show that the WKDA approach reduces to Kernel k-means approach as a special case.

Finally, we extend the proposed algorithm to include constrained-clustering and present the results for a

variety of interesting data sets.

3.3.1 Motivation and Related Work

Cluster analysis or clustering is a key element of unsupervised learning and has emerged as one of the

fundamental problems in data mining in the recent years. It is used for exploratory data analysis to find

hidden patterns in data, where the clusters are modeled using similarity measures based upon metrics such

as Euclidean, Manhattan and Bergman divergences. These similarity measures represent distances of data

points from their corresponding cluster centroids, or pairwise distances between any two data points in the

input space.

A major drawback of most commonly used k-means or more evolved DA algorithms is their incapability

to separate clusters that are non-linearly separable in input space. While the data points in Fig. 3.10a can

be separated using a hyperplane in R2 (line), there is no such line that can separate data points distributed

along two concentric circles in Fig. 3.10b. Thus, while k-means algorithm finds optimal linear separation of

data points in Fig. 3.10b, such separations are indeed not natural and often undesired. Several approaches

are proposed to tackle such a problem - (a) Agglomerative (or hierarchical) clustering [54], which uses

linkage functions and distance thresholding on resulting drendograms [55], (b) Spectral clustering [5, 56],

which requires computing eigenvectors of the associated graph Laplacian, and (c) Kernel k-means [53],

which uses kernel-trick to map data points to higher-dimensional space and then clusters data points using
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Figure 3.10: Results of k-means clustering algorithm on (a) linearly separable input data, and (b) nonlinearly separable
input data.

linear separators in the new space.

While performance of agglomerative clustering is sensitive to choice of linkage functions and thresholds

on cutting the resulting drendograms, computation of eigenvectors of large sparse matrices in spectral clus-

tering can have substantial computational overheads, especially when a large number of eigenvectors are

to be computed. On the other hand, similar to the basic k-means algorithm, the kernel k-means algorithm

is sensitive to initialization and a poor initialization may result in undesirable clustering performance.

In order to overcome these limitations, we describe a novel, MEP-inspired weighted-kernel determin-

istic annealing (WKDA) algorithm below. The WKDA algorithm enjoys the best of both worlds. On one

hand, the algorithm is independent of initialization much similar to the basic DA algorithm; and on the

other hand, WKDA does not require computing eigenvectors. Furthermore similar to kernel k-means, by

choosing the weights in particular ways, the WKDA objective function is identical to the normalized cut.

Thus we can use WKDA-like iterative algorithms for directly minimizing the normalized-cut of a graph.

A word on notations: We use capital letters such as X, Y to denote matrices; and lower case bold letters

such as x, y to denote column vectors. N, k ∈ N denote the number of data points and number of desired

clusters, respectively. M denotes the number of attributes (or dimensions) of input data point. Script letters

such as X ,Y represent sets; ‖x‖ denotes the L2-norm of x; and ‖X‖F denotes the Frobenius norm of matrix

X, and is given by ‖X‖F =
(

∑i,j X2
ij

)1/2
.
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3.3.2 The Weighted-Kernel Deterministic Annealing (WKDA) Algorithm

In the WKDA algorithm, we map the data X in the input space to a higher-dimensional feature space

through an appropriate choice of kernel functions. This approach is referred as “kernel trick” [20] and en-

ables learning algorithms to operate in higher-dimensional feature space without ever explicitly computing

the coordinates of data points in that space. The mapping allows to use linear separators to extract clusters

in the implicit feature space.

Note that the squared Euclidean distance d(xi, yj) can be expressed using inner-products as

d(xi, yj) =< xi, xi > + < yj, yj > −2 < xi, yj >, (3.3.1)

where yj is defined in (2.1.7). For all xi and xi′ in the input space X , kernel functions κ(xi, xi′) can be

expressed as an inner product in higher-dimensional, implicit feature space H using non-linear feature

maps φ : X → H which satisfies

κ(xi, xi′) =< φ(xi), φ(xi′) >H . (3.3.2)

While explicit representation of φ is not necessary, its existence is guaranteed as long as κ satisfies Mercer’s

condition [57]. For a given set of data points X = {x1, . . . , xN} in the input space, a kernel matrix K ∈ RN×N

is given by Kii′ = κ(xi, xi′). Mercer’s condition requires that K must be positive semi-definite (PSD) [57, 58].

Empirically, for kernel-based algorithms, choices of kernel function κ that do not satisfy Mercer’s condition

may still perform reasonably if κ at least approximates the intuitive idea of similarity [59]. Many popular

choices of κ exist, such as Gaussian, polynomial or radial basis function kernels. Using the non-linear

distortion function φ, the distance between data point φ(xi) and facility location yj in the implicit feature

space is given as

<φ(xi), φ(xi)>+<yj, yj > −2 <φ(xi), yj >︸ ︷︷ ︸
d(φ(xi),yj)

, (3.3.3)

with

yj =
∑i p(xi)p(yj|xi)φ(xi)

∑i p(xi)p(yj|xi)
, p(yj|xi)=

e−βd(φ(xi),yj)

∑j′ e
−βd(φ(xi),yj′ )

. (3.3.4)

Here (3.3.4) is a consequence of the DA algorithm with modified distance function d(φ(xi), yj′). All com-

putations in (3.3.3) are in the form of inner products, hence we can replace all inner products by entries of
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the kernel matrix, i.e.,

d(φ(xi), yj) = Kii − 2
∑l p(xl)p(yj|xl)Kil

∑l p(xl)p(yj|xl)

+
∑l,m p(xl)p(xm)p(yj|xl)p(yj|xm)Klm

(∑l p(xl)p(yj|xl))2 . (3.3.5)

In the WKDA algorithm, the Euclidean distance in (3.3.5) is iteratively computed until convergence at each

β value.

Algorithm 1 WKDA Algorithm

Input: X = {x1, . . . , xN}; No. clusters: k; Kernel Matrix K; Weight Matrix W , diag{p(x1), . . . , p(xN)}
Output: Cluster associations : {p(yj|xi)}

Initialization:
p(yj|xi)← 1

k ∀ xi ∈ X , yj ∈ Y
β← βmin
Annealing Process
while β < βmax do

β Iterations
while until convergence do

Evaluate d(φ(xi), yj) as in (3.3.5) ∀i, j
Evaluate p(yj|xi) as in (3.3.4) ∀i, j

end while
Increment β

end while
return {p(yj|xl)}

3.3.3 Connection with Kernel k-Means and Spectral Clustering Algorithms

The WKDA algorithm (Algorithm 1) shares many properties with the kernel k-means algorithm described

in [53]. For instance, when the association probabilities {p(j|i)} are hard (0-1), the distance function in

(3.3.5) reduces to distance function for kernel k-means algorithm. Moreover similar to the DA algorithm,

the WKDA algorithm decreases the objective function (modified free-energy function) in each β iteration.

For implementing the WKDA algorithm, we must compute the distance matrix [d(φ(xi), yj)] during

each iteration. The complexity of the WKDA algorithm can be analyzed using (3.3.5). The main complexity

arises from computing the numerator of the third term in (3.3.5). The complexity is O(N4k) scalar opera-

tions per iteration of computing the distance matrix. Thus if the total number of iterations is τ, then the

complexity of the WKDA algorithm is O(τN4k). The complexity can be significantly reduced using scal-

able implementation of the WKDA [60]. Such scalable implementation uses thresholding on association

weights to minimize the number of scalar computations arising from associating every data point in the
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input space to all the clusters.

Similar to kernel k-means algorithm, the WKDA algorithm too exhibits connections with spectral clus-

tering clustering algorithms such as normalized cut and ratio cut methods. Note that the WKDA algorithm

aims to optimize the expected distortion D̄(φ(X ),Y) given by

D̄(φ(X ),Y) =
N

∑
i=1

pi

k

∑
j=1

p(j|i)d(φ(xi), yj). (3.3.6)

Let Wj be the diagonal matrix of all the pi weights in the jth cluster Cj, i.e., Wj , diag
{

pi1 , . . . , pi|Cj |

}
∀il ∈

Cj and W , diag{W1, . . . , Wk}, then the minimization of total-distortion D̄(φ(X ),Y) in the limiting case

(i.e. p(j|i) ∈ {0, 1}) is equivalent to the following trace maximization problem [53]

min
Y ,{Cj}

D̄(φ(X ),Y) ≡ max
U∈RN×k

Tr

UTW1/2 ΦTΦ︸ ︷︷ ︸
K

W1/2U

 , (3.3.7)

where Φ = [Φ1, . . . , Φk]
T and Φj is a matrix of points of the form φ(xi) associated with cluster Cj, i.e.,

Φj , [φ(xi)] ∀i ∈ Cj. The matrix U is of the form given by

U =


W1/2

1 e1√
s1

. . .
W1/2

k ek√
sk

 , (3.3.8)

where sj = ∑i∈Cj
pi and ej is a vector of ones of appropriate dimension. Note that U is an orthonormal

matrix, i.e., UTU = I. This discrete optimization problem is relaxed by allowing U to be an arbitrary

orthonormal matrix. Using Rayleigh-Ritz theorem, the optimal U for the relaxed problem is obtained by

taking the top k eigenvectors of W1/2KW1/2. Similarly, the sum of the top k eigenvalues of W1/2KW1/2

gives the optimal trace value.

On the other hand, for a graph G with edge-weight matrix A and degree-matrix D, the optimization

problem for the relaxed normalized cut problem is given by

max
U∈RN×k

Tr
(
UT D−1/2 AD−1/2U

)
s.t. UTU = I. (3.3.9)

Thus if we consider WKDA with W = D and K = D−1/2 AD−1/2, then the optimization problem in (3.3.9)

is identical to the one in (3.3.7). Similarly, the optimization problem for the relaxed ratio cut problem is
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given by

max
U∈RN×k

Tr
(
UT AU

)
s.t. UTU = I. (3.3.10)

Choosing W = D1/2 and K = D−1/2 AD−1/2 establishes the equivalence between the WKDA algorithm and

the ratio cut approach. Thus, if the affinity matrix K is positive definite, we can use the WKDA procedure

in order to minimize the normalized (or ratio) cut, without the need to compute eigenvectors.

Remark (Semi-supervised shape clustering): Semi-supervised clustering methods aim to improve cluster-

ing results using pairwise constraints, such as must-link and cannot-link constraints. These constraints can

be incorporated into our framework through an appropriate modification of the kernel matrix. For every

cannot-link constraint between xi and xi′ , the corresponding entry in the kernel matrix is set to zero, i.e.,

K(i, i′) = 0. This can be understood as follows. The WKDA algorithm replicates normalized cut (or ratio

cut) and aims to minimize the associated cut value. Setting K(i, i′) = 0 is equivalent to setting the edge-

weight between i i′ to zero in the associated graph. Thus any cut separating i and i′ incurs zero cost. Hence,

such a choice of kernel matrix favors viability of cannot-link constraints. Note that we still require positive

definiteness of the kernel matrix in order to guarantee the existence of a kernel function.

Must-link constraints are relatively straight forward to handle. For every pair i, i′ with must-link con-

straint between them, we require that the two points must be associated to the same cluster. This can

be easily addressed in our framework by enforcing p(j|i′) = p(j|i) during each β iteration of the WKDA

algorithm.

3.3.4 Experimental Evaluations of WKDA

We now provide experimental results to validate the usefulness of the proposed WKDA algorithm. Our

WKDA algorithm is implemented in MATLAB and all experiments are done on a PC (Windows, Intel i7-

4790 CPU @ 3.6GHz processor, 8 GB RAM). Note that a geometric scheduling rate of β update (i.e. βt+1 =

1.05βt) is employed and thus results in fast clustering performance. The kernel matrices are generated

using Gaussian kernels.

We first present the results on standard shape data sets - ‘flame’, ‘pathbased’ and ‘R15’, with 2, 3 and 15

natural clusters, respectively. These examples are downloaded from https://cs.joensuu.fi/sipu/datasets/ under

the shape sets category. The results are shown in Figs. 3.11a, 3.11b and 3.11c, respectively. Our WKDA al-

gorithm successfully finds the underlying natural clusters in each of these examples. Similar performances

are obtained for other standard shape data sets, too. However, the corresponding results are excluded for

the sake of brevity. Fig. 3.11d presents an artificially generated generated data set composed of the string -
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‘ICC2018’. The example contains 7 natural clusters in the form of individual characters of the string. Our

WKDA algorithm correctly finds the underlying clusters in this example. Moreover, we further require to

cluster ’ICC2018’ into 6 such natural constraints, such that some of pixels in the two ’C’s belong to the same

cluster (must-link constraint). The algorithm correctly recovers the clusters with both ’C’s belonging to the

same cluster (see Fig. 3.11e).
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Figure 3.11: Implementation of the proposed WKDA algorithm on some interesting data sets. The data sets
in examples (a), (b) and (c) are obtained from https://cs.joensuu.fi/sipu/datasets/ under the shape sets category.
The example presented in (d) is an artificially generated data set, whereas (e) presents the constrained
version of (d).
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3.4 Hard Problems on Graphs: Multiway k-Cut

Apart from clustering using pairwise distances, there are more general problems on graphs that are also

NP-hard. Some of these problems include finding minimum multiway k-cut, maximum independent set,

graph coloring, and maximum clique. In this section, we consider the problem of finding minimum mul-

tiway k-cut using MEP in detail and describe the convergence properties. The approach presented here is

quite general and applicable to a broad class of combinatorial optimization problems on graphs. The itera-

tive algorithm described in this thesis is designed to avoid poor local minima and its run-time complexity

is only ∼ O(kN3), where N is the number of vertices. Simulations on practical examples of interactive

foreground-background segmentation and minimum multiway k-cut optimization for non-planar graphs

that demonstrate the efficacy of the algorithm are presented.

3.4.1 Problem Description and Formulation

The Multiway k-Cut Problem [61] is a generalization of minimum weight cut problem and has applications

in parallel and distributed computing [62], as well as in chip design. Multiway cut also finds applications

in several other problems of related interest, such as extending a partial k-coloring of a graph [63]. Given

a graph, G = (V, E) with vertex set V, |V| = N ∈ N, set of edges E, edge weights w : E → R+, and a

set of terminals S = {s1, s2, . . . , sk} ⊆ V, a multiway k-cut is a set of edges whose removal disconnects the

terminals from each other. The goal of the minimum multiway k-cut problem is to find a minimum weight

set of edges E′ ⊆ E such that removing E′ from G separates all terminals. Fig. 3.12a shows a schematic of

a minimum multiway 3-cut problem with set of terminals denoted by S = {s1, s2, s3}. The objective is to

obtain a partition of the vertex set V into disconnected components {Aj : Aj ⊂ V, 1 ≤ j ≤ 3}, such that

sj ∈ Aj for all j, and the total cut size, 1
2 ∑3

j=1 w(Aj, Āj) is minimized.

While the problem of computing a minimum s-t cut (i.e., k = 2) is solvable in polynomial time, it is

shown in [1] that the minimum multiway k-cut problem is not just NP-hard, but also APX-hard, i.e., there

is a constant δ > 1 such that it is NP-hard to even approximate the solution to within a ratio of less than

δ to the optimal cost even when restricted to instances with three terminals (k = 3) and unit edge costs.

The special case of the problem on planar graphs is also NP-hard if k can be arbitrarily large, but can be

solved in polynomial time for every fixed k [64]. The complexity of multiway k-cut problem arises from the

combinatorial number of ways in which the vertex set V can be partitioned into k sets.

In this thesis, we propose an MEP-based algorithm for the minimum multiway k-cut problem. We ex-

ploit the algebraic structure of the relaxed cost function and non-negativity of the Kullback-Leibler diver-
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(a) (b)

Figure 3.12: (a) Schematic of a minimum multiway k-cut problem with k = 3 and S = {s1, s2, s3}. Here A1, A2 and A3
are the disconnected components. (b) Illustrative example of a multiway 3-cut problem with S = {1, 6, 10} described
in Sec. 3.4.3.

gence to prove the convergence of the proposed algorithm to a minimum. Simulation results demonstrate

that this algorithm outperforms the approximation algorithms described in [1, 65, 66]; for instance in the ex-

ample shown in Fig. 3.16c, where the isolating cut heuristic achieves 132% of the optimal value - in fact, it is

shown to be the best achievable value for the algorithm [1], whereas our MEP based algorithm achieves the

optimal value. In particular, the graph in Fig. 3.16c can be generalized to any number of nodes, and the iso-

lating cut heuristic results in a solution with approximation ratio of 2(1− 1/k). Furthermore, for the st-min

cut problem, which is solvable in polynomial time, the proposed algorithm has a better run-time complex-

ity than the most commonly used Edmonds-Karp [67] or Dinic’s [68] algorithm. We also demonstrate the

effectiveness of our algorithm on very large graphs for interactive foreground-background segmentation.

For a given weighted directed graph, G = (V, E, W) with vertex set V, |V| = N ∈ N, set of edges

E ⊆ V ×V, edge weights w : E → R+ with w(l, m) = Wlm, and a set of terminals S = {s1, s2, . . . , sk} ⊆ V,

the minimum multiway k-cut problem is defined as:

min
{A1,A2,...,Ak},Ai⊂V

1
2

k

∑
j1=1

k

∑
j2=1
j2 6=j1

∑
l∈Aj1
m∈Aj2

w(l, m)

s.t. s1 ∈ A1, . . . , sk ∈ Ak, ∪k
i=1 Ak = V, and Aj ∩ Al = φ, for all j 6= l. (3.4.1)

Note that a partition {A1, . . . , Ak} of V results in k disconnected components (subgraphs) of graph G (see

Fig. 3.12a), and the above optimization problem seeks a partition that minimizes the cumulative weight of

all the edges whose vertices belong to different components.
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We reformulate the optimization problem in (3.4.1) by introducing N × k soft decision variables {p(i∈

Aj)}. The variable p(i ∈ Aj) ∈ [0, 1] denotes a probabilistic association of the vertex i with component Aj.

We also require that for each vertex i, ∑j p(i ∈ Aj) = 1, i.e., {p(i ∈ Aj)} ascribes a probability distribution

over all feasible associations over vertex set V. A relaxation of the optimization problem (3.4.1) is given by:

min
{p(i∈Aj)}

1≤i≤N,1≤j≤k

D ,
1
2

k

∑
j1=1

k

∑
j2=1
j2 6=j1

N

∑
l=1

N

∑
m=1

p(l∈Aj1)p(m∈Aj2)wλ(l, m)

i.e., min
1
2 ∑

j1,j2
j2 6=j1

∑
l,m

p(l∈Aj1)p(m∈Aj2)w(l,m)−λ

2 ∑
j

∑
l

p(l∈Aj)
2

s.t. p(s1∈Aj1) = · · · = p(sk∈Ajk ) = 1, ∑
j

p(i∈Aj) = 1 ∀i, and p(i∈Aj) ∈ [0, 1], (3.4.2)

where wλ(l, m) = Wλlm , Wλ , W + λIN . The inclusion of a constant parameter λ or equivalently the

regularizer term in D is explained as follows. Note that in formulation (3.4.1), self-loop edges with node

weights w(l, l) can not be in a multiway k-cut, and therefore the solution to this problem is independent

of these weights, that is, independent of the diagonal entries of the matrix W. However in the proposed

relaxation, since each vertex has partial membership over different components Ak, the self-loop edges can

become a part of the multiway k-cut; so we replace the edge-weight matrix W by W + λIN , where λ is

large enough to make sure that self-loop edges are not included in the multiway k-cut; the choice of λ is

discussed in Section 3.4.2.

Following on our usual approach that employs maximizing entropy at successively increased values of

distortion D, instead of directly solving (3.4.2), we solve for a closely related problem where we seek the

distributions {p(i ∈ Aj} that ensure the cost function D ≤ D0 for some D0 > 0. Accordingly in our case,

the MEP would solve max H
(
{p(i ∈ Aj}

)
under the constraint that D ≤ D0, where D is given in (3.4.2)

and the Shannon entropy term is given by:

H , −
N

∑
i=1

k

∑
j=1

p(i∈Aj) log p(i∈Aj). (3.4.3)

The equivalent Lagrangian is thus defined as:

L , D− D0 −
1
β

H +
N

∑
i=1

µi

(
k

∑
j=1

p(i∈Aj)− 1

)
, (3.4.4)

where Lagrange multiplier β controls the trade-off between minimizing distortion and maximizing entropy,
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and Lagrange multipliers {µi} correspond to equality constraints ∑j p(i ∈ Aj) = 1 for all 1 ≤ i ≤ N that

are not in {s1, · · · , sk}. Apart from ensuring that the solution approach does not make extra restrictive

assumptions, the entropy term also ensures that the probabilities lie in the interval [0, 1].

Using the fact that ∑k
j2 6=j1 p(i ∈ Aj2) = 1− p(i ∈ Aj1), the effective Lagrangian (free-energy) in (3.4.4) is

given by:

F ,− D0 +
1
2

N

∑
l,m=1

wλ(l, m)− 1
2

N

∑
l,m=1

k

∑
j=1

p(l∈Aj)p(m∈Aj)wλ(l, m)

+
1
β

N

∑
i=1

k

∑
j=1

p(i∈Aj) log p(i∈Aj) +
N

∑
i=1

µi

(
k

∑
j=1

p(i∈Aj)− 1

)
. (3.4.5)

Let W̃λ = [w̃(λ)
lm ] be a symmetric matrix defined as W̃λ = W+WT

2 + λIN . Note that for a vector p and a matrix

W of appropriate dimensions, the scalar pTW p = 0.5pT(W + WT)p. Moreover, the first two terms in the

above expression are constants and therefore ignored in the subsequent analysis. Thus the free-energy term

in (3.4.5) reduces to:

F ,−1
2

N

∑
l,m=1

k

∑
j=1

p(l∈Aj)p(m∈Aj)wλ(l, m) +
1
β

N

∑
i=1

k

∑
j=1

p(i∈Aj)log p(i∈Aj) +
N

∑
i=1

µi

(
k

∑
j=1

p(i∈Aj)−1

)
.

(3.4.6)

The above reformulation is critical to the convergence analysis described in Section 3.4.2. By setting ∂F
∂p(i∈Aj)

=

0 toward optimizing F with respect to p(i∈Aj) yields:

−
N

∑
m=1

p(m∈Aj)w̃
(λ)
im +

1
β
(1 + log p(i∈Aj)) + µi = 0, (3.4.7)

which results in following implicit equation for Gibbs distribution by using the equality constraint ∑j p(i∈

Aj) = 1,

p(i∈Aj) =

exp
{

β

(
N
∑

m=1
p(m∈Aj)w̃

(λ)
im

)}
Zi

, (3.4.8)

where Zi = ∑j exp
{

β

(
N
∑

m=1
p(m∈Aj)w̃

(λ)
im

)}
is the normalization constant corresponding to node i. The

essence of the MEP-based approach lies in successive evaluation of Gibbs distribution in (3.4.8).

In our proposed algorithm, the free-energy is deterministically optimized through fixed-point iterations

in (3.4.8) at successively increased values of the annealing parameter β. The algorithm is summarized in

Algorithm 2. Note that at each value of the annealing parameter β, the algorithm executes the following
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two steps until convergence is obtained:

Step 1: σ+
l j ← p(l∈Aj),

Step 2: p+(l∈Aj)←
exp

{
β

(
N
∑

m=1
σ+

mjw̃
(λ)
lm

)}
∑j exp

{
β

(
N
∑

m=1
σ+

mjw̃
(λ)
lm

)} ,

∀l ∈ {1, . . . , N} \ S, j ∈ {1, . . . , k} (3.4.9)

Algorithm 2 Algorithm for minimum MultiwayCut

Input: G = (V, E), w : E→ R+, S = {s1, . . . , sk}
Output: {p(i∈Aj)}

Initialization:
p(sj∈Aj)← 1 ∀sj ∈ S
p(i∈Aj)← 1

k ∀i 6∈ S, ∀j
β← βmin
Annealing Process
while β < βmax do

Fixed-Point Iterations
while until convergence do

Update {p(i∈Aj)} as in (3.4.8) ∀i 6∈ S
end while
Increment β

end while
return {p(i∈Aj)}

3.4.2 Convergence Analysis of the Proposed Algorithm

We now provide a convergence proof of the two-step iterations in (3.4.9). The convergence analysis is quite

general and applicable to both directed and undirected graphs. The proof is based on appropriate alge-

braic transformation of the free-energy function in (3.4.6) and on the non-negativity of the Kullback-Leibler

(KL) distance [69]. In particular, it is shown that an appropriately designed energy functional decreases

during successive iterations of the implicit equations in (3.4.8). We use P ∈ RN×k to denote the matrix of

associations [p(i∈Aj)].

Claim 1 The two-step iterations described in (3.4.9) converge for every value of the Lagrange multiplier β.

57



Proof. Our proof is based on construction of a function Γ(ζ, η) : RN×k ×RN×k → R such that Γ(P, P) is

equal to F(P) in (3.4.6). Consider the objective function Γ as:

Γ(ζ, η) ,
1
2

N

∑
l,m=1

k

∑
j=1

ηl jηmjw̃
(λ)
lm −

N

∑
l,m=1

k

∑
j=1

ζl jηmjw̃
(λ)
lm +

1
β

N

∑
i=1

k

∑
j=1

ζij log ζij, (3.4.10)

where the choice of Γ is motivated from the following observation:

− p2

2
→ min

τ

(
τ2

2
− pτ

)
, (3.4.11)

which is minimized at τ = p. (3.4.10) is a consequence of the application of the vectorized form of the

above algebraic transformation to the objective function in (3.4.6). We now show that, ∆ , F(P)− F(P+) =

Γ(P, P)− Γ(P+, P+) ≥ 0, where P+ is obtained after successive executions of steps 1 and 2 in (3.4.9). Note

that,

∆ = Γ(P+, P)− Γ(P+, P+)︸ ︷︷ ︸
∆1

+ Γ(P, P)− Γ(P+, P)︸ ︷︷ ︸
∆2

. (3.4.12)

We show that ∆1 ≥ 0 by showing that Γ(P+, σ) (as a function of σ with fixed P+) achieves its minimum

when σ = P+. The minimum is obtained by setting ∂Γ
∂σij

∣∣
(P+ ,σ) = 0 in (3.4.10), which yields:

N

∑
m=1

w̃(λ)
im σmj =

N

∑
m=1

w̃(λ)
im p+(m∈Aj) ⇒ σmj = p+(m∈Aj). (3.4.13)

This solution σ = P+ is a minimum if the Hessian ∂2Γ(P+ ,σ)
∂σ2

∣∣
σ=P+ = W̃λ is positive-definite. Choosing

λ = dmax, maximum degree of the graph, ensures positive-definiteness of W̃λ matrix. However, we must

remark that λ = dmax is conservative, since in that case W̃λ is positive-definite for all σ ∈ RN×k. On the

other hand, σ has a special structure where columns of σ sum up to one. In practice, we run the proposed

algorithm directly without the regularizer term, i.e., λ = 0 and the algorithm generally monotonically

converges in our experiments. Since P+ is a minimizer, setting σ = P 6= P+ results in ∆1 ≥ 0.

To show that ∆2 ≥ 0, note that from (3.4.10) we have

Γ(P, P)− Γ(P+, P) = −∑
lmj

(
p(l∈Aj)− p+(l∈Aj)

)
p(m∈Aj)w̃

(λ)
lm

+
1
β ∑

l j
p(l∈Aj) log p(l∈Aj) +

1
β ∑

l j
p+(l∈Aj) log p+(l∈Aj). (3.4.14)
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Also from taking logarithm on both sides of (3.4.9), we have:

∑
m

p(m∈Aj)w̃
(λ)
lm =

1
β

log Zl +
1
β

log p(l∈Aj) (3.4.15)

(here Zl is given by (3.4.8), which implies

∑
l j

(
p(l∈Aj)−p+(l∈Aj)

)
∑
m

p(m∈Aj)w̃
(λ)
lm =

1
β∑

l j

(
p(l∈Aj)−p+(l∈Aj)

)
log p+(l∈Aj). (3.4.16)

On substituting (3.4.16) in (3.4.14), we obtain

Γ(P, P)− Γ(P+, P) =
1
β

N

∑
l=1

k

∑
j=1

Pl j log
Pl j

p+(l∈Aj)
=

1
β

N

∑
l=1

DKL(Pl ||P+
l ) ≥ 0, (3.4.17)

where pl and p+l are the lth rows of P and P+ respectively and since Kullback-Leibler (KL) measure

DKL(pl ||p+l ) between two probability distributions is non-negative. Therefore, we have ∆2 ≥ 0. Conse-

quently, ∆ ≥ 0.

Since by construction, F(P) = Γ(P, P), we have that F(P) decreases as a result of the two-step iteration

in (3.4.9), and since F is bounded from below, the implicit equations in (3.4.8) converge to a local minimum

of F. �

Time-complexity of the proposed algorithm

The main complexity of the proposed MEP-based algorithm for the minimum multiway k-cut problem

stems from the matrix multiplication in the fixed point iteration scheme. For a graph G = (V, E) with

|V| = N, there is a total Nk association probability parameters {pi ∈Aj}, that need to be estimated at each

β iteration. Note that the batch update equation in (3.4.8) requires multiplying the two matrices [w(i, j)] and

[pi ∈ Aj]N×k. This multiplication operation runs in O(N|E|k) time (total of N|E| operations for each par-

tition associated with multiplying non-zero elements of edge-weight matrix). For each β, the fixed-point

iteration converges in about 2-3 iterations (see Fig. 3.13a, which indicates average number of iterations

per β for convergence for 3-cut problem on randomly generated graphs with varying number of nodes).

If χ denotes the number of β iterations, then the runtime of the proposed MEP approach is bounded by

O(χN|E|k). Remark that for the minimum s-t cut problem, the bound on the runtime of the proposed algo-

rithm is O(χN|E|) (experimentally verified in Fig. 3.13b for 3-cut problem on randomly generated graphs

with varying number of nodes). Thus compared to the standard algorithms, such as Dinic’s algorithm

(O(N2|E|)) and Edmonds-Karp algorithm (O(N|E|2)), the proposed statistical physics based algorithm is
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(a) (b)

Figure 3.13: Empirical computational complexity of the proposed algorithm for 3-cut problem on randomly generated
graphs with varying number of nodes. (a) Average number of iterations per β value, (b) Computational complexity is
cubic in the number of vertices.

computationally more efficient for the minimum s-t cut problem.

3.4.3 Illustrative Examples

Fig. 3.14 shows a typical run of our algorithm at increasing β values for the example shown in Fig. 3.12b.

The set of terminals are identified as, S = {1, 6, 10}. Moreover, in this example it is easy to verify that the

optimal cut set comprises of the edges {e2−9, e3−4, e7−8}.

As seen in Fig. 3.14, at very low values of β, the association probability p(i ∈ Aj) ≡ 1/3 for every

Figure 3.14: Illustrative example of minimum 3-cut problem. The columns indicate the association matrices p(i ∈ Aj)

at different β values. The ‘bold’ numbers indicate the associations of terminals, i.e., p(1 ∈ A1) = 1, p(6 ∈ A2) = 1 and
p(10 ∈ A3) = 1. As the algorithm progresses, the associations of remaining nodes harden, thereby resulting in optimal
cut.
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(a) (b)

(c) (d)

Figure 3.15: Illustration of the proposed multiway k-cut approach to background-foreground segmentation. Here each
pixel in the bounding box represents a node. The terminal nodes (corresponding to foreground and background) are
interactively provided by the user once, and the algorithm successively evaluates minimum st-cut to refine foreground-
background segmentation. Edge-weights are obtained as functions of pixels’ RGB values.

i /∈ S, which in turn corresponds to maximizing randomness (Shannon entropy) of the solution. However,

as the randomness is gradually decreased by increasing β, the probabilities start becoming non-uniform and

exhibit preferential association to a specific cluster Aj. In the limiting case, i.e., at large values of β, the

algorithm results in hardened probabilities (0 − 1 associations). Thus an optimal cut is obtained. Note

that in this example, β is increased geometrically from 0.01 to 40, i.e., the algorithm provides for very fast

β scheduling. We also verified the correctness and efficacy of our algorithm on polynomial time solvable

minimum s-t cut problem for 100 instances of 1000 nodes randomly generated graphs; our algorithm suc-

cessfully obtained optimal solutions in each of these instances. As described earlier, the run-time was cubic

in the number of vertices with average number of iterations per β value < 4.

We also test our approach on very large graphs with number of nodes as large as ∼ 25000 (correspond-

ing to the size of the bounding box 150× 160 pixels). Figure 3.15 shows the results of our implementation

of the interactive foreground-background segmentation (GrabCut [70]) using the proposed MEP approach.

The implementation results in effective segmentation.

Minimum Multiway Cut for a Non-Planar Graph

We now consider an instance of a 22-node non planar graph, shown in Fig. 3.16a. In this example we

consider a 6-cut problem, whose set of terminals is specified as S = {1, 4, 8, 11, 15, 19}. Our MEP algo-

rithm results in a partition of the underlying graph, given by {1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10}, {11, 12, 13, 14},
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(a) (b) (c)

Figure 3.16: (a) Example of a 22 nodes non-planar graph with 6 terminals, S = {1, 4, 8, 11, 15, 19}. The proposed
algorithm results in an optimal cut. (b) An 8 node graph with multiple permissible optimal 4-cuts. (c) Toy-example
with 2k = 6 vertices where k of the vertices form a cycle where each edge weight is equal to 1, and each other vertex is
connected to exactly one vertex on the cycle with an edge weight of 1.98. The isolating cut heuristic [1] results in a cut
value of 3.96, where as our MEP-based algorithm results in optimal cut.

{15, 16, 17, 18} and {19, 20, 21, 22}with a cut value of 15; which is indeed optimal and can be easily verified.

On the other hand, the isolating cut heuristic [1] for this randomly generated instance results in a cut solu-

tion with a value of 16. A similar observation is made on other randomly generated instances, where our

algorithm results in optimal cut values (whenever verifiable). Moreover, the total run-time for the example

in Fig. 3.16a for a naive implementation of the proposed approach in MATLAB is < 1s on an Intel i7-4790

CPU @ 3.60 GHz.

Non-unique Optimal Cuts

In both the examples described above, the resulting optimal cuts are indeed unique. We now therefore

consider a scenario with more than one permissible optimal cuts. Our algorithm identifies the multiplicity

of optimal cuts, which is reflected in the final association matrix {pi ∈ Aj}. Fig. 3.16b shows an example

of a 8-node graph with multiple permissible optimal 4-cuts. Executing the proposed MEP-based algorithm

results in the following association matrix. As shown in Table 3.9, node 3 can be included in either A2 or

{pi∈A1} {pi∈A2} {pi∈A3} {pi∈A4}
1 0 0 0
1 0 0 0
0 0.5 0.5 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1

Table 3.9: Final association matrix for the 4-cut problem shown in Fig. 3.16b
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A3 without affecting the value of the optimal cut, and therefore the association probabilities p(3 ∈ A2) =

p(3∈A3)=0.5. Assigning node 3 to any of the two partitions still results in a feasible, yet optimal cut.

Comparison on Challenging Examples

Fig. 3.16c shows the performance of our MEP based approach on a toy-example, where heuristic such as

isolating cut [1], fails to identify an optimal cut for the simplest such scenario. In fact, the graph in Fig.

3.16c can be generalized to any number of nodes, and the isolating cut heuristic results in a solution with

approximation ratio of 2(1− 1/k). However, our algorithm correctly finds the optimal multiway k-cut.
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Chapter 4

Conclusions and Future Directions

In this thesis, we develop an efficient heuristic and a unifying framework for obtaining high quality solu-

tions to a broad class of combinatorial optimization problems. The approach is derived from fundamental

principles from the statistical physics literature, such as maximum entropy principle or minimum free-

energy principle. Unlike other meta-heuristics, the proposed algorithm is independent of initialization,

and the solution evolves deterministically as the algorithm progresses. A broad class of combinatorial op-

timization problems ranging from TSP and its variants, clustering non-linearly separable data, partitioning

of electrical networks to solving hard problems on graphs, such as obtaining minimum multiway k-cut are

considered. Several theoretical and practical tools are developed in the treatment of each of these problems.

In particular, we have reformulated problems from different application areas as equivalent resource al-

location problems and used MEP-based approach to efficiently handle the combinatorial constraints. These

problems include:

• Traveling salesman problem and its variants: It is shown that the proposed resource allocation framework

can easily handle a large number of variants of classical TSP, including the CETSP where a feasible

solution set admits a continuum of possible edges between the cities. Consequently it is shown that

our MEP-based approach presents some viable opportunities as a heuristic for TSP and its variants.

Because our approach is independent of the edges between nodes, it offers more flexibility to address

these variants without compromising on computational complexity.

• Clustering of power networks: Our approach to this problem is a classical example of how a properly

chosen metric, along with an efficient clustering algorithm, can potentially reduce the complexity of

analyzing a large interconnected power network into analysis of small decoupled (loosely-coupled)

networks. Unlike conventional metrics to graph clustering, such as degree of nodes, we have used the

underlying physics of power systems in designing a suitable metric that captures sensitivity of bus

voltages to other electrical quantities, such as reactive or active power perturbations. An MEP-based

graph clustering algorithm is them employed to obtain natural decoupled sub-networks. This decou-
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pling is then exploited to implement local (decentralized) controllers for maintaining bus voltages

within the permissible limits over the entire network. The performance of the proposed clustering

methodology, along with the supervisory rule-based voltage control scheme is benchmarked on stan-

dard IEEE networks and exhibits state-of-the-art results in terms of overcoming faults/perturbations

within a power network.

• Clustering nonlinearly separable data: One of the earliest application domains of MEP-inspired ap-

proaches is clustering of linearly separable data points. However, these formulations do not ad-

dress cluster analysis for nonlinearly separable data. We address this issue by marrying machine

learning (kernel-trick) to statistical physics (deterministic annealing). We show that the kernel trick

efficiently reduces clustering of nonlinearly separable data points in the input domain to clustering in

abstract higher-dimensional spaces where these data points are linearly separable. In doing so, we do

not require eigenvector computations that are often computationally prohibitive (as is the case with

spectral clustering algorithms), while still working with the objective functions of spectral clustering

algorithms through appropriately chosen kernel matrices. Constraints, such as, must-link or cannot-

link are easily addressed in the proposed framework. Results on benchmark and synthetic datasets

demonstrate the effectiveness of the proposed approach.

• Multiway k-cut: It is further shown that several hard-problems on graphs are easily handled using the

proposed MEP-based framework. In particular, we consider the minimum multiway k-cut problem,

which is APX-hard for k ≥ 3. We also describe a convergence proof for the proposed algorithm and

show that the fixed-point iteration scheme converges. Moreover, the proposed algorithm is computa-

tionally efficient than the Dinic’s or Edmonds-Karp algorithm for the minimum s− t cut problem.

Many possible future directions exist in extending the proposed approach to even broader class of com-

binatorial optimization problems. One of the problems of interest here that we have already started looking

into is a general mixed binary integer linear program (MBILP). An MBILP is mathematically described as:

min
x∈Rn

z∈{0,1}m

aTx + bTz,

subject to, Gx + Hz ≤ c, and x ≥ 0, (4.0.1)

where G ∈ Rk×n and H ∈ Rk×m. MBILPs occur in variety of domains, such as scheduling, production

planning, telecommunication networks, unit commitment and economic dispatch, and cellular networks.

MBILPs are NP-complete and in some instances, the optimal integral solutions are far from the optimal
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solutions to corresponding relaxed linear programs (LPs), which are solvable in polynomial times. Our ap-

proach to MBILPs is to replace the binary variables with their continuous counterparts - i.e., with probabil-

ities of them being one and then use Shannon-entropy to constrain the probabilities to maintain maximum

randomness to the solutions (i.e., making least restrictive assumptions in the nature of final solutions). The

Shannon entropy term is then gradually relaxed in an annealing process to obtain hard (0-1) solutions to

the binary variables. Thus instead of directly solving an MBILP, we work on a series of LPs that are easily

solvable in polynomial times, thereby significantly reducing the computational complexity of solving the

original MBILP. In our initial evaluations using this approach, we seem to be arriving at solutions to ran-

domly generated instances with 2000 binary variables within 2-3% of the optimal solutions and our naive

MATLAB implementation takes only a little over a minute on an average.

One possible shortcoming of the proposed MEP-based approach is the lack of parallel implementation

in its current form. This is primarily due to the functional form of Giibs distribution which requires com-

putation of distances of facility locations from each data point. While number of such computations are

significantly less with the MEP based approach (O(NK) instead of O(N2), where N, K are number of data

points and facilities, respectively), the algorithm lacks parallelization capability of k-means. There remains

significant opportunities to optimize the code implementation of this framework to achieve more favorable

computation times, at which point this algorithm can be run on benchmark mTSP and multiway k-cut cases

and compared against many of the conventional heuristics.

Other immediate extensions of the proposed algorithm are to consider other related (to minimum mul-

tiway k-cut) problems on graphs, such as, finding maximum independent set or graph coloring. The

quadratic cost function in minimum multiway k-cut can be easily modified to incorporate problem spe-

cific objectives.

While it appears to be a really difficult problem to obtain sub-optimality guarantees with MEP-based

algorithms, it would be worthwhile to consider them as well as part of the future directions. Obtaining

performance bounds for statistical physics based approaches has been an open problem since its inception

and guarantees are provided only for a few special cases, such as, linear assignment problems [71]. Though

only little is known in terms of sub-optimality guarantees, it must be noted that these algorithms work very

well in practice and are empirically shown to converge to very high-quality optima.
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Part II

Grid and Microgrid of the Future:
Robust Control Framework
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Chapter 5

Introduction: Grid and Microgrid of the
Future

5.1 Historical Overview

The North American electrical grid is regarded as the most significant engineering achievement of the 20th

century [41], however, the infrastructure that defines the U.S. electric grid is based largely on pre-digital

technologies and is ill-equipped to serve smaller, innovative solar or wind facilities. Throughout its evo-

lution, the utility grid mainly relied primarily on centralized power plants and developed protocols to

provide system reliability based on that model. On the other hand, the International Energy Outlook 2013

(IEO2013) [72] projects that world energy consumption will grow by 56 percent between 2010 and 2040

(see Fig. 5.1). The study examines the potential role of photo-voltaics (PVs), wind turbines and other

distributed energy resources (DERs) in meeting the growing energy demands while achieving security of

supply and minimizing carbon dioxide emissions. However, the increasing use of renewable generation

and distributed energy resources (DER), such as residential solar and home energy storage, along with cus-

tomers’ changing energy usage patterns lead to greater uncertainty and variability in the electric grid. New

tools are required to create a flexible and modern electric grid that can meet this increase in renewable gen-

eration and DERs, while providing the quality of service, resiliency, and reliability that customers expect.

In this regard, microgrids are hypothesized as viable alternatives for supporting a flexible and efficient

electric grid by enabling the integration of growing deployments of distributed energy resources such as

renewables like solar and wind. In addition, the use of local sources of energy to serve local loads helps

reduce energy losses in transmission and distribution, further increasing efficiency of the electric delivery

system. Microgrids are localized grid systems that are capable of operating in parallel with, or indepen-

dently from, the existing traditional grid [73]. Fig. 5.2 shows a schematic of a microgrid with multiple

DC sources providing power for AC loads. Existing control architectures for traditional grids, which are

designed for relatively large conventional sources (power plants) of predictable and dispatchable electric

power, cannot adequately manage uncertain power sources such as solar or wind generations. Limited

68



Figure 5.1: Energy consumption history and projection. (Source: U.S. Energy Information Administration,
International Energy Outlook 2013.)

predictability with such resources result in intermittent power generation; moreover time-varying loads,

practicability and economics factors pose additional challenges in efficient operation of microgrids. Thus it

is required to develop efficient distributed control technologies for reliable operation of smart microgrids

[74].

In such micro grids, multiple DC power sources connected in parallel, each interfaced with DC-DC con-

verter, provide power at their common output, the DC-link, at a regulated voltage; this power can directly

feed DC loads or be used by a DC-AC inverter to interface with AC loads (see Fig. 5.2). Both convert-

ers and inverters are switched-mode power electronic devices. By appropriately controlling the switch

duty-cycle of these power-electronic converters at each power source, it becomes feasible to manipulate

electrical quantities such as the power output by each power source, voltage at the DC-link, power trans-

actions between utility grid and localized power sources (in grid-tied mode), and voltage and frequency at

the AC-link (also known as point of common coupling (PCC)).

The main challenges arise from the uncertainties in the size and the schedules of loads, the complexity

of a coupled multi-converter network, the uncertainties in the model parameters at each converter, and

the adverse effects of interfacing DC power sources with AC loads, such as the 120 Hz ripple that has

to be provided by the DC sources. In view of these challenges, a robust and distributed control technol-

ogy is needed for reliable operation of smart microgrids. In the multiple-input multiple-output setting

necessitated by the need to control multiple generation sources, it is difficult to address robustness and
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Figure 5.2: A schematic of a microgrid. An array of DC sources provide power for AC loads. Power sources
provide power at DC-link, their common output bus, at a voltage that is regulated to a set-point. The
control system at the respective DC-DC converter that interfaces with a source is responsible for regulating
the voltage at the DC-link.

performance criteria in the conventional PID-based control synthesis framework. Recently robust and op-

timal control methodologies have received attention. In [75], a linear-matrix-inequality (LMI) based robust

control design is presented for boost converters which demonstrates significant improvements in voltage

regulation over PID based control designs. In [76, 77, 78] robust H∞ control framework is employed in the

context of inverter systems. While the issue of current sharing is extensively studied (see [79] and [80]),

most prior methods reported assume a single power source. Furthermore, the sharing requirements can

be time-varying and are often dictated by the availability and relative costs of different power sources; for

instance, economic considerations can dictate that power provided by the sources should be in a certain

proportion or according to a prescribed priority (e.g. PV provides the maximum power it can to satisfy

load demand, and the deficit is provided by battery).

These control objectives can be summarized as: (a) regulating voltage at the DC-link with guaranteed

robustness, (b) prescribed time-varying power sharing in a network of parallel converters, (c) controlling

the trade-off between 120 Hz ripple on the total current provided by the power sources and the ripple on

the DC-link voltage, (d) regulating voltage and frequency at the PCC for islanded microgrids, and (e) power

sharing among multiple microgrids interfaced at the PCC. While the control designs for the DC and the AC

side can be decoupled, a systematic control design that addresses all the above objectives simultaneously

is missing. Furthermore, if multiple converter units are interfaced together, it often becomes infeasible to

analyze the performance and stability of the closed-loop system.
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5.2 Main Contributions

This thesis develops a comprehensive approach that addresses the challenges to system reliability and

power quality presented by widespread renewable power generation. By developing techniques for both

centralized cloud-based and distributed peer-to-peer networks, the proposed control system enables co-

ordinated response of many local units to adjust consumption and generation of energy, satisfy physical

constraints, and provide ancillary services requested by a grid operator. The proposed work uses tools

from robust control theory [81, 82] simultaneously addresses the aforementioned control objectives per-

taining to managing multiple generation sources and regulating electrical quantities of interest. Our main

contributions can be summarized as follows:

(a) Robust regulation and sharing performance: We identify appropriate maps of converter/inverter duty-

cycles to facilitate a common framework for analyzing and synthesizing controllers for different types

of converters while rendering models that are linear. Modern robust control tools are employed to

to address multiple objectives that include regulation of the DC-link voltage to a desired set-point

reference, and a prescribed sharing of power among different DERs. Apart from meeting performance

guarantees including prioritization, our control design also addresses the challenges of interfacing AC

loads, including the 120 Hz ripple that has to be provided by the DC sources.

(b) Modular and structured architecture: The control architecture presented in this work is modular and

facilitates plug and play operation. Here, new converter module can be added or removed from the

network, without any need to redesign controllers and without compromising the voltage regulation

performance of the network. Furthermore, adding a module, which is agnostic to sharing ratios of

other modules, to the networked system does not affect the overall performance of the networked

system. The intramodule and inter-module control is structured in such a way that it allows easy

multi-converter network analysis and synthesis. In the framework developed, the network of par-

allel converters can be analyzed, and the corresponding control systems synthesized, in terms of an

equivalent single-converter system.

(c) Robustness to communication uncertainties: The synthesis procedure results in a single controller which

functions for the entire range of communication capabilities; from decentralized to centralized. Here,

it guarantees precise regulation of the DC-link voltage and power sharing specifications when com-

munication allows for a centralized operation, and meets gracefully degraded specifications with

lessened communication capabilities among converters.
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5.3 Organization

The organization of this part of the thesis is as follows. In chapter 6, we describe cycle averaged dynamics

of power electronic converters. Through an appropriate choice of maps between converter duty-cycles and

control signals, the dynamics of converters can be made linear. We then introduce a robust control theoretic

framework for controlling a network of multiple converter units in chapter 7. In chapter 8, we demonstrate

the effectiveness of the proposed control design through some practical simulation scenarios. These sce-

narios consider DERs of different types and highly uncertain loads. We then conclude our discussion with

practical experimental scenarios in chapter 9.
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Chapter 6

Facilitating Linear Models of Power
Electronic Converters

In this chapter, we describe amenable dynamical models of power electronic converters. These dynamical

models are essential to control design approach described in chapter 7. Below we discuss these cycle-

averaged dynamical models for both DC-DC converters as well as DC-AC inverter. In fact, we identify

appropriate maps of converters/inverters duty-cycles to facilitate a common framework for analyzing and

synthesizing controllers for different topologies of power electronic converters while rendering models that

are linear.

6.1 Modeling of DC-DC Converters

A DC-DC converter is an electronic circuit that converts a source of direct current from one voltage level

to another. These converters belong a class of switched-mode power electronics, where semiconductor

based high-frequency switching mechanism connected to a DC power source enables changing voltage

and current characteristics at its output [83, 84]. Fig. 6.1 shows the schematic of common DC-DC converter

topologies. In essence, a DC-DC converter comprises of a power switch, a diode, an inductor and a ca-

pacitor. These can be arranged in a variety of ways to realize boost, buck, and buck-boost converters. Below

(a) (b) (c)

Figure 6.1: Circuit representing (a) Boost converter, (b) Buck converter, and (c) Buck-Boost converter. Note that iload
includes both the nominal load current, as well as ripple current. The converters are assumed to operate in continuous-
conduction-mode (CCM). Boost converters step up the voltage at the output, while buck converters step down the
voltage. A buck-boost converter can achieve both the objectives.
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we describe the dynamic model of each converter topology for signals (inductor current, capacitor voltage)

that are averaged over a switched cycle.

Notations: We use Vg(t) and V(t) to represent voltages at input and output, respectively. L and C

denote the converter inductance and DC-link capacitance. iL and iload denote the inductor and load currents

respectively. Vref denotes the desired reference voltage at the DC-link. Quantities d(t) and d′(t) , 1− d(t)

denote the instantaneous duty-cycle and complementary duty-cycle of semiconductor switches respectively,

while D and D′ denote the corresponding steady-state quantities.

6.1.1 Boost converter dynamics

A boost converter (also known as step-up converter), steps up the input voltage Vg so that the output voltage

V is higher than the input (see Fig. 6.1a). The dynamical equations of a boost converter are described as:

L
diL
dt

= Vg −V

C
dV
dt

= iL − iload, (when switch is OFF) (6.1.1)

L
diL
dt

= Vg

C
dV
dt

= −iload. (when switch is ON) (6.1.2)

If the switch is ON for d(t) proportion of time during a cycle, then the averaged dynamic model of a boost

converter (averaged over one-cycle) is given by:

L
d < iL(t) >

dt
= −(1− d(t)) < V(t) > +Vg

C
d < V(t) >

dt
= (1− d(t)) < iL(t) > − < iload(t) >, (6.1.3)

where < · > represents average over a switching cycle. Note that the switching occurs at a very fast time-

scale as compared to converter current-voltage dynamics. We use slight abuse of notation to denote the

averaged current and voltages by iL and V, respectively. The

L
diL(t)

dt
= Vg − d′(t)V(t)︸ ︷︷ ︸

ũ(t):=Vg−u(t)

C
dV(t)

dt
= (D′ + d̂(t))︸ ︷︷ ︸

≈D′

iL(t)− iload(t),

(6.1.4)

(6.1.5)
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Figure 6.2: Block diagram representation of a boost-type converter. The control signal ũ is converted to an equivalent
PWM signal to command the gate of the transistor acting as a switch.

where D′ := (Vg/Vref) is the steady-state complementary duty-cycle. Note that d̂(t) = d′(t)− D′ is typ-

ically very small, and therefore allows for a linear approximation around the nominal duty-cycle, D =

1− D′.

The corresponding block-diagram representation of the above set of equations is shown in Fig. 6.2. The

control objectives are to design u (equivalently ũ) such that the voltage regulation error V − Vref is made

small irrespective of load disturbances iload and variations in parameters L and C. Note that the equivalent

duty-cycle d(t) can be obtained from ũ via d(t) = 1−
Vg − ũ(t)

V(t)
.

6.1.2 Buck converter dynamics

Fig. 6.1b shows the schematic of a buck converter (step-down converter). A buck converter steps down the

voltage at its output. Proceeding as before, the averaged dynamics of a buck converter can be derived as:

L
diL(t)

dt
= d(t)Vg −V(t)︸ ︷︷ ︸

ũ(t)

C
dV(t)

dt
= iL(t)− iload(t). (6.1.6)

6.1.3 Buck-boost converter dynamics

As the name suggests, a buck-boost converter can both step-up or step-down the voltage at its output. The

averaged dynamical equations for a buck-boost converter are given as:

L
diL(t)

dt
= d(t)Vg + (1− d(t))V(t)︸ ︷︷ ︸

ũ(t)

C
dV(t)

dt
= −D′iL(t)− iload(t). (6.1.7)

Note: An important consequence of the above modeling approach is the equivalence among dynam-

ical models of multiple converter topologies. In fact, the dynamic models of DC-DC converters can be
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succinctly written as:

L
diL(t)

dt
= ũ(t)

C
dV(t)

dt
= αiL(t)− iload(t), (6.1.8)

where corresponding duty-cycles d(t) and α are as shown in Table 6.1:

Converter topology Duty-cycle d(t) α

Boost converter
(

1−
Vg − ũ(t)

V(t)

)
D′

Buck converter
(

ũ(t) + V(t)
Vg

)
1

Buck-boost converter
(

ũ(t)−V(t)
Vg −V(t)

)
−D′

Table 6.1: Generalized models for multiple converter topologies

6.2 Modeling of DC-AC Inverter

Unlike DC-DC converters, DC-AC inverters transform a source of direct current to an equivalent source

of alternating current using semiconductor switches. Fig. 6.3a shows the schematic of a full-bridge DC-

AC inverter. A full-bridge inverter [83] comprises of two legs each containing two switches each - (a) s1

and s2, (b) s3 and s4. The full-bridge inverter is interfaced with the AC-side load through an interface

reactor represented by a series RL branch. L and R respectively, represent the inductance and internal

resistance of the interface reactor. The interface reactor acts as a low pass filter and ensures low-ripple AC-

side current iL resulting from switching operations. The voltage at terminal a is controlled by periodically

switching ON/OFF the switches s1 and s2. Similarly, switches s3 and s4 control the voltage at terminal

b. The quantities V(t) and iload(t) represent the AC-side voltage (or output voltage), and load current,

respectively. Let da(t) represent the proportion of ON time of switch s1 (or OFF time of switch s2), also

known as the duty-cycle of switch s1. Therefore the average voltage at terminal a, Va(t) is given by Va(t) =

da(t)Vdc, where Vdc is the voltage of the DC source. Similarly, the voltage Vb at terminal b, averaged over

switching cycles, is given by Vb(t) = db(t)Vdc. By combining the two states of operation, dynamic model
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(a) (b)

Figure 6.3: (a) Circuit representing a full-bridge inverter. The AC-side current is given by iload. The switches s1, s2, s3
and s4 control the AC-side voltage V(t). (b) Associated control model of the full-bridge inverter.

of a full-bridge inverter (averaged over switching cycles) is given as:

L
diL(t)

dt
+ RiL(t) = (da(t)− db(t))Vdc −V(t)︸ ︷︷ ︸

ũ(t):=m(t)Vdc−V(t)

C
dV(t)

dt
= iL(t)− iload(t). (6.2.1)

The average voltage between terminals a and b, ũ(t) := m(t)Vdc is proportional to, and can be controlled

by the modulating signal m(t) ∈ [−1, 1]. Fig. 6.3b shows a control block diagram of the system described

by (6.2.1), for which the next chapter presents a closed-loop structure to regulate V(t) at its reference value.

Note that for a given value of modulating signal m(t) := da(t) − db(t), there are infinitely many choices

for the duty-cycles da(t) and db(t). This issue of non-uniqueness is addressed by considering the following

scheme:

m(t) ≥ 0 m(t) < 0

da(t) m(t) 0

db(t) 0 −m(t)

An important contribution of this thesis is that it introduces a control architecture for a paralleled net-

work of inverters for which performance analysis becomes feasible. The proposed architecture is scalable

and extends to any number of inverters in the network. In the next chapter, we discuss the control design

scheme of a network of multiple inverters.
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Chapter 7

Robust Control Framework for Power
Electronic Converters

In this chapter, we develop a comprehensive control approach that addresses the challenges to system relia-

bility and power quality presented by widespread renewable power generation. By developing techniques

for both centralized cloud-based and distributed peer-to-peer networks, the proposed control design en-

ables coordinated response of many local units to adjust consumption and generation of energy, satisfy

physical constraints, and provide ancillary services requested by a grid operator. We apply concepts from

nonlinear and robust control theory to design self-organizing power systems that effectively respond to

the grid events and variability. A key feature enabled by the proposed methodology is a flexible plug-

and-play architecture wherein devices and small power networks can easily engage or disengage from

other power networks or the grid. The main idea is to apply concepts from robust control theory to de-

sign coordination-friendly power systems that effectively respond to the grid events and variability. The

control architecture is aimed to help with (a) electrical requirements at the PCC, (b) integrating commu-

nication among power-electronic converters, and (c) performance analysis of microgrids. The proposed

control architecture addresses these objectives by formulating the control problems in a disturbance rejection

framework, developing a unified architecture for both centralized and decentralized implementations, and

posing the voltage regulation problem in a robust optimal control framework. Below we discuss control

design approach for both DC-DC converters, as well as DC-AC inverters.

7.1 Control of DC-DC Converters

7.1.1 Control of Single Converter

In this section, we describe the inner-outer control design for a single boost converter system. This design for

a single converter forms the basis for the analysis and design of control architecture for multiple converters

presented in Sec. 7.1.2. While the design is easily extendable to include other converter types such as buck

and buck-boost, the discussion has been confined to boost converters only for the sake of brevity. Note

that in the proposed control architecture (see Fig. 7.1), the inputs to outer feedback controller include iref
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Figure 7.1: Block diagram representation of the inner-outer control design. The regulated variables z1, z2, z3 and z4
correspond to weighted - (a) tracking error in DC-link voltage, (b) mismatch between iref and iload, (c) control effort û,
and (d) output voltage tracking, respectively.

in addition to the typical Vref and the measured DC-link voltage V. The requirements on current sharing

are imposed through this additional iref signal (explained in Sec. 7.1.2) by setting iref to measured (or

communicated) load current iload in the centralized case, and setting iref to estimated (or prespecified)

signals in the decentralized case. Below we describe the proposed inner-outer control architecture [85, 86].

Design of the inner-loop controller

The main objective for designing the inner-loop controller Kc is to decide the trade-off between the 120

Hz ripple on the capacitor current iC (equivalently on the output voltage V) and the inductor current iL

of the converter. The 120 Hz ripple arises as the AC-side instantaneous power pulsates at 120 Hz (see Fig.

7.2). When the DC-link is interfaced with AC-link, the 120 Hz component is eventually supplied by the

DC sources. DC sources often may not sustain large amount of high-frequency fluctuations in the sourced

currents and thus a trade-off must be made between the 120 Hz ripple on the capacitor current iC and the

inductor current iL of the converter. Accordingly Kc is designed such that the inner-closed loop plant G̃c

assumes a low-order transfer function, i.e., we choose Kc such that

G̃c(s) =
(

ω̃

s + ω̃

)(
s2 + 2ζ1ω0s + ω2

0
s2 + 2ζ2ω0s + ω2

0

)
, (7.1.1)

where ω0 = 2π120 rad/s. ω̃, ζ1 and ζ2 are design parameters. Here the parameter ω̃ > ω0 is simply chosen

to implement a low-pass filter that attenuates undesirable frequency content in iL beyond ω̃. ω̃ is chosen

large enough to provide good steady-state tracking, however, it should be small enough to not allow the

switching frequency ripples to affect the output. The ratio ζ1/ζ2 determines the size of the notch in G̃c at

ω0 (see Fig. 7.3). Lower values of this ratio correspond to larger notches, which in turn imply smaller 120
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Figure 7.2: Existence of 120 Hz ripple in interfacing DC-link with AC-side. The AC-side power pulsates at 120 Hz and
needs to be accounted for by the DC sources.

Figure 7.3: Bode magnitude plots of the closed-loop plant G̃c for various ζ1 values. ω̃ is chosen to be 600π rad/s. Note
that a relatively larger value of ω̃ is in accordance with choosing a fast inner-current controller.

Hz component in iL, since G̃c represents the inner closed-loop transfer function from reference current to

iL. Furthermore since iC = iload − iL, this in turn implies higher ripples in iC. Thus the ratio ζ1/ζ2 can be

appropriately designed to achieve a specified tradeoff between 120 Hz ripple on 120 Hz ripple on iC and iL

. The stabilizing second-order controller Kc that yields the above closed-loop plant G̃c is given by,

K̃c(s) = Lω̃

(
s2 + 2ζ1ω0s + ω2

0
)(

s2 + 2ζ2ω0s + 2(ζ2 − ζ1)ω0ω̃ + ω2
0
) , (7.1.2)

which is again a low-order (second-order) controller design.

Design of the outer-loop controller

Let Gc := 1/sL and Gv := 1/sC denote the inner (current) and outer (voltage) open-loop plant transfer

functions of the dynamics of a boost converter. For a given choice of Kc, Fig. 7.1 shows the block-diagram

80



representation of the proposed inner-outer control design. G̃c represents the inner-shaped plant as before.

The outer controllers Kv and Kr are designed to regulate the output DC voltage V to the desired reference

voltage Vref and the output current D′iL to the reference current iref, respectively. Note that from (6.1.4),

D′iL is equal to iload in the steady-state. The augmentation of controller Kr forms the basis for time-varying

power sharing and is explained in the section on control of multiple converters. It should be remarked that

the proposed design has a feature that if the load current measurement is available, i.e., iref = iload, then

the steady-state DC output voltage is maintained at Vref. However in the absence of iload measurement, the

outer controller Kr regulates the output current D′iL to iref 6= iload resulting in an output voltage V 6= Vref.

The mismatch in voltage tracking is captured by a pre-specified droop-like coefficient η in a controlled

manner, the notable difference here being the application of droop to the faster current loop when compared

with the conventional droop-based design acting on the slower voltage loop. This feature is mathematically

quantified in the following discussion on the proposed control design.

The main objective for the design of the controllers Kv and Kr is to make the tracking errors small

and simultaneously attenuate measurement noise to achieve high resolution. This is achieved by posing

a model-based multi-objective optimization problem, where the required objectives are described in terms

of norms of the corresponding transfer functions, as described below. Note that the regulated variables

z1, z2, z3 and z4 correspond to weighted - (a) tracking error in DC-link voltage, (b) mismatch between iref

and iload, (c) control effort û, and (d) output voltage tracking, respectively. From Fig. 7.1, the transfer

function from exogenous inputs and auxiliary control input w = [Vref, iref, iload, û]T to regulated output

z = [z1, z2, z3, z4, e1, e2] is given by:



z1

z2

z3

z4

e1

e2


︸ ︷︷ ︸

z

=



W1 0 W1Gv −D′W1GvG̃c

ηW2 W2 ηW2Gv −D′(1 + ηGv)W2G̃c

0 0 0 W3

0 0 −W4Gv D′W4GvG̃c

1 0 Gv −D′GvG̃c

η 1 ηGv −D′(1 + ηGv)G̃c


︸ ︷︷ ︸

Twz



Vref

iref

iload

û


︸ ︷︷ ︸

w

. (7.1.3)

The optimization problem is to find stabilizing controllers Kouter = [Kv, Kr]
T such that the H∞-norm of the

above transfer function from w to z is minimized. Here the weights W1, W2, W3 and W4 are chosen to reflect

the design specifications of robustness to parametric uncertainties, tracking bandwidth, and saturation

limits on the control signal [81, 82]. More specifically, the weight functions W1(jω) and W2(jω) are chosen to

be large in frequency range [0, ωBW ] to ensure small tracking errors e1 = Vref −V and e2 = iref + ηe1 −D′iL

in this frequency range. The design of weight function W3(jω) entails ensuring that the control effort lies
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within saturation limits. The weight function W4 is designed as a high-pass filter to ensure that the transfer

function from iload to V is small at high frequencies to provide mitigation to measurement noise.

Note that for the system shown in Fig. 7.1, the voltage V at the DC-link is given by:

V = Gv
(
−iload + D′G̃c(Kve1 + Kre2)

)
. (7.1.4)

Using the fact that e1 = Vref − V and e2 = iref + ηe1 − D′G̃c(Kve1 + Kre2), the DC-link voltage in terms of

exogenous quantities Vref, iref and iload is given by:

V(s) =
[

D′G̃cGv(Kv + ηKr)

1 + D′G̃cKr + D′G̃cGv(Kv + ηKr)

]
Vref(s)

+

[
D′G̃cGvKr

1 + D′G̃cKr + D′G̃cGv(Kv + ηKr)

]
(iref(s)− iload(s))−

[
Gv

1 + D′G̃cKr + D′G̃cGv(Kv + ηKr)

]
iload(s).

(7.1.5)

Let S(s), TVrefV and TirefV denote the closed-loop sensitivity transfer function and complementary sensitivity

transfer functions from Vref to V and iref to V, respectively. Then (7.1.5) can be rewritten as:

V(s) = TVrefVVref(s) + TirefV (iref(s)− iload(s))− GvSiload(s).

The DC gains of above closed-loop transfer functions are given by (since Gv = 1/sC has an infinite DC

gain),

|TVrefV(j0)| = 1, |TirefV(j0)| = |Kr(j0)|
|Kv(j0) + ηKr(j0)| and |(GvS)(j0)| = 1

D′ (|Kv(j0) + ηKr(j0)|) .

We now provide a sketch of the proposed design concept. Since Kv and Kr are chosen as high DC-gain con-

trollers (obtained by solving the H∞ optimization problem), we have |GvS((jω))| ≈ 0 at low-frequencies.

Thus the effect of disturbance signal iload is insignificant at low frequencies. Similarly TVrefV(jω) has unity

gain at low frequencies. Furthermore, if the load current iload measurement is available (i.e. iref = iload),

then the Boost converter tracks the reference voltage with almost unity gain. However in the absence of

iload measurement, the tracking error depends on the mismatch between iref and iload, i.e., the bound on the

steady-state tracking error becomes proportional to
|Kr(j0)|

|Kv(j0) + ηKr(j0)| multiplied by the mismatch value

|iref(j0) − iload(j0)|. By choosing appropriate controllers Kv and Kr (i.e., |TirefV(j0)| << 1), the tracking

error can be made small.
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Figure 7.4: Many-converters system with shaped inner plants G̃c. In the proposed implementation, we adopt the same
outer controller for different converters, i.e., Kv1 = · · · = Kvm = 1

m Kv and Kr1 = · · · = Krm = Kr; γk represents the
proportion of power demanded from the kth source.

7.1.2 Extension to Multi-Converters System

In this section we extend our control framework for a single converter to a system of DC-DC converters

connected in parallel in the context of power sharing, keeping in mind the practicability and robustness to

modeling and load uncertainties. In particular, we analyze the multi-converter system in Fig. 7.4 through

an equivalent single-converter system (similar to the system shown in Fig. 7.1), where the multi-converter

system inherits the performance and robustness achieved by a design for the single-converter system. Note

that the control design for a network of parallel converters is particularly challenging because of inter-

converter couplings. Moreover, analysis of closed-loop stability and performance of a parallel networked

system is often infeasible unless a structured control architecture is imposed. Majority of existing con-

trol design methodologies fail to address this important issue of analyzability and can be evaluated only

empirically.

Note that instead of feeding the reference current irefk
directly to the kth outer controller Krk in the

proposed architecture in Fig. 7.4, the reference signal iref + η(Vref − V) is prescaled by a time-varying

multiplier γk, 0 ≤ γk ≤ 1. The choice of γk dictates the power sharing requirements on the kth converter.

In fact, we later show that the proposed implementation distributes the output power in the ratios γ1 : γ2 :

.. : γm. After noting that the voltage-regulation and current reference tracking is common to all the outer

controllers, in our architecture, we impose the same design for outer-controllers for all the converters, i.e.,

Kv1 = Kv2 = .. = Kvm and Kr1 = Kr2 = .. = Krm . This imposition enables significant reduction in the overall

complexity of the distributed control design for a parallel network of converters and power sources, thus
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ensuring the practicability of the proposed design which allows integration of power sources of different

types and values.

We design inner-controllers Kck such that the inner-shaped plants from ũk to iLk are same and given by,

G̃c,nom(s) =
(

ω̃

s + ω̃

)(
s2 + 2ζ1,nomω0s + ω2

0
s2 + 2ζ2,nomω0s + ω2

0

)
, (7.1.6)

where the ratio ζ1,nom/ζ2,nom determines the trade-off of 120Hz ripple between the total output current

D′iL =
m
∑

k=1
D′kiLk and the capacitor current iC. Note that for given values of ζ1,nom, ζ2,nom and inductance Lk,

explicit design of Kck exists and is given by (7.1.2). Furthermore, we impose that Kvk =
1
m Kv and Krk = Kr.

Indeed, by our choice of inner and outer controllers, the transfer functions from external references

Vref, iref and iload to the desired output V are identical for all converters. Hence the entire network of

parallel converters can be analyzed in the context of an equivalent single converter system. This implies that

Kvk and Krk can be computed by solving H∞-optimization problem (as discussed in the previous section)

similar to the single converter case. We make these design specifications more precise and bring out the

equivalence of the control design for the single and multiple converter systems in the following theorem.

We say that the system representation in Fig. 7.1 is equivalent to that in Fig. 7.4, when the transfer

functions from the reference voltage Vref, reference current iref and load current iload to the DC-link voltage

V in Fig. 7.1 are identical to the corresponding transfer functions in Fig. 7.4.

Theorem 1 Consider the single-converter system in Fig. 7.1 with inner-shaped plant G̃c,nom(s) as given in (7.1.6),

outer controllers Kv, Kr, droop-coefficient η, and external references Vref, iload, iref; and the multi-converter system

described in Fig. 7.4 with inner-shaped plants G̃ck = G̃c,nom(s) and outer controllers Kvk = 1
m Kv; Krk = Kr,

droop-coefficient η, and same external references Vref, iload and reference current iref prescaled by time-varying scalars

γk > 0 for 1 ≤ k ≤ m.

1. [System Equivalence]: If ∑m
k=1 γk = 1, then the system representation in Fig. 7.1 is equivalent to the system

representation in Fig. 7.4.

2. [Power Sharing]: For any two converters k and l, k, l ∈ {1, . . . , m} in a multi-converter system shown in Fig.

7.4, the difference in the corresponding steady-state scaled output currents is given by:

∣∣∣∣D′k iLk
(j0)

γk
− D′l iLl

(j0)
γl

∣∣∣∣ ≤ (η|T̃1(j0)|+
∣∣∣ 1

γk
− 1

γl

∣∣∣ |T̃2(j0)|
)
|e1(j0)|, (7.1.7)

where, T̃1 := D′G̃c,nomKr
(1+D′G̃c,nomKr)

and T̃2 := D′G̃c,nomKv
m(1+D′G̃c,nomKr)

. Furthermore, the steady-state tracking error e1 , Vref −V

in DC-link voltage is upper bounded by,
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Centralized case: iref = iload

|e1(j0)| ≤ 1
D′(|Kv(j0) + ηKr(j0)|) |iref(j0)|

Decentralized case: iref 6= iload

|e1(j0)| ≤ |Kr(j0)|
D′(|Kv(j0) + ηKr(j0)|) |iref(j0)|+ D′|Kr(j0)|+ 1

D′(|Kv(j0) + ηKr(j0)|) |iload(j0)|

Remark 1: If the steady-state tracking error in DC-link voltage is zero, i.e., |e1(j0)| = 0, then (7.1.7) reduces

to the following constraint:
|D′kiLk (j0)|
|D′l iLl (j0)| =

γk
γl

,

i.e., the closed-loop multi-converter system achieves output power sharing given by |D′1iL1(j0)| : . . . :

|D′miLm(j0)| = γ1 : . . . : γl . In practice the tracking error e1 is never exactly zero, however, the tracking

error is made practically non-existent through an appropriate choice of large DC-gain controllers Kv, Kr

resulting from the H∞ optimization problem in (7.1.3). Moreover, the design of the controllers is such that

|Kv(j0)| < |Kr(j0)| resulting in |T̃1(j0)| ≤ 1 and |T̃2(j0)| ≤ 1.

Remark 2: For the decentralized implementation, it is required that each converter can measure its own

inductor current iLk and DC-link voltage V only.

Proof: See Appendix.

7.2 Control of DC-AC Inverters

For controlling a full-bridge inverter, we propose a simple lead-lag based inner-outer control design for

voltage regulation. Power sharing is achieved through a smart choice of inner controllers and distributing

the output of outer-voltage controllers appropriately. We now describe the explicit choice of inner and

outer controllers for a DC-AC inverter.

7.2.1 Control of Single Inverter

Any controller that is required to regulate the output voltage V(t) at its reference value, must do so through

an equivalent control of the modulating signal m(t). However for the purpose of control design and imple-

mentation, one must focus directly on the control input u(t). The objective of voltage regulation is achieved

using a nested inner-current outer-voltage control architecture, shown in Fig. 7.5. The outer-voltage con-

troller Kv generates a current reference iref for the inner-loop. The inner-current controller Kc regulates the
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Figure 7.5: Inner-outer control architecture for a full-bridge inverter.

inductor current iL to the desired iref. The quantity Vref represents the desired reference voltage signal. For

the purpose of control design, it is assumed that the signals iL(t) and V(t) are available for measurements.

The total current drawn at the PCC, which comprises of load current and any unmodeled disturbances, is

denoted by iload. For simplicity, we use Gc :=
1

sL + R
and Gv :=

1
sC

to denote the plant transfer functions

in the inner and outer loops.

Design of the inner-loop controller

In our architecture, the main objective of the inner-controller Kc is to ensure regulation of inductor cur-

rent iL to the reference iref generated by Kv. Since the AC signal pulsates at ωn = 60Hz, Kc must ensure

robust tracking at frequencies at least till ωn. Additionally, it is preferred to have a relatively low-order

controller Kc. These objectives are achieved through an appropriate loop shaping using a lead-lag controller

as described below.

We assume that iref is required to be tracked with a closed-loop bandwidth of ωb(∼ 10ωn); ωb is chosen

sufficiently large such that the inner closed-loop system from iref to iL has unity gain till ωn with zero-phase

delay, and is small enough to ensure that the switching ripple content of the control signal u is low. In the

loop shaping procedure, the desired performance objectives are specified in terms of the properties of the

loop transfer function l(s) = Gc(s)Kc(s). For achieving zero steady-state error at ωn, the controller must

be equipped with a pair of complex-conjugate poles at s = ±jωn, also referred as resonant controller in

the literature [87]. Furthermore the open-loop plant Gc(s) contains a pole at s = −R/L, which in turn

introduces a −90◦ phase delay for frequencies larger than 10R/L. Therefore, to improve the loop-gain

phase, a zero at s = −R/L is introduced. This pole-zero cancellation is admissible since the pole is on the

left half plane (LHP). Thus the modified inner-loop controller assumes the form,

Kc(s) =
(

sL + R
s2 + ω2

n

)
H(s). (7.2.1)

86



Note that the resonant controller 1/
(
s2 + ω2

n
)

introduces a−180◦ phase delay at and beyond ωn. However

to achieve a stable closed-loop system, the loop-gain phase at the gain crossover frequency ωc must be

larger than −180◦ by a value that is referred to as the phase-margin. For robust stability, a phase-margin

of about 60◦ is required, i.e. ∠l(jωc) = 60◦. The gain crossover frequency ωc and the closed-loop −3dB

bandwidth ωb are correlated and in general satisfy the inequality ωc < ωb < 2ωc, resulting in following

approximation ωb ≈ 1.5ωc. A phase-margin of about 60◦ can be achieved by using a lead filter of the form

Flead(s) =
(

s + ωc/
√

α

s + ωc
√

α

)
, (7.2.2)

where α > 1, α ∈ R. The maximum phase of this lead filter occurs at ωc and is given by

δmax = sin−1
(

α− 1
α + 1

)
. (7.2.3)

For a phase-margin of 60◦, δmax is chosen to be 60◦ which results in α = 13.93. For achieving zero steady-

state error at DC, the magnitude of loop-gain must be large (∼ 50dB) at low frequencies, i.e. |l(j0)| = 102.5.

The loop-gain magnitude is increased at low frequencies if the following lag-filter is introduced

Flag(s) =
(

s + β

s + δβ

)
, (7.2.4)

where β ∼ 2 rad/s and δ < 1, δ ∈ R. Note that Flag has the property that Flag(jω) ≈ 1 for frequencies

larger than about 20 rad/s. Therefore, it does not change the phase or magnitude of the loop-gain around

the crossover frequency ωc. Thus the transfer function H(s) in Eq. (7.2.1) is expressed as:

H(s) = h
(

s + β

s + δβ

)
︸ ︷︷ ︸

Flag(s)

(
s + ωc/

√
α

s + ωc
√

α

)
︸ ︷︷ ︸

Flead(s)

, (7.2.5)

where h ∈ R is added to ensure that |l(jωc)| = 1. Therefore, the inner-loop controller Kc assumes the

following modified form

Kc(s) = h
(

sL + R
s2 + ω2

n

)(
s + β

s + δβ

)(
s + ωc/

√
α

s + ωc
√

α

)
, (7.2.6)
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where h and δ satisfy the following equations

h =
√

α
(

ω2
c −ω2

n

)
δ =

h
102.5αω2

n
. (7.2.7)

Thus the inner-loop controller Kc(s) described in (7.2.6) ensures robust (60◦ phase-margin) tracking with

large loop-gains at low-frequencies and ωn.

Remark: If the current reference iref is constant, the inverter is just controlled to be a current source,

which is the same with the traditional grid-tied inverter. Thus a grid-tied operation of inverters does not

require an outer-voltage loop, since the PCC voltage is fixed by the utility grid.

Design of the outer-loop controller

The inner-loop controller Kc ensures that the inductor current tracks the current reference iref. However, iref

is an internal signal in the closed-loop system of Fig. 7.5 and is produced by the outer-voltage controller

Kv which is designed to regulate the AC-side voltage V at its reference value Vref. Since the objectives of

the outer-loop are similar to those of the inner-loop (albeit in terms of the voltage signal), we use similar

design methodology.

Note that the outer-loop plant Gv(s) = 1/sC introduces large gains in the loop-transfer function l̃(s) =

Gv(s)Kv(s) at low-frequencies. Thus a lag-controller is not required for the outer-loop control design. In

an inner-outer cascaded control design, the outer-loop controller is the primary controller that regulates

the primary controlled variable (V) at the desired reference, whereas the inner-loop (secondary) controller

rejects any input disturbance locally before it propagates to the outer-loop plant (Gv). Thus for a cascaded

design to function properly, the inner-loop must respond much faster than the outer-loop. This is achieved

by ascribing the outer-loop controller Kv such that the outer loop-gain crossover frequency ω̃c ∼ 0.4 −

0.5ωc. Thus Kv(s) assumes the following functional form:

Kv(s) = h̃C
(

s + β

s2 + ω2
n

)(
s + ω̃c/

√
α

s + ω̃c
√

α

)
, (7.2.8)

where h̃ ∈ R is chosen such that |l̃(jω̃c)| = 1 and is given by

h̃ = ω̃c

√
α

β2 + ω̃2
c

(
ω̃2

c −ω2
n

)
. (7.2.9)

Remark: The inner-loop controller Kc depends on the inverter parameters L and R, while the outer-
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Figure 7.6: Proposed decentralized framework with smart choices of controller parameters. The inner-current con-
trollers Kck are chosen such that the inner-shaped plant mimics G̃c(s). The outer-loop controllers are scalar multiples of
the nominal outer-loop controller Kv; the scalars γk govern the power-sharing requirements in a microgrid setup.

loop controller Kv depends on the capacitance C at the output. This parametric dependence (and inner-

outer decoupling) is exploited in the next section to extend the control design to multiple parallel inverter

system.

7.2.2 Extension to Multi-Inverters System

A microgrid facilitates integration of multiple parallel full-bridge VSIs at the PCC. In this section, we de-

scribe a new non-droop based decentralized power sharing scheme through an extension of the proposed

single inverter control. Such an extension achieves the objective of power sharing and voltage regulation

in the context of DC/DC converters too and is reported in our prior work [86]. An isochronous operation is

assumed for the parallel inverters case, i.e., we assume existence of common time reference among invert-

ers. This assumption is needed to ensure that all the inverters have access to the same time-domain voltage

reference signal Vref (see [78] for more details on isochronous operation).

Since the multi-inverter system is highly coupled with individual controllers having access only to local

current measurements iLk , any arbitrary choice of controller transfer functions {Kvk , Kck}m
k=1 renders the

stability and performance analysis of the multi-inverter system intractable. However, the decentralized

framework is easily simplified by a smart choice of inner-outer controllers. For given desired gain-crossover
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frequencies ωc and ω̃c for the inner and outer-loops, respectively, we make the following two important

observations -

1) The inner-controllers Kck , k ∈ {1, . . . , m} are parameterized by the corresponding coupling impedances

(see Eq. (7.2.6)), and therefore the respective loop-gains lk(s) =
1

(sLk + Rk)
Kck (s) are independent of the

parameters Lk and Rk as a consequence of admissible pole-zero cancellations, i.e.,

lk(s) =
(

h
s2 + ω2

n

)(
s + β

s + δβ

)(
s + ωc/

√
α

s + ωc
√

α

)
, ∀k. (7.2.10)

Thus l1(s) = . . . = lm(s) =: l(s) and therefore the closed inner-loops G̃ck = lk(s)/(1 + lk(s)) are identical,

i.e., G̃c1(s) = . . . = G̃cm(s) =: G̃c(s).

2) The objective of voltage regulation at the PCC is common to all the inverters. Thus in the proposed

decentralized architecture, we impose similar structure for the outer-voltage controllers Kvk , k ∈ {1, . . . , m},

i.e.,

Kvk (s) = γk h̃C
(

s + β

s2 + ω2
n

)(
s + ω̃c/

√
α

s + ω̃c
√

α

)
︸ ︷︷ ︸

:=Kv(s)

, ∀k, (7.2.11)

where γk ∈ R, γk ∈ [0, 1] ∀k ∈ {1, . . . , m} and satisfy ∑m
k=1 γk = 1. The parameters γk are chosen to

apportion power among parallel sources. We make these design specifications more precise and bring out

the equivalence of the control design for the single and multiple parallel VSIs in the following theorem.

Theorem 2 Consider a single VSI system described in Fig. 7.5 with parameters L, R and C, and controllers Kc

and Kv described by Eqs. (7.2.1) and (7.2.8), respectively; and a parallel inverter system in Fig. 7.6 with same

output capacitance C, but distinct inverter system parameters {Lk, Rk}m
k=1 with inner and outer controllers Kck and

Kvk = γkKv as described in Eqs. (7.2.10) and (7.2.11) such that ∑m
k=1 γk = 1.

1. [Performance Equivalence]: The controllers Kvk and Kck yield identical (to single VSI control) performance for

a network of multiple parallel inverters connected at the PCC; more precisely, for the exogenous inputs - the reference

Vref, the load disturbance current iload, and measurement-noise n = ∑m
k=1 γknk, the steady-state regulated signals(

Vref −V, iL, V
)

for the single-inverter system are same as the regulated signals
(

Vref −V, ∑m
k=1 iLk , V

)
for the

multi-inverter system.

2. [Power Sharing]: The steady-state output currents at the PCC get divided in the ratio γ1 : . . . : γm up to the

measurement noises; more precisely, if the measurement noise is bounded above, i.e., (|nk(jω)| < ε(ω)), ∀k then,

∣∣∣∣∣ iLj(jω)

γj
−

iLk (jω)

γk

∣∣∣∣∣ ≤ |G̃c(jω)|.|Kv(jω)|ε(ω).
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Consequently, if ε(ω) = 0, then the above condition reduces to |iL1(jω)| : . . . : |iLm(jω)| = γ1 : . . . : γm for all ω.

Thus in case of perfect measurements, the proportions γk capture the power-sharing requirements exactly.

Remark: By design, the inner-closed loop plant G̃c(jω) has unity gain till bandwidth and rolls-off at higher

frequencies. Similarly the outer controller Kv(jω), given by (7.2.8), rolls-off at higher frequencies. Thus the effect of

high-frequency noise is mitigated by the choice of control design and the output current is apportioned according to

the prescribed sharing requirements.

Proof: See appendix.

Remark: The inner-loop controller Kc depends on the inverter parameters L and R, while the outer-

loop controller Kv depends on the capacitance C at the output. This parametric dependence (and inner-

outer decoupling) is exploited in the next section to extend the control design to multiple parallel inverter

system.
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Chapter 8

Case Studies: Simulations and
Discussions

This chapter describes simulation studies that cover different aspects of the proposed distributed con-

trol design. All simulations are performed in MATLAB/Simulink using SimPower/SimElectronics library,

which use non-ideal components (such as diodes with non-zero breakdown voltage, IGBT switches, stray

capacitances, parametric uncertainties) and switched level implementation to include nonlinearities asso-

ciated with real-world experiments. Here, we consider the setup shown in Fig. 8.1.

Note that the photovoltaics are technically treated as current sources. In a microgrid setup, a PV module

is interfaced with the DC-link through a boost converter and is controlled using the maximum power point

tracking (MPPT) algorithm. The output current of PV iPV is directly proportional to the (time-varying)

irradiance and is included in our proposed formulation by regarding iPV as part of the disturbance signal,

i.e., the net disturbance current is modeled as iload − iPV. In this simulation study, we squeeze worth 8

hours of insolation data into a total duration of 19.5s amounting to rapidly varying irradiance (and hence

the disturbance current iPV).

8.1 DC-DC Converters

In order to illustrate the robustness of the proposed approach, the control design assumes nominal (or

equivalent single converter) inductance, capacitance and steady-state complementary duty-cycle given by

L = 0.12mH, C = 500µF and D′ = Vg/Vref = 0.5, whereas the simulated system has non-identical induc-

tances and steady-state complementary duty-cycles. The mismatch (or uncertainty) in L and C parameters

is large (∼ 20%). The design parameters for the inner-controller Kc are: damping factors ζ1 = 0.7, ζ2 = 2.2,

and bandwidth ω̃ = 2π300rad/s. The outer controllers Kv and Kr are obtained by solving the stacked H∞

optimization problem (see Equation 7.1.3)[81] using appropriate weighting functions.
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Figure 8.1: A parallel network comprising of a PV, a Li-ion battery and two generic sources. The operating voltages
and associated converter parameters are described above. It is desired to regulate the DC-link voltage to 250V. The PV
module is operated using MPPT algorithm [2]. Its output current, iPV, is directly proportional to the (time-varying)
irradiance and is included in our proposed formulation by regarding iPV as part of the disturbance signal, with the
net disturbance current modeled as iload − iPV. The DC-link can additionally be used to power complex AC loads via
a DC-AC inverter. The inverter is tied to utility grid. Any control design must facilitate seamless integration of DC
microgrid with the AC grid.

Results

The controllers derived for the nominal single converter system are used to derive controller parameters

for a parallel multi-converter system as described in section 7.1. (by setting for each converter Kvk =

1
m Kv and Krk = Kr for all k = 1, . . . , m). Fig. 8.2 shows the (i) voltage regulation at the DC-link to the

reference Vref = 250V for the centralized (iload measurement available) and decentralized implementations,

(ii) time-varying current sharing among power sources. The sources are initially required to provide power

in equal proportion, followed by a proportion of 5 : 2 : 3 from t = 2s onwards. For ease of illustration, the

scaled output currents D′iL/γ are plotted. Overlapping values of scaled currents depict excellent sharing

performance. The DC-link load changes by 4kW every second (3kW to 7kW, and 7kW to 3kW). The reference

current is considered as iref = 5kW/250V = 20A.
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Figure 8.2: Simulation results representing centralized and decentralized control implementation for voltage regula-
tion and time-varying power sharing.

(a) (b)

Figure 8.3: Simulation results representing handling of complex AC loads.

Fig. 8.3a and Fig. 8.3b show the results of adding complex AC loads through a DC-AC inverter. The

converter system is required to operate in “DC-only” mode until 0.4s. The three DC-sources are required

to share their output power in the ratio of 4 : 3 : 3. The DC-load considered in this test case has a resistance

of 20Ω. Subjected to these conditions, the DC-sources regulate the DC-link voltage at 250V (see Fig. 8.3a),

while ensuring desired sharing performance (see Fig. 8.3b). At t = 0.4, the DC-load is dropped and

the networked system is interfaced with a complex AC-load (R,L) = (52.08Ω, 2mH) through a grid-tied

DC-AC inverter. Despite this sudden interconnection, the proposed control design facilitates seamless

integration to ensure that the average DC-link voltage is regulated at desired 250V, while ensuring the

same sharing capabilities. The transient response to grid interconnection remains well within acceptable

limits.
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8.2 DC-AC Inverters

We now describe simulation case studies for a network of multiple DC-AC inverters using the control de-

sign proposed in section 7.2. All simulations are done using Simulink/Simscape [88] components, which

incorporate dynamical models of batteries and generic DC sources. The customized converter/source li-

brary is available for download at [89].

Voltage regulation in presence of parametric uncertainties

The inner-outer controllers in Equation 7.2.6 and Equation 7.2.8 are designed with high phase-margins

(60◦) which imparts robustness to modeling and parametric uncertainties. The simulation parameters are

given below:

Vref = A sin(2πωnt), where, A =

 400V if t < 0.2s;

500V if t ≥ 0.2s.

AC-load unknown to controller,

(Rl , Ll) =

 (83mΩ, 137µH) if t < 0.4s;

(41.5mΩ, 68.5µH) if t ≥ 0.4s.

Nominal parameters : L = 100µH, R = 0.88mΩ.

Nominal PCC Capacitance : C = 2500µF.

The controllers are designed with the nominal parametric values, while the simulations are performed with

20% uncertainty in L and C values. The desired inner-loop bandwidth is chosen to be ωb = 11, 100 rad/s.

The resulting inner-outer controllers are:

Kc =
20384(s + 1983)(s + 16.3)(s + 2)
(s + 2.76e4)(s + 0.65)(s2 + (377)2)

Kv =
80421(s + 793.1)(s + 2)

(s + 1.105e4)(s2 + (377)2)
. (8.2.1)

Fig. 8.4 shows the result of voltage regulation for 20% uncertainty in L and C. The voltage at the PCC gets

regulated at its reference Vref within one cycle.
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(a)

(b)

Figure 8.4: (a) Voltage regulation through a network of three parallel inverters with heterogeneous power sources. (b)
Power sharing among multiple inverters.
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Power sharing among three inverters

We now substantiate the proposed non-droop based sharing for a three-inverter system. We consider three

heterogeneous power sources - 1) Lithium-ion battery (Nominal voltage: 1500V, Initial State-Of-Charge:

120%), 2) Generic Source-1 (DC Voltage: 1500V), 3) Generic Source-2 (DC Voltage: 1200V). The other simu-

lation parameters are chosen as before. The power sharing requirements are:

γ1 : γ2 : γ3 =

 0.33 : 0.33 : 0.33 if t < 0.3s;

0.70 : 0.20 : 0.10 if t ≥ 0.3s.

Fig. 8.4a presents the voltage regulation through a network of three parallel inverters with heterogeneous

DC sources under - 1) change in reference voltage, Vref, 2) change in power sharing requirements, and 3)

change in AC-load. Fig. 8.4b shows the scaled values of inverter currents
(
iL1 /γ1 : iL2 /γ2 : iL3 /γ3

)
. As can

be seen from the figure, the resultant scaled currents overlap with each other, thereby establishing that the

power gets divided in the ratio γ1 : γ2 : γ3. Note that the sharing ratios are being maintained even during

the transients and therefore provide for faster sharing than the droop-based methods, and even more so

with very small voltage tracking error.
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Chapter 9

Experimental Validation

To verify the effectiveness of the proposed approach, a test rig with three parallel operated DC sources and

a parallel PV simulator PVS60085MR is built (see Fig. 9.1) [90]. It is desired to regulate the DC-link voltage

to Vref = 60V.

In order to illustrate the robustness of the proposed approach, the control design assumes nominal (or

equivalent single converter) inductance, capacitance and steady-state complementary duty-cycle given by

L = 0.12mH, C = 500µF and D′ = Vg/Vref = 0.5, whereas the simulated system has non-identical induc-

tances and steady-state complementary duty-cycles. The mismatch (or uncertainty) in L and C parameters

is large (∼ 20%). The design parameters for the inner-controller Kc are: damping factors ζ1 = 0.7, ζ2 = 2.2,

and bandwidth ω̃ = 2π300rad/s. The outer controllers Kv and Kr are obtained by solving the stacked H∞

optimization problem (see Eq. (Equation 7.1.3))[81] using following weighting functions.

W1 = 0.4167
(s + 452.4)
(s + 1.885)

, W2 = 0.4167
(s + 1206)
(s + 5.027)

, W3 = 0.4, W4 = 37.037
(s + 314.2)
(s + 3.142e4)

. (9.0.1)

Here W1 is chosen to be large in the frequency range [0, 30] Hz so that the sensitivity transfer function

corresponding to error in voltage tracking is small in that frequency. Similarly, W2 is chosen to be large

in the frequency range [0, 80] Hz so that the transfer function from mismatch between the sourced output

current and the reference current to the voltage regulation error is small. The bandwidth of W2 is chosen

to be large than the bandwidth of W1, primarily to allow for faster dynamics in the inner current loop

since the change in capacitor voltage occurs at a relatively slower timescale than a sudden change in the

loading conditions. By satisfying this condition, the reference value of the inner loop which is the output

of the outer controller can be considered constant (see Fig. Figure 7.1). W3 is chosen to be constant and is

designed to make the control effort lie within the limits at all frequencies. Finally W4 is designed as high-

pass filter to ensure that the transfer function from iload to V is small at high frequencies, which mitigates

effects of high-frequency measurement noise. The corresponding outer controllers Kv and Kr are obtained

by solving a multi-objective H∞-optimization problem in Equation 7.1.3. The outer controller orders are
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Figure 9.1: Experimental setup with (1) custom-designed boost-converter boards, (2) controllers implemented on
TMS320F28335 Delfino MCUs, (3) variable load - two resistors, each of value 50Ω, (4) DC-sources with maximum
rated output voltage of 30V, (5) PV simulator subjected to simulated noisy ramp profile with a peak power of 43W and
controlled using MPPT algorithm , and (6) relay for load.
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Figure 9.2: Experimental results demonstrating effectiveness of the proposed control design under perfectly decen-
tralized implementation for several test scenarios: 1:1:1 sharing (PV off) - (a) and (b); 2:1:1 sharing (PV off) - (c) and (d);
1:1:1 sharing (PV on) - (e) and (f); Equal sharing in presence of abrupt failure in power generation - (g) and (h). Colors
blue, red, green and purple indicate power outputs of DC sources 1, 2, 3 and PV emulator, respectively.

then reduced using balanced truncation [82] for efficient implementation:

Kv = 0.69
(s + 4.42× 106)(s + 167)(s2 + 3930s + 1.75× 107)

(s + 4891)(s + 719.2)(s2 + 7.21× 104s + 2.51× 109)

Kr = −0.12
(s− 4.56× 105)(s + 1.12× 104)(s + 355.7)(s + 248.9)
(s + 4.64× 105)(s + 4.96)(s2 + 714.9s + 2.66× 105)

. (9.0.2)

The controllers for a nominal single-converter system are designed using the multi-objective robust op-

timal control framework described in chapter 7 and is extended to a three-converter system using the

methodology described. In order to analyze robustness to modeling uncertainties, a 50% uncertainty in

capacitance is considered. For brevity, case studies pertaining only to more challenging decentralized sce-

nario are reported; where total load current iload is unknown and there is no communication among the

controllers. Furthermore, PV is regarded as a current source and injects power directly at the DC-link, as

described in chapter 8 Since, the load current is unknown, constant iref = 2A is used.

Several scenarios are considered for the purpose of experimental validation and are shown in Fig. 9.2.

These are:

100



Case A: Power sharing when PV is off

Figures 9.2a and 9.2c show that power from the DC sources get distributed respectively in ratios 1 : 1 : 1 and

2 : 1 : 1, irrespective of the load at the DC-link; even when there are load changes as high as 100%. Figures

9.2b and 9.2d illustrate excellent DC-link voltage regulation at Vref = 60V in absence of communication

between controllers about load. The regulation error is within 1V even when load is changed by 100%.

Case B: Power sharing with PV on

We now evaluate the performance of our control design under additional uncertainty in power genera-

tion, that is, a PV source under simulated noisy ramp irradiance profile is connected at the DC-link. The

converter controllers to generic DC-sources are agnostic to PV output. The inclusion of PV also tests the

robustness of the system to load disturbances since PV current can be viewed as time varying uncertain

load at the DC- link for the rest of the power sources. Fig. 9.2e shows that DC sources adequately compen-

sate for the PV disturbance, that is, they exhibit power profile complementary to PV profile, even though the

loading conditions are not communicated to the controllers; also DC-link voltage is well regulated (see Fig.

9.2f).

Case C: Resilient to unforeseen failure in power generation in an agnostic setup

Robust performance of the networked system is now evaluated for the scenario when one of the generic

DC sources is abruptly turned OFF (mimicking a power source failure in a network). Furthermore, this

information is not communicated to the network.

If this information were communicated, our architecture in Sec. subsection 7.2.2, will make the follow-

ing changes - 1) The outer controllers Kvk = (1/m)Kv will be updated to Kvk = Kv/(m− 1), and 2) ∑ γk

will be readjusted to sum up to 1 for the active sources. However, even without this communication and

edits, Fig. 9.2g shows that as the DC-source #2 is abruptly turned OFF, the net power output from other

DC sources auto-adjusts to loss in power generation from DC-source #2, and ensures DC-link voltage reg-

ulation (Fig. 9.2h) and equal power sharing (Fig. 9.2g). Furthermore, at t = 4.3s, load R2 is shed, while

DC-source #2 is still inactive. Despite the generation and load uncertainties, DC-link voltage is maintained

within the viable limits and the load power is shared equally by the active sources.

Thus with the experimental evidence, the robustness and reliability of the design methodology is now

established.
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Chapter 10

Conclusions and Future Directions

In this thesis, we propose a scalable, decentralized, robust, plug-and-play control architecture for a network

of parallel DC-DC converters and DC-AC inverters. The networked system resulting from our architecture

is robust to communication failures, uncertainties in load demands and schedules, system parameters,

and noise in measurement signals. Moreover, the entire networked system is analyzable in terms of an

equivalent single converter/inverter system - which to the best of our knowledge is state-of-the-art as the

conventional control methods that do not exploit structural properties of the network often come with

almost no guarantees on closed-loop performance and stability characteristics.

Furthermore, it is shown that the same control architecture with exactly same controllers can be em-

ployed for both centralized as well as distributed implementations, that is, the controller architecture

demonstrates quantifiably better performance with communication while guaranteeing viability in pres-

ence of only local measurements in case of distributed implementation. The modular control framework

coupled with robust control design facilitates negligible performance degradation, even when a DC source

is agnostically engaged/disengaged from the network during nominal operation. Uncertain renewable

sources, such as PV are prioritized to provide maximum available power (unknown to the network), and

the remaining sources distributedly adjust their power outputs to meet the load requirements in prescribed

time-varying proportions.

Simulation case studies comprising of battery, photovoltaic (PV) and generic sources are presented and

demonstrate the enhanced performance of prescribed optimal controllers for voltage regulation and power

sharing. These simulations are then validated through experiments on custom-designed converter boards.

While some of the experimental results are not discussed in this thesis due to IP-related issues, the pro-

posed control methodology was also evaluated on a large scale test bed at the National Renewable Energy

Laboratory (NREL) and the results corroborate the effectiveness of the proposed design.

Microgrids have significant potentials in rural electrification and sustainable development, and the

bottom-up approach described in this thesis is a step in this direction. Many small microgrids, arising

from locally aggregated DERs, can be interfaced together to set up a high-capacity microgrid. This would
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require a modular, scalable control architecture that forms the basis for control design for individual low-

power microgrids. We exploit the inter and intra-modular structure within a network, such that a common

control methodology is applicable across all units within a large network. Such a significant reduction in

complexity of analyzing a large network enables integrating a large number of DERs.

As part of the future directions, we aim to implement the proposed control design methodology on a

high-power, large scale experimental test bed at the Dynapower [91],a Vermont based leading independent

provider of power conversion solutions. The design approach will be tested across many different scenarios

while using more than 100 actual physical devices such as photovoltaics, battery storage inverters, and

home appliances. If successful, the proposed design could potentially replace 4.5 GW of spinning reserves

(i.e. generation capacity on stand-by in case of outages and unforeseen intermittency), a value of $3.3 billion

per year. A more efficient and reliable grid would help protect U.S. businesses from costly power outages

and brownouts.

The current work does not incorporate the economic aspect of electricity market in its control approach.

Inclusion of market economy would entail some finite-time consensus based protocols over the commu-

nication layer, such that demand and generation requirements in a network-side setting are updated in a

distributed manner. There are immense avenues of exploration in microgrid research and in our opinion

the proposed work is a key enabler towards this vision.
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Appendix

Proofs of Theorem 1 & Theorem 2

Proof of Theorem 1: System Equivalence

Proof 1 The equivalence is a direct consequence of cleverly chosen architecture. Note that for the single converter

system in Figure 7.1 with G̃c(s) = G̃c,nom(s), the error signal e2 (input to controller Kr) is given by

e2 = [iref + ηe1 − D′G̃c,nomû]

⇒ e2 = iref + (η − D′G̃c,nom)e1 − D′G̃c,nomKre2. (.0.1)

For the multi-converter system in Figure 7.4, we have e(k)1 = Vref −V := e1. Let us denote the total error in current

mismatch ∑m
k=1 ek

2 by e2. Therefore, from Fig. Figure 7.4,

e(k)2 = γk[iref + ηe1]− D′G̃c,nom

(
1
m

Kve1 + Kre(k)2

)
m

∑
k=1

e(k)2︸ ︷︷ ︸
e2

=
m

∑
k=1

γk[iref + ηe1]− D′G̃c,nom

(
Kve1 − Kr

m

∑
k=1

e(k)2︸ ︷︷ ︸
e2

)
. (.0.2)

Using the fact that ∑m
k=1 γk = 1, the above equation reduces to (.0.1). Similarly, the expression for tracking error

in voltage Vref −V is identical for the single and multiple converters case. Moreover for the multi-converter system,

the output voltage at the DC-link is given by V = Gv(−iload + D′G̃c,nom(Kve1 + Kre2)). Since the expressions for

e1 and e2 are identical for the single and multiple converters case and are written in terms of the exogenous variables

Vref, iref, iload, the corresponding transfer functions from the exogenous variables to the DC-link voltage V are also

identical, and hence establishes the required equivalence. Similar conclusions can be drawn for other signals, such

as DC-link voltage V, and hence establishes the required equivalence.

Proof of Theorem 1: Power Sharing

Proof 2 From (.0.2), the error in current reference for the kth-converter is given by

e(k)2 =

(
γk

1 + D′G̃c,nomKr

)
iref +

(
γkη − D′

m G̃c,nomKv

1 + D′G̃c,nomKr

)
e1. (.0.3)
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From Fig. Figure 7.4, the output current ik = D′kiLk of the kth converter is given by

ik = D′G̃c,nom

[
1
m

Kve1 + Kre(k)2

]
. (.0.4)

Thus from (.0.3) and (.0.4), we obtain

ik = D′G̃c,nom

[(
γkKr

1+D′G̃c,nomKr

)
iref +

(
1
m Kv+ηγkKr

1+D′G̃c,nomKr

)
e1

]
.

Therefore, we have ∣∣∣∣ ik(j0)
γk
− il(j0)

γl

∣∣∣∣ ≤ (η|T̃1(j0)|+
∣∣∣∣ 1
γk
− 1

γl

∣∣∣∣ |T̃2(j0)|
)
|e1(j0)|

The expressions for the bounds on the tracking error for the two scenarios is directly obtained from Equation 7.1.5

and the system equivalence described earlier.

Proof of Theorem 2: System Equivalence

Proof 3 Let G̃c denote the inner-shaped plant in Equation 7.2.10. For the single inverter system described in Fig-

ure 7.5, the AC-side voltage at the PCC is given by

V =

(
GvG̃cKv

1 + GvG̃cKv

)
︸ ︷︷ ︸

:=T

(
Vref − n

)
− Gv

(
1

1 + GvG̃cKv

)
︸ ︷︷ ︸

:=S

iload. (.0.5)

Thus the tracking error
(

Vref −V
)

is given by

Vref −V = SVref + Tn− GvSiload (.0.6)

For the parallel inverter system in Figure 7.6, the AC-side voltage V is given by

V = Gv

(
−iload +

m

∑
k=1

γkG̃cKv

(
Vref −V − nk

))
. (.0.7)

Using the fact that ∑m
k=1 γk = 1 and ∑m

k=1 γknk = n, and from Eq. (.0.7) one obtains

V = T
(

Vref − n
)
− GvSiload, (.0.8)

which is identical to Eq. (.0.5) and thus yields identical expression for Vref −V. Similarly, the inductor current iL in

Figure 7.5 is given by

iL = G̃cKv

(
Vref −V − n

)
. (.0.9)
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The inductor current in the kth inverter in Figure 7.6 is given by iLk = γkG̃cKv

(
Vref −V − nk

)
. Summing it over

k yields
m

∑
k=1

iLk = G̃cKv

(
Vref −V − n

)
= iL, (.0.10)

which establishes the required equivalence.

Proof of Theorem 2: Power Sharing

Proof 4 The power sharing scheme follows directly from the construction. Note that the inductor current iLj =

γjG̃cKv

(
Vref −V − nj

)
. Therefore for inverters j and k, we have

iLj

γj
−

iLk

γk
= G̃cKv

(
nk − nj

)
. (.0.11)

Since the measurement-noises are bounded, i.e., |nk(jω)| ≤ ε(ω)∀k ∈ {1, . . . , m}, from (.0.11) we conclude that

∣∣∣∣∣ iLj (jω)

γj
−

iLk (jω)

γk

∣∣∣∣∣ ≤ |G̃c(jω)|.|Kv(jω)|ε(ω). (.0.12)
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