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Preface

The origin of this book can be traced back to author’s research in nuclear magnetic

resonance (NMR) spectroscopy. Modern NMR spectrometers use a superconducting

magnet to create a very large and stable magnetic field. The superconducting coil in

magnet carries current that never dissipates. One just has to cool the coil with liquid

Helium and it operates round the clock. What an amazing physical phenomenon,

called superconductivity. Understanding superconductivity has led the author to dig

into the beautiful subject of solid state physics. How are electrons in a solid. Are

they waves or particles ? Why are certain materials conductors while other insu-

lators. How do we understand modern electronic devices ranging from diodes and

transistors to MOSFET, LED’s and solar cells. The book tries to do justice to all

this. In writing the book, I have tried to answer all the questions, I had as an electri-

cal engineering undergraduate at IIT Kanpur, taking a device physics course. I have

chosen subjects that I feel are conceptual and challenge out ability to visualize how

things are. I cover traditional topics like band theory of solids and phonons to more

application oriented topics like electronic devices and exciting research areas like

superconductivity and quantum hall effect. The book is written as a research mono-

graph, but it is more an effort on author’s part to sow the world of solid state, to

paint a bigger picture, place where things are and assimilate various concepts. The

book is intended for a first course in solid state physics or condensed matter theory.

The focus is more on a bigger picture, which can be supplanted with exercises for

which there are many excellent text books around. It is author’s hope that book will

come handy for researchers in the broad area of solid state physics.

It is an opportunity to acknowledge numerous people who I believe directly and

indirectly helped with this effort. I would like to thank Professor Steffen Glaser and

Niels Nielsen for numerous years of excellent collaboration in NMR spectroscopy

that ultimately led me to develop this text. I would like to thank Professor Roger

Brockett, who helped me in nurturing my taste in physics. I am grateful to Profes-

sor Sumiran Pujari and Soumya Bera at IIT Bombay for their informative lectures

in condensed matter that helped refine my outlook towards the subject. I will like

to thank the wonderful colleagues and academic environment of SYSCON at IIT
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Bombay that provided ample opportunity for self development. Finally I like to ac-

knowledge the support of my family which made this effort possible.

IIT Bombay, Navin Khaneja

December 2018
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Part I

Electrons in Solids



How are electrons in a solid say a metal. High school text say they are mo-

bile electrons, free to move under an applied electric field. What does a solid state

physics text say ? Electrons are waves. Take a block of metal say a feet long. Then

one is made to believe it is filled with electron waves. The waves are characterized

by its dispersion relation, that relates its time frequency ω to spatial frequency k.

Waves have different spatial frequency, and each k is occupied by two electrons

with opposite spin. How do you reconcile the two pictures. A natural approach is to

model electrons as wavepackets. Wavepacket is a superposition of band of spatial

frequencies which localizes it to a volume and it moves like a classical particle. If

the band is centered at the spatial frequency k0 then dω
dk
|k0

is its velocity. Thus we get

wavepackets of different velocities in a local volume, all of them replicated at differ-

ent spatial locations/volumes filling the whole volume of solid. This is our picture

of mobile electrons. The different velocity wavepackets in a local volume constantly

move to adjacent volumes. When we apply an electric field say along x direction,

the wavepackets accelerate in that direction. This is electric current. Electrons are

moving at very high velocity upto 105 m/s (fermi velocity) but this motion averaged

over all the electrons in volume gives no net momentum. The current arises due to

additional velocity imparted due to applied electric field which adds us over a vol-

ume. This is much slower at say drift velocity of 10−3 m/s for an ampere current

through a wire of cross section 1 mm2. What limits this drift velocity. On application

of electric field, electrons accelerate and gain momentum but collide with a phonon

packet, a localized potential arising due to deformation of the lattice. This collision

rebound the electrons and breaks its velocity and limits the drift velocity. This is

called resistance. If τ is the average time between collisions, so called relaxation

time, then the velocity acquired between collisions is eEτ
m

, which is the mean drift

velocity.

It is not always possible to accelerate. What does acceleration mean when elec-

trons are wavepackets. One moves to a higher k-state (meaning higher velocty) .

When all k-states are occupied, as in an insulator, we cannot accelerate, we cannot

have current. In a conductor, k-sates are partially filled and it is possible to accel-

erate. Collision with the phonon exchanges energy between electrons and phonons.

This gives a distribution on the possible velocities of wavepackets in a local volume.

This is called fermi-dirac distribution.

We have been talking about electron wavepackets and how they collide with

phonons to give resistivity in metals. There is another very interesting phenomenon

that takes place in solid state physics when certain metals are cooled below criti-

cal temperature of order of few kelvin. The resistance of these metals completely

disappears and they become superconducting. The electrons in a local volume bind

with phonon mediated interaction. Collisions with a phonon will rebound a electron

and break this bond. The phonon doesnot have enough energy at low temperatures

to break this bond hence electrons are not scattered during phonon collisions at very

low temperatures of few kelvin, this is superconductivity.



Chapter 1

Localized Electron Waves

1.1 Introduction

What is solid state physics [1]-[8]? It is not easy to give a simple and complete

answer but lets try. Take a solid material like a metal, which conducts electricity .

The metal has atoms arranged in a periodic fashion. We are taught in high school

physics that there are mobile electrons in the metal. How do they move when, say

I apply an electric field. Closer inspection will tell answering this is a daunting

task. After all there is forest of atoms so called lattice, which will attract (pull) the

electron. We can write the electric field the electron sees due to all of lattice and the

electric field that we apply and try to solve for the Newton equations describing the

motion of electron. Not only is this a difficult task, as one might suspect, the electron

will just end up banging against the lattice. But what if I say, if everything is done

correctly, then all you need to do is to just change the mass of electron and simply

ignore all of the lattice. The electron just moves under the electric field as if it was all

free with a modified mass. That is the simplicity reached by the subject of solid state

physics. Therefore the picture developed in high school of mobile carriers, free to

move under electric field is made all true in solid state physics by changing electron

mass.

But now your electron is not like a marble. Rather it is a localized wave. A lump

of energy, with spatially and time varying phase. You may say it is like a cloud mov-

ing through the lattice. The clouds can occupy the same volume with other clouds

(something not true of marbles), as long as their spatial frequencies are distinct.

Different spatial frequencies mean different velocities, different mass and different

energies.

These electron clouds come from atoms that form the solid. When these atoms

were isolated, the electrons live in them as orbitals. When they are all brought to-

gether to form a solid, the electrons that had home in the atoms end up as electron

waves. The electrons from different atoms form waves that occupy the same vol-

ume, except now they have different spatial wave frequencies and energies. Infact

3



4 1 Localized Electron Waves

these waves form a band of energy. Waves from different orbitals are different and

may form distinct energy bands with typically gaps in their energy spectrum.

Now we can answer what solid state physics is. It is study of these electron waves,

clouds, whatever we may want to call them. Solid sate physics is about finding the

energies of these waves and its dependence on their spatial frequencies so called

dispersion relations. If ω is the frequency of the wave and k its spatial frequency,

then from quantum mechanics, the energy and momenum is E = h̄ω and p = h̄k.

The relation E = p2

2m
relates ω to k written as ω(k) = h̄k2

2m
. But this is a free electron.

For electron wave in a lattice, we get a different dispersion relation ω(k), which is

what solid state physics finds. Fig. 1.1a depicts dispersion curve for a free electron.

Fig. 1.1b depicts a typical dispersion curve for a solid.

a

b

k

(k)ω

 

Fig. 1.1 Fig. a depicts dispersion curve for a free electron. Fig. b depicts a typical dispersion curve

for a solid.

The electron waves are delocalized. If we have a conductor of length L = 1 m, we

have these wave over a length of 1 m. This is a bit counterintuitive. Our high school

picture is of mobile point like particles, which we understood as a moving clound,

a localized wave. How do we go from wave to cloud. This means the wave not

only has a spatial frequency k but also a bandwidth of spatial frequencies ∆k. When

we sum waves with frequencies in this bandwidth, we get a wavepacket which is

localized. Fig. 1.2 A depicts a k-point dispersion curve corresponds to a wave. Fig.

1.2 B depicts when there is width to k-point, it corresponds to a wavepacket of finite

width and there are replicsa of such packets spatially dispalced. There are as many

replicas as number of k-points in the bandwidth. Is there a natural bandwidth ∆k

and resulting localization volume ? More is said about this in subsequent section,
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but now we are closer to the picture of a electron particle in term of a electron cloud,

we also call localized electron wave, wavepacket or quasiparticle. Fig. 1.3 depicts

such an electron quasiparticle, which is infact a localized wave and moves with a

modified mass.

k

(k)ω

A B

k

(k)ω

 

 

 

 

 

Fig. 1.2 Fig. A depicts a k-point dispersion curve corresponds to a wave. Fig. B depicts when

there is width to k-point, it corresponds to a wavepacket of finite width and there are replica of

such packets spatially displaced.

If wavepacket is centered at spatial frequency k0, its velocity vg = dω
dk
|k0

. If we

apply an electric field E as we show in subsequent section, we evolve spatial fre-

quency k0 → k0−eEt/h̄ and hence
dvg

dt
= (h̄−1 d2ω

dk2
|k0

)
︸ ︷︷ ︸

1/m∗

eE, where m∗ is the modified

mass. Fig. 1.4A depicts dispersion curve in a solid with electron packets with elec-

tron wavepackets (made of bunch of k states) shown in thick. We see wavepackets

with forward and backward velocity. Fig. 1.4B shows what happens when we ap-

ply an electrical field (pointing left ), the k values changes and we get wavepacket

with higher k. So that is all. In solids, electrons are like wavepackets with modified

mass moving like free mobile particles. If that is al then why are some solids good
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Fig. 1.3 Fig. depicts a electron quasiparticle. A particle, which is infact a localized wave, moving

with a modified mass.

conductors while others insulators and we also have materials called semiconduc-

tors, which conduct at high temperatures and not at low temperatures. How do we

understand conductivity in terms of electron waves.

k

(k)ω

k

(k)ω

A B

 

Fig. 1.4 Fig. A depicts dispersion curve in a solid with electron packets with electron wavepack-

ets (made of bunch of k states) shown in thick. We see wavepackets with forward and backward

velocity. Fig. B shows what happens when we apply an electrical field (pointing left ), the k values

changes and we get wavepacket with higher k.
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If there are n atoms with one electron per atom in a given orbital then after solid

is formed we have n electron waves with different spatial frequencies. If we think of

solid in one dimension with atoms a units apart, then these spatial frequencies vary

between [−π
a
, π

a
] (we will see this later), say equally spaced. We can put one electron

per frequency and fill all frequencies or we can have 2 electrons per frequency and

only occupy n
2

frequencies say the ones with lower energy. This is called half filled

band. This is shown in fig. 1.5A, where a typical dispersion curve ω(k) is shown

and filled k states are shown in dark. The k states have both left and right velocities

and net momentum is zero. When we we apply an electrical field (say pointing left

), the spatial frequencies evolve and we get a configuration as in fig. 1.5A with more

electrons with right velocity and hence we have net current from left to right. This

is a conductor.

Now if there are n atoms with two electron per atom in a given orbital, then after

solid is formed we have n electron waves all filled and we have fully filled band as

shown in fig. 1.5C. When we apply an electric field, nothing happens as k evolves

from left to right cylically resulting in no change of net momentum and hence no

net current. We have what we call an insulator. A material with filled bands. But

it is possible that there may a another band (arising from a different orbital) that is

empty. This band may have energies not very high compared to filled band as shown

in fig. 1.5D. Then due to finite temperatures there is finite probability that instead of

occupying all low energy band, we occupy some of these high energy states. This

higher energy band is not filled and we can conduct. This is called a semiconductor,

where at high temperatures occupancy in unfilled higher energy band increases and

we can conduct.

Why do electron orbitals become electron waves. Remember electron orbitals

are also waves, but highly localized. They come about when we solve Schroëdinger

equation of electron in central potential of ion. Now in a solid, our potential is differ-

ent. It is potential of all the nuclie in a solid. We have to solve for electron orbitals in

this new potential. Electron waves are precisely these orbitals. To fix ideas, think of

linear array of atoms in 1D with a as atomic separation. The potential is a periodic

potential which is replicated at all atomic sites. We first solve for Schroëdinger equa-

tion in this rapidly varying periodic potential. We get electron waves as stationary

states with a dispersion relation ω(k).
How to solve for Schroëdinger equation of electron in a periodic potential. There

are two ways to proceed. The first one is called nearly free electron approximation.

The periodic potetial with periods a may be expanded by Fourier series as sum of ex-

ponentials exp(i 2πmx
a

). We may start with free electron waves exp(ikx), which in the

absence of any potential has kinetic energy h̄2k2

2m
. Such free waves, whose wavevec-

tors differ by 2π
a

are connected (mixed) by the potential, then we get a linear combi-

nations exp(ikx){1+∑
m

bm exp(i
2πmx

a
)}

︸ ︷︷ ︸

pn(x)

as eigenvectors to this problem with en-

ergy εn(k) = h̄ωn(k), with energy increasing as n. This is called a Bloch wave, with

spatial frequency k and pn(x) periodic with period a. Clearly by construction we can
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A

k

(k)ω

k

(k)ω

B

k

(k)ω

C

k

(k)ω

D

 

Fig. 1.5 Fig. A depicts half filled dispersion curve in a solid. Fig. B shows what happens when we

apply an electrical field (pointing left ), the half filled band develops a net right momentum
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curtail k ∈ [−π
a
, π

a
]. We can plot different energy bands ω1(k),ω2(k), . . . as in fig.

1.6.

k

ω

ω

ω

ω

ω

π−

(k)4

(k)3

(k)2

(k)1

 

/a/aπ  

Fig. 1.6 Fig. depicts energy bands

In above approach for solving the Schroëdinger equation in periodic potential,

we started with free electron waves. There is another apprach called tight binding

approximation, where we start with orbitals φi with energy ε0 on atomic sites. When

atoms are brought in vicinity, these orbitals overlap and feel the potential of neigh-

boring ion. Potential Vi+1 at site i+1 scatters φi to φi+1, and we define a scattering

(transfer) term −t = 〈φi+1|Vi+1|φi〉. Then starting from φi we can form new eigene-

functions of the Hamiltonian

H =














ε0 −t 0 . . . . . . −t

−t ε0 −t 0
. . .

...

0 −t ε0 −t 0
...

...
. . .

. . .
. . .

. . .
...

0 . . . . . . −t ε0 −t

−t 0 . . . . . . −t ε0














, (1.1)

where for mathematical convenience we assume linear array is a wound up as a cir-

cle. The eigenvalues are ε0−2t coska with eigenfunction (1,exp(ika), . . . ,exp(imka), . . .),
with k ∈ [−π

a
, π

a
], equally spaced at ∆k = 2π

na
. This is wave solution with spatial fre-

quency k. We start with orbitals, and as we bring them together, they get mixed

to form waves with energy ε0 spreading into a band ε0 − 2t coska as shown in fig.

1.7. The dispersion relation is as shown in fig. 4.14. Observe in nearly free electron

method, we get many bands as shown in fig. 1.6. In tight binding approximation
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also we will get many bands when we start with different energy orbitals, with each

getting spread into a band as shown in fig. 1.9. The inner orbitals donot overlap

much, and hence their t is small, and spread of band which is 4t is small, as opposed

to outer orbitals, with large t, giving bands with larger bandwidths. Outer s orbitals

give bands with bandwidths of order 5− 10 eV while d orbitals are localized and

give bands that are narrow of order 1−2 eV.

ε

a

0ε

Fig. 1.7 Fig. shows how atomic orbital energy ε0 gets branced into many energies as we decrease

the separation a between orbitals.

ε

ε

0

ππ− / k
/ aa

 

  

Fig. 1.8 Fig. shows a plot of dispersion relation in Eq. (4.38).
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Fig. 1.9 Fig. shows how many orbitals with energies ε1, . . . ,εN get broadened as we decrease the

separation a between orbitals.

A

B

Fig. 1.10 Fig. A shows localized packets moving from one local volume to another at Fermi ve-

locity. Fig. B. depicts Fermi gas of electrons in a metal moving in a conductor.

We conclude this section by saying our electrons are localized electron waves or

wavepackets moving around in a conductor. We say we have a Fermi gas of electrons

as shown in Fig. 1.10.
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L
Fig. 1.11 Fig. depicts a metallic bar.

1.1.1 Particles and Waves

Shown in Fig. 1.11 is a bar of metal. How are electrons in this metal bar. At the

outset, we may distinguish between electrons that are bound to the atoms (those in

the inner electronic shells) and the mobile electrons (that come from outermost elec-

tronic shells). As taught in high school physics, these mobile electrons are shared

among all the atoms and are free to move around. Then at most elementary level

we can think of these electrons as hard spheres moving in the conductor very much

like gas molecules in a container as in Fig. 1.12 A. But this description neglects the

wave nature of these electrons.

A

B

C

Fig. 1.12 Fig. depicts a metallic bar.



1.1 Introduction 13

Quantum mechanics tells us that electron are waves with a wavefunction. Then

may be the correct picture of mobile electrons is Fig. 1.12 B. The electron wave

ψ = exp(ikx) fills the whole conductor and for it to be localized to conductor length

L = na it must have a bandwidth (it is a wavepacket) of ∆k = 2π
L

. Then we can

have wavepackets centered at k = 0,±2∆k, . . . ,±n∆k. These electron waves (a typ-

ical one is shown in Fig. 1.12 B.) all fill the whole conductor and have nonover-

lapping spatial frequencies (different k values) and hence are orthogonal. This is

the usual picture developed in a course in solid state physics. However, there is

a third possibility, which is intermediate between the above two as shown in Fig.

1.12 C. Electron waves are now localized in the conductor to length L0. They

are localized wavepackets. These wavepackets must have much larger bandwidth

∆k0 = 2π
L0

. Wavepackets centered at 0,±2∆k0, . . . ,±n∆k0 occupy the same region

of the conductor and these same spatial frequncies again repeat themselves in differ-

ent nonoverlapping regions. This is the picture we develop in this book, the picture

of localized waves or wavepackets.

Let say our metallic bar is L = 30 cm long with interatomic spacing of a = 3

A◦. Then there are 109 atoms in the metal bar, say each giving a mobile electron.

Then in a classical approach, we can have 109 electron waves spaced very finely (see

Fig. 1.13 A) at ∆k = 10−9 2π
a

, each holding an electron (actually each can hold two

electrons so we really only need half as many) . These waves fill the whole conductor

length L. Now instead, if we consider electron waves confined to L0 = 300 A◦. Then

there are only 100 odd atoms in this length and we only have 100 odd localized

waves in this region, with a coarse spacing (see Fig. 1.13 B) ∆k0 =
2π×10−2

a
. Replica

of these waves occupy non-overlapping region of length L0. Since there are 107

such nonoverlapping regions, if we count all the waves, they again turn out to be

109, same number just more localized, with coarser spread in their spatial frequency.

They are particle like because of localization yet are a wave with a spatial frequency.

k k πππ π/a/a− − /a /a

A B
Fig. 1.13 Figure shows dispersion relation for electron wave (A) and localized electron waves (B).

The former are finely spaced in k domain while later one are much coarsely spaced.

We talked about electron waves with their energies organised into bands. Lets

take metal sodium with electronic configuration 1s22s22p63s1 . Orbitals 1s, 2s and

2p form fully filled bands as the respective orbitals are filled. The orbital 3s forms
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a half filled band. Half filled band means lower half (in energy) of k states are

occupied with two electrons each. But that is literary true only at zero temperature.

At room temperature, there is nonzero probability of occupancy of higher k-states.

This probability so called Fermi-Dirac distribution is given by

P(ε) =
1

1+ exp( (ε−µ)
kT

)
,

where ε is the energy of k-state and µ the chemical potential and T temperature.

How does this probability come about. Electrons exhange energy with heat bath

which in this case is the lattice vibrations. At finite temperature atoms are not sta-

tionary, but oscillate giving rise to lattice waves phonons. We talked about elec-

tron waves and resulting wavepackets. Similary we have phonons and phonon pack-

ets. These packets of lattice deformation travel like a classical particles at speed of

sound. Electron packets may collide with phonon particles, like collision between

two classical particles, which leads to exchange of energy between them. The elec-

tron may loose or gain energy at the expense of phonon. This way electron like gas

molecules talks to bath and exchanges energy. Now there are constraints on electron

velcity. Not all electrons can have same velocity (or k values) as they are fermions.

This gives rise to a distribution on electron velocity (energy) called Fermi-Dirac

distribution.

When electron wavepackets collide with phonon packets, they exchange momen-

tum and energy. After collision, the electron will emerge out in random direction

depending on the direction of advent of the phonon packet. Average momentum af-

ter collision is 0. If τ is the inter-collision time, then with probability (1− dt
τ ) there

is no collision in time dt. Then initial momentum p(t) in time dt becomes

p(t +dt) = (p(t)− eEdt)(1− dt

τ
), (1.2)

which gives

d p

dt
=− p(t)

τ
− eE. (1.3)

Electric field accelerate electrons and generates momentum while collisions ruin it.

Thus we get a steady state when p = mv = eEτ . The current density j = nev where

n is the electron density, which gives j =
ne2τ

m
︸ ︷︷ ︸

σ

E, where σ is the conductivity or

ρ = σ−1 the resistivity. This is the Drude’s model of conductivity.

As discussed before in semiconductors, due to Fermi-Dirac distribution, we get

electrons into higher lying bands (conduction band ) which can conduct while lower

filled ones (valence band) donot. Lets take the most important semiconductor sil-

icon, with electronic configuration 1s2,2s2,2p6,3s2,3p2. The inner orbitals form

closed band. The outer s and p orbitals combine to form four sp3 orbitals. The sp3

orbitals between neighbouring silicon bond to form a bonding orbital and anitbond-
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Fig. 1.14 Fig. shows molecular orbitals are formed from atomic orbitals as in fig. a which due

to overlap between them get further broadened as in fig. b. Fig. c shows conduction and valence

bands. Ec is energy at bottom of the conduction band and Ev at the top of valence.

ing orbital with a energy gap of 1−2 eV. These orbitals have further overlap along

them which spread them into bands. This is as shown in fig. 1.14. The lower band

arising from bonding orbital is the valence band and the higher one we call conduc-

tion band. At low temepratures valence band is full and conduction band empty but

as we raise the temperature we get electrons into conduction band.

Temperature is not the only way to get electrons into conduction band. Another

way is chemically by act of doping where we substitute some silicon atoms with

phosphorus. Phosphorus with electronic configuration 1s2,2s2,2p6,3s2,3p3 has ex-

tra electron in the outer shell compared to silicon. After band formation, this extra

electron goes to conduction band. This is called n-doped silicon and acts as con-

ductor with current in conduction band. If we subsitute some silicon atoms with

aluminum. Aluminium with electronic configuration 1s2,2s2,2p6,3s2,3p1 has one

less electron in the outer shell compared to silicon. Hence valence band is not com-

pletely full and it can conduct. One way to see this is that valence band has missing

wavepackets. Then when we apply electric field, the filled band doesn’t generate

any net momentum or current then the current is in opposite direction to that due to

only missing wavepacket. This is called p-doped silicon, which conducts in valence

band. Both n and p doped silicon conduct at room temperature.

Interesting electronic devices can be made out of n and p doped silicon. For ex-

ample if we take a n-doped silicon bar and form a juncntion with p-doped silicon
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Fig. 1.15 Figure shows various devices made out of doped silicon

bar as shown in fig. 1.15A, we get a device that only conducts in one direction. If

we apply a positive voltage to p-region, it pulls valence electrons, creating a positive

void, which is filled by movement of conduction electrons from n region to p region.

The valence electrons in n region donot come in to fill the void, because they cannot

be accelerated, they are a filled band. However it is different when we apply a pos-

itive voltage to n region. We won’t me able to pull valence electrons in n region as

they are not to be accelerated, nor can we move the conduction electrons, because

who will take their place. There are no conduction electrons in the p-region. The

valence of p can come in but where will they sit, all the valence band in the n-region

is full. This means no current, if we pull from p side. Conduction happens only one

way. The device is called a diode. It is used for rectifiying voltages, as only conducts

when p is positive compared to n and not the otherway.

Another useful device one can make out of doped silicon is a so called a bipolar

transistor. Consider p-doped silicon bar (called base) sandwitched between two n-

doped silicons bars (left one called emitter and right one collector) as shown in

fig. 1.15B. When we apply a positive voltage on the base compared to emitter, we

pull valence electrons from the base, that are replaced by conduction electrons from

emitter. As these conduction electrons from emitter enter the base, we pull them to

collector side by applying a more positive voltage on collector compared to base.

Most of them (say fraction 1−α) are pulled to collector only a fraction α go down

from conduction to valence band in the base region and form the base current. This

is called recombination. The ratio β = 1−α
α of the collector current to base current

is called the current gain of the transistor. β is high of order of 100−1000 or more
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. Thus we have a device, where we modulate the base current by changing the base

voltage and hence modulate the collector current with base voltage. We can then

build amplifiers etc.

Third useful device one can make out of doped silicon is a so called a MOSFET

transistor as shown in fig. 1.15C. We have n doped regions called source and drain

with a p channel between them. The channel has no conduction electrons and hence

doesnot conduct, if say I pull on drain with positive voltage. But if we apply a

positive voltage on the channel with a metal electrode, which pull electrons to the

top as shown in fig. 1.15C. These extra electrons go in the conduction band and form

so called a thin inversion layer of conduction electrons between drain and source.

This then conducts. By using a control voltage on the gate, we can make the the

transistor to switch on and off. MOSFET forms the heart of most modern digital

electronics.

k

(k)ε (k)ε

k

conduction band 

valence band 

A A

 

 

 

Fig. 1.16 Figure A shows indirect bandgap material. Figure B shows direct bandgap material

We talked about silicon which is a indirect bandgap material as shown in fig.

1.16A. The bottom of the conduction band is at different k value than top of valence

band. However, if we take a semiconductor like Gallium Arsenide (GaAS), we have

a direct band gap material as shown in fig. 1.16B, where the bottom of the conduc-

tion band is at same k value than top of valence band. When an electron falls from

conduction to valence band, the difference of energy ∆E which is in 1−2 eV may

be given out as light with frequency h̄ω = ∆E. This ω is in optical range 1015 Hz.

The momentum of light (its wavenumber) is ω/c where c is velocity of light is much

smaller than the electron momentum π
a

, therefore if momentum is to be conserved,
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we cannot change very much the momentum of electron when it falls. Therefore,

the mechanism of energy release using light is only possible in a direct band-gap

material. Now we can make our p-n junctios using direct band gap material like

GaAs and pull electrons from n-side conduction band to p-side and make them fall

into valence band releasing light. This way we can make light emitting diodes. The

frequency of light depends on the bandgap, for example in GaAs, we get red light, in

GaP we get green light and in GAN we get blue ight as band gap increases from red

to blue. If the emitted light is collected in a cavity and made to travel back and forth,

it induces (stimulates) more emissions, which have same wavevector and phase giv-

ing highly directional light with same phase. This is a a semiconductor laser. LED

and lasers are heart of modern optical communication.

We have been talking about electron wavepackets and how they collide with

phonons to give resistivity in metals. There is another very interesting phenomenon

that takes place in solid state physics when certain metals are cooled below critical

temperature of order of few kelvin. The resistance of these metals completely dis-

appears and they become superconducting. How does this happen. One may guess,

may be at low temperatures there are no phonons. That is not true, as we have

low frequency phonons present. Why do we then loose all resistivity. Electrons in

a local potential can bind together to form a molecule by phonon mediated inter-

action. The electron can pull on the lattice which pulls on another electron. This

phonon mediated bond is not very strong only few meV, but at low temperatures

this is good enough, we cannot break it with collisions with phonons which only

carry kBT amont of energy which is small at low temperatures. Then electrons don’t

travel alone, they travel in a bunch, as a big molecule and you cannot scatter them

with phonon collisions.

We like to mention another fundamental solid state phenomenon , the phe-

nomenon of magnetism. Magnetism has many manifestations, like ferromagnetism,

paramagnetism, dimagnetism, antiferromagnetism etc. Ferromagnetism is the basic

mechanism by which certain materials (such as iron) form permanent magnets, or

are attracted to magnets. An everyday example of ferromagnetism is a refrigerator

magnet used to hold notes on a refrigerator door. Permanent magnets are either fer-

romagnetic. Only a few substances are ferromagnetic. The common ones are iron,

nickel, cobalt and most of their alloys, and some compounds of rare earth metals.

Ferromagnetism is very important in industry and modern technology, and is the ba-

sis for many electrical and electromechanical devices such as electromagnets, elec-

tric motors, generators, transformers, and magnetic storage such as tape recorders,

and hard disks, and nondestructive testing of ferrous materials.

How to understand ferromagnetism. We have half filled conduction band in met-

als, with two electrons per k-state spin up and down. In ferromagnetic materials,

the band we care is made out of d-orbitals, the d-band. These bands are narrow in

bandwidth, meaning electrons have small kinetic energy and hence they give lo-

calized electrons. By localizing electrons to atomic sites, we minimize repulsion

between them. In ferromagnetism, there are more of localized up spins then down.

This is because when the spins on neighboring sites are both in up state, their spa-

tial wavefunction should be in anti-symmetric state, so that overall wavefunction is
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anti-symmetric. Which means spatially the two electrons cannot be at the same place

which reduces electrostatic repulsion between electrons. Therefore to minimize re-

pulsion we get neighboring spins aligned. This is called ferromagnetic exchange.

Excess of aligned spins gives bulk magnetization called Ferromagnetism. Solid ma-

terials may loose or gain energy in external magnetic fields and hence are attracted

or repelled my magnetic fields and are called paramagnetic and diamagnetic respec-

tively. We say more on this in the text.

We have been talking about electron wavepackets and how they are accelerated

by electric field. We now take the opportunity to look at electrons in magnetic field.

Consider an electron moving in the 2D plane with magnetic field B applied in the z

direction. Then the electron feels the Lorentz force evB perpendicular to its motion

and its direction changes. For radius r such that

mv2

r
= evB (1.4)

the electron executes a circular motion call cyclotron orbit with radius r and velocity

v = ωr, such that its angular velocity satisfies

ω =
eB

m
. (1.5)

For a field of B = 10 T, we get ω ∼ 1012 rad/s.

Now consider a conductor in magnetic field along z direction with current moving

along x axis as shown in 1.17. The electron moving along x axis, feels a lorentz force

along y axis, which leads to development of a hall field EH (hall voltage VH ) along

y direction which balances this force, which gives

VH

d
= EH = evB (1.6)

The velocity v is related to current density jx as jx = nev where n is the carrier

density and jx = I/A, where A is the cross section area of the conductor. Substituting

we get

RH =
VH

I
=

B

Ne
(1.7)

where N is total carriers in the conductor. This is called classical Hall effect. When

we put a current carrying conductor in the a mganetic field, it develops a Hall volt-

age. The voltage develops because electron moving along x direction is deflected

along y direction. This will make charge accumulate along the top and bottom edge

of the conductor as shown in 1.17b which gives the hall fied EH and voltage VH .

On closer inspection, we may find that electrons in the bulk of the 2D plane will

be deflected along y direction and they will just execute cyclotron motion. However

at edges, we donot have room to execute cyclotron motion. These electrons then

press against the edge and develop an Hall field due to electron repulsion. Therefore

one may conclude that Hall field is seen only be edge electrons and they give rise
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Fig. 1.17 Figure a shows a conductor in magnetic field along z direction with current moving along

x axis. Fig, b shows the top view of the conductor with Hall field in the y direction.

to Hall voltage, the bulk doesnot. This phenomenon is revealed in a classical set of

experiment called the quantum hall effect we describe in the text.

Finally we mention some experimental techniques that have been developed to

study solids. Atoms in solids are spaced few angstrom apart. To study this crystal

structure, one can use X-rays which have wavelength in this range. X-rays when

reflected from adjacent crystal planes have substantial phase difference between

them. Making X-rays reflect of crystal planes and letting them interfere can shed

information on the interplane separation. Therefore X-ray crystallography is a major

tool to study crystal structures. Instead of using X-rays, we may also use neutrons,

which have their de-Broglie wavelength same a X-rays and one can study crystal

structures with neutron diffraction. By studing collision of neutrons with phonons

we can learn about phonon dispersion relation and this goes by the name of neutron

spectrosocpy.

We have talked a bit about electron wavepackets. Let put down some mathemat-

ics describing electron wavepackets that we will use in rest of the text.
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1.2 Wavepackets

Before we discuss dynamics of localized electron waves, lets get started by talking a

bit about electron waves in general. The free electron wavefunction is ψ = exp(ikx).

The momentum is h̄
i

∂
∂x

. This gives the kinetic energy ε = p2

2m
= h̄2k2

2m
, which for

ε = h̄ω gives,

ω(k) =
h̄k2

2m
. (1.8)

The dispersion is a parabola as shown below in figure 4.1 A.

k
0 k

B

ω(k)

A

φ

x

(x)

Fig. 1.18 Figure A shows the dispersion ω(k) vs k for a free electron. Figure B shows a wavepacket

centered at k0.

Now, consider a wavepacket centered at k0, shown the figure 4.1 A, B. The packet

takes the form

φ(x) =
1√
N

∑
j

exp(ik jx), φ(x, t) =
1√
N

∑
j

exp(−iω(k j)t)exp(ik jx), (1.9)

where ω(k j) = ω(k0)+ω ′(k0)∆k j where ∆k j = k j − k0. Denote vg = ω ′(k0) =
h̄k0
m

, as the group velocity. Then

φ(x, t) =
1√
N

exp(i(k0x−ω(k0)t))∑
j

exp(i∆k j(x− vgt)). (1.10)
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The function f (x) = 1√
N

∑ j exp(i∆k jx) =
2√
N

∑ j cos(∆k jx), is centered at origin

with width ∝ (∆k)−1 as shown in figure 4.1 B. Then

|φ(x, t)|= | f (x− vgt)|, (1.11)

the free electron wavepacket moves with a group velocity vg.

Now lets apply an electrical field E in the x direction at t = 0. Then the

Schröedinger equation is

ih̄
∂ψ

∂ t
=

1

2m
(−ih̄

∂

∂x
)2 + eEx ψ. (1.12)

The equation is satisfied by time varying wavevectors exp(ik(t)x), where k(t) = k−
eEt
h̄

, with energy (dispersion) ω(k(t)) = h̄(k(t))2

2m
=

h̄(k− eEt
h̄
)2

2m
, so that the wavefunction

becomes

exp(−i

∫ t

0
ω(k(τ)) dτ)exp(ik(t)x).

The initial wavepacket φ(x) evolves to φ(x, t), where,

φ(x) =
1√
N

∑
j

exp(ik jx), φ(x, t) =
1√
N

∑
j

exp(−i

∫ t

0
ω(k j(τ))dτ)exp(ik j(t)x).

(1.13)

The group velocity

vg(t) =
h̄k(t)

m
=

h̄(k− eEt
h̄
)

m
;

dvg(t)

dt
=−eE

m
. (1.14)

The electron wavepacket simply accelerates the way we know from classical

mechanics. Being more pedagogical, we have

φ(x, t) =
1√
N

∑
j

exp(−i

∫ t

0
ω(k j(t)) )exp(ik j(t)x) (1.15)

=
1√
N

exp(−i

∫ t

0
ω(k0(t)) )exp(ik0(t)x)∑

j

exp(i∆k j(x−
∫ t

0
vg(σ)))dσ .

The wavepacket evolves with instantaneous velocity vg(t).
The above method can be generalized to arbitrary potential. Consider the Schröedinger

equation

ih̄
∂ψ

∂ t
= (− h̄2

2m

∂

∂x2
− eV (x))ψ. (1.16)

We approximate the potential V by piecewise linear potential such that V (x) =
V (xi)+V ′(xi)δx, where δx = x−xi, as shown in figure 4.2. We call these regions of

linearized potential, cells. We can rewrite the potential in a cell as V (x) = U(xi)+
V ′(xi)x
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Fig. 1.19 Figure shows linear approximation of potential V (x). The wavepacket φ(x) is confined

to a cell.

We assume that the wavepacket has large k0 such that ∆k ∼
√

k0 is large and

therefore for the wavepacket, ∆x ∼ (∆k)−1 is small so that it fits well within one

cell. Then in this cell, the Schröedinger equation takes the form

ih̄
∂ψ

∂ t
= (− h̄2

2m

∂

∂x2
− eV ′(xi)x− eU(xi))ψ. (1.17)

Since the wavepacket is confined to a cell, it evolution would be same if the po-

tential we have was not only true in the cell but globally true. This is because the

wavepacket doesn’t know what the potential is outside the cell, its confined to the

cell. Then lets solve the Schröedinger equation with this potential assumed globally

true and see how wavepacket evolves.

Then as before for the Schröedinger equation is solved by wavevector ψ =
exp(ik(t)x). Let x(t) denote coordinates of center of wavepacket, then

k(t) = k+
e
∫ t

0 V ′(x(τ))dτ

h̄
, ω(k(t)) =

h̄(k+
e
∫ t

0 V ′(x(τ))dτ
h̄

)2

2m
− e

∫ t
0 U(x(τ))dτ

h̄
.

(1.18)

The group velocity

vg(t) =
h̄(k+

e
∫ t

0 V ′(x(τ))dτ
h̄

)

m
;

dvg(t)

dt
=

eV ′(x(t))
m

. (1.19)

This is classical mechanics. Therefore at high energies where k0 is large and

wavepacket is well confined, i.e., over the packet width, the change of potential

is small. A linearized potential is a good approximation and evolution in quantum

mechanics mimics classical mechanics. We have been talking about free electron

wavepackets but everything we have said generalizes directly to elecron wavepack-

ets in solids with a dispersion relation ω(k).
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1.3 Temperature and localized electron waves

Why localized electron waves ? Just temperature. It is the thermal de broglie wave-

length.

h̄2k∆k

2m
= KT,

which gives for k ∼ 1010 at T ∼ 300K is ∆k = 108, a packet 100 of nanometers long.

Diatomic molecules are not is ground vibrational states but superposition of

eigenstates, vibrating, classical. So are electrons not in electron wavestates but pack-

ets and localized electron waves. Just temperature.

1.4 Organization

The book is organized as follows. In chapter 2, we begin with discussing what holds

a solid together. The nature of different kinds of bonding and forces in solids. This

is followed by a chapter 3 on lattice vibrations called phonons. We show how energy

is stored in lattice vibrations that contributes to specific heat of a solid and how this

energy is exchanged with free electrons in solids. This give electrons in solid their

Fermi-Dirac distribution which is developed in this chapter via electron-phonon col-

lisions, which in turn contributes to electronic specific heat of metals. In chapter 4,

we study electron waves in a periodic potential. This chapter develops the theory

of energy bands in which electron waves in solids are organized. In chapter 5, we

apply the band theory of solids to study of various electronic devices that are all per-

vasive from consumer electronics and computer industry to modern communication

technology. In chapter 6, we study an important topic in solid state physics, the sub-

ject of superconductivity. Many materials called superconductors exhibit complete

loss of electrical resistance when cooled below a characteristic critical temperature.

This phenomenon called superconductivity [19, 20] was discovered in mercury by

Dutch physicist Onnes in 1911. For decades, a fundamental understanding of this

phenomenon eluded the many scientists who were working in the field. Then, in the

1950s and 1960s, a remarkably complete and satisfactory theoretical picture of the

classic superconductors emerged in terms of the BCS theory [21]. In this chapter we

devlop the BCS theory in terms of localized electron waves. In chapter 7, we study

dynamics of electrons in magnetic fields. This gives rise to an important effect called

Hall effect. In chapter 8, we study another important topic in solid state physics, the

subject of magnetism. An everyday example of magnetism is a refrigerator magnet

used to hold notes on a refrigerator door. In this chapter, we study the quantum basis

for why certain materials (such as iron) form permanent magnets, or are attracted to

magnets. This phenomenon called ferromagnetism is studied in terms of localized

electron waves. We also study other types of magnetism, paramagnetism, diamag-

netism, and antiferromagnetism. Finally in chapter 9 we look at methods by which
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we can look inside and image periodic structure of atoms in a solid. These include

X-ray and neutron diffraction techniques. We then study how spectroscopy using

neutrons can be used to study phonons in a solid where we develop the theory of

neutron-phonon collsions very much like electron-phonon collisons done earlier.

Problems

1. Electron wave has k = 109, find its energy and velocity.

2. Find current density j, when n = 1028/m3 and drift velocity 10−3m.

3. For above find conductivity σ , given relation time τ = 10−15s.

4. Electron wave with k0 = 109 sees an electric field E = 100 V/m , for τ = 1 pi-

cosecond, find the new k0.

5. In above find acceleration of electron packet when field is on.





Chapter 2

Bonding in Solids

2.1 Forces and Energies in Solids

What holds a solid together? What is the nature of the cohesive force ? In this

chapter, we answer some of these questions [17, 18]. When atoms forming a solid

are far, they donot talk to each other, but when braught close, the electrons of one

atom feels positive charge of nuclei of neighbouring atom, which lowers its energy.

Therefore this becomes a lower energy configuration, compared to atoms far from

each other. Hence atoms form solids.

The basic idea is that suppose we bring the atoms close so that electron of atom

A enters the electron clound of electron B. Then the electron of atom A will begin

to also see some potential due to ion B, as its charge is not fully screened and this

will modify the wavefunction and energies of electron A.

Let us call the potentials of ions VA and VB and the wavefunctions φA and φB each

with energy ε0. There is a transition from φA to φB given by

〈φBVBφA〉=−t.

and similarly by symmetry there is transition from φB to φA given by

〈φAVAφB〉=−t.

〈φAVBφA〉 is small and we neglect. Then in the basis φA and φB, we can write the

Hamiltonian as

H =

[
ε0 −t

−t ε0

]

. (2.1)

The eigenvalues now are ε0 ∓ t and eigenvectors 1
2
(φA ±φB). The two electrons

will now accupy the lower energy orbital 1
2
(φA + φB). The new orbitals are linear

combination of atomic orbital (LCAO).

Thus we have seen how atomic orbitals are modified when we bring atoms closer.

We form molecular orbitals and a bond. When energies of φA and φB (written as

27
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B

A Bφ φ

A

Fig. 2.1 Fig. shows two potential wells A and B and their corresponding orbitals with overlap

between them.

A B

Fig. 2.2 Fig. shows two atomic orbitals φA and φB and their linear combinations with energy ε0 − t

and ε0 + t.

ε0) are comparable we form a covalent bond. When they are very different as in

common salt NaCl, we form so called ionic bond.

In this case the Hamiltonian in Eq. 2.2 gets modified with energies εA = ε0 +∆
and εB = ε0 −∆

H =

[
εA −t

−t εB

]

(2.2)

The eigenvalues are ε1 = ε0−
√

t2 +∆ 2 and ε2 = ε0+
√

t2 +∆ 2 with eigenvectors

e1 = cosθφA + sinθφB and e2 − sinθφA + cosθφA with sinθ = ∆√
t2+∆2

. Fig. 2.3

shows two atomic orbitals φA and φB with energies εA = ε0 +∆ and εB = ε0 −∆
and their linear combinations with energy ε0 −

√
t2 +∆ 2 and ε0 +

√
t2 +∆ 2. When

∆ ≫ t, we have sinθ ∼ 1 and e1 ∼ φB, i.e, the lower energy molecular orbital is

simply φB. Then we say atom A donates an electron and it goes to B.
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A

B

ε

ε
B

A

 

Fig. 2.3 Fig. shows two atomic orbitals φA and φB with energies εA = ε0 +∆ and εB = ε0 −∆ and

their linear combinations with energy ε1 = ε0 −
√

t2 +∆ 2 and ε2 = ε0 +
√

t2 +∆ 2.

Until now our dicussion has been limited to covalent and ionic bonds between

two atoms and how it reduces energy. But that would say we should form a gas of

diatomic molecules. Why do we instead end up forming a solid.

2.2 Ionic and covalent solids

Ionic bonds between atoms A− B moves charge fron A to B and creates A+B−.

Now consider a solid configuration where A+ is surrounded by B− and has A+ as its

second ngbs and B− the third ngbs as shown below in fig. 2.4.

A

AA

A

A

A
A

A

A

A

A

B

B

B

B

BB

B

B

B

B B

B

A

Fig. 2.4 Fig. shows regular arrangement of A−B ions with B as immediate ngbs of A.

In this regular arrangement, A ions feel attractive potential due to ngbs B ions and

feel repulsive potential due to second ngbs A ions that are farther and then attractive

potential due to thirds ngbs B ions and so on. In nutshell, we have an alternating
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series of the kind V (R) =−c(1/R−1/2R+1/3R+ . . .) with c appropriate constant,

which in the end gives an attractive potential. We can write it as V (R) =−α
R

, where

constant α goes by the name of Madelung constant. The resulting attractive potential

lowers the total energy and explains why we have ionic solids. Prime examples are

sodium chloride NaCl with A = Na and B =Cl or lithium fluoride LiF with A = Li

and B = F . Fig. 2.5 shows arrangement of A−B ions with A as sodium and B as

chlorine. B ions are arranged on vertices and center of cube faces (so called fcc

lattice) and so is A with the two fcc lattices displaced with respect to each other.

B A

  

Fig. 2.5 Fig. shows regular arrangement of A−B ions with A as soldium and B as chlorine. B ions

are arranged on vertices and center of cube faces and so is A with the two lattices displaced with

respect to each other.

How about covalent solids. In this case there is no charge transfer. Why do we

have covalent bonded diatomic molecules packed in solid. The answer is we have

covalent bonds with all ngbs and they have bonds with all their ngbs and everything

gets connected. For example consider silicon with outer electrons in configuration

3s23p2. The one s and three p orbitals hybridize to form four sp3 orbitals. Silicon

has four ngbs and we use one sp3 orbital for each ngb and form a bond as shown

in 2.6. More precisely Si atoms are arranged on a fcc lattice and a displaced one

with (0,0,0) displaced to ( 1
4
, 1

4
, 1

4
). Then ( 1

4
, 1

4
, 1

4
) bonds to (0,0,0), (0, 1

2
, 1

2
) and

( 1
2
, 1

2
,0) and ( 1

2
,0, 1

2
) as shown in 2.7.

We talked about Si, another example is Gallium Arsenide, GaAs, with Gallium

ad Arsenic on ( 1
4
, 1

4
, 1

4
) and (0,0,0) fcc lattices. Both Gallium ad Arsenic are sp3 hy-

bridized and form bonds. Energy of these two sp3 are not same, with Gallium more

elctropositive hence at higher energy, therefore the bond has some ionic character

as discussed in ionic bonding.
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Si Si
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Si Si
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Si Si
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Si Si

Si

Si

Si

 

Fig. 2.6 Fig. shows regular arrangement of Si atoms forming covalent bands with its ngbs .

Fig. 2.7 Fig. shows how Si atoms are arranged on a fcc lattice and a displaced one with (0,0,0)
displaced to ( 1

4
, 1

4
, 1

4
). Then ( 1

4
, 1

4
, 1

4
) bonds to (0,0,0), (0, 1

2
, 1

2
) and ( 1

2
, 1

2
,0) and ( 1

2
,0, 1

2
).

2.3 Metallic Bonding

In our discussion of ionic and covalent solids, we first formed a bond and then

understood how diatomic molecules are arranged as a solid. In metals, instead of

looking at a molecular bond formed from two atoms we look at molecular bond

among n atoms. Consider a periodic array of atoms say first in one dimension, also

called a 1 d chain.

Electron on 1 is scattered by potential on 2 on 2 by 3 and so on. The resulting

Hamiltonian has the form
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n

nk

k1 2

1 2
φ φ

φ φ

Fig. 2.8 Fig. shows atomic orbitals φ1 to φn and their potential wells.

H =














ε0 −t 0 . . . . . . −t

−t ε0 −t 0
. . .

...

0 −t ε0 −t 0
...

...
. . .

. . .
. . .

. . .
...

0 . . . . . . −t ε0 −t

−t 0 . . . . . . −t ε0














, (2.3)

where we have introduced a transition between 1 and n to close the chain. This is an

approximation, where we have approximated a very large (infinite) size H as a limit

of curculant matrix. H above is a circulant matrix of the form














r0 r1 r2 . . . . . . rn

rn r0 r1 r2

. . .
...

rn−1 rn r0 r1 r2

...
...

. . .
. . .

. . .
. . .

...

r2 . . . . . . rn r0 r1

r1 r2 . . . . . . rn r0














(2.4)

A circulant marix is always diaganolized by a DFT matrix whose jth column is

1√
n









1

ω j−1

ω2( j−1)

. . .

ω(n−1)( j−1)









with eigenvalue ∑k rk(ω
j−1)k−1 where ω in nth root of unity

ω = exp(i 2π
n
). Then our eigenvalues are

ε0 −2t cos
2π j

n
, 0 < j < n−1.

which can be written as
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ε(k) = ε0 −2t coska,
π

a
< k <

π

a
, (2.5)

This is called a dispersion relation. The eigen vectors are of the form

Ψ(x) = ∑
l

exp(ikla)φ(x− la) (2.6)

Thus starting from isolated atomic orbitals, with one energy ε0, we branch into

many energies as we decrease the spacing between atoms. The energy gets broad-

ened into a band. This is shown in figure

ε

a

0ε

Fig. 2.9 Fig. shows how atomic orbital energy ε0 gets branced into many energies as we decrease

the separation a between orbitals.

Now coming back to 1 d chain of hydrogen like atoms, we found that given

N atoms, we get N wavevectors ranging from −π
a

to π
a

, we have N orbitals with

sepration of 2π
N

between them. These are shown in figure 4.14. By Pauli exclusion

principle, each orbital can carry only 2 electrons with opposite spins. Since we have

N electrons, if we fill the energy levels starting from minimum energy, we get only
N
2

filled orbitals as each can hold two electrons. The remaining N
2

orbitals are empty.

Thus for positive t, all orbitals have smaller energy than ε0, as 2t coska > 0 for π
2a

<
k < π

2a
. Therefore we reduce energy by putting metal atoms in a regular arrangement

and this is a metallic bond that holds metal together.

The tight binding approximation has been described using a 1-d chain. In real

solids, we have periodic arrangement of ions in three dimensions. Then we have to

solve tight binding approximation for three dimensions. metallic bonding is found

in metals like sodium, magnesium, aluminium etc.
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ππ− /a /a

ε

k

 

 

Fig. 2.10 Fig. shows a plot of dispersion relation in Eq. (4.38).

2.4 Van der Waals solids

Noble gases like neon, argon, xenon at low temperatures form solid. What kind of

forces hold them together as their electronic configuration is filled shells. The forces

that are active in these solids is the Van der waals force of attraction.

+ +− −

x1
x 2

R

 

Fig. 2.11 Figure depicts how electrons in two Helium atoms are modelled as spring mass system.

We begin by recapitulating Van der Waals interaction. Consider two identical

inert gas atoms (Helium atoms). We model them by identical linear harmonic os-

cillators 1 and 2, separated by distance R. Each oscillator bears charges ±e with
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separation x1,x2 as in Fig. 2.11. The oscillators oscillate along x axis with momenta

p1, p2. The force constant is C. Then the Hamiltonian of the unperturbed system is

H0 =
p2

1

2m
+

p2
2

2m
+

Cx2
1

2
+

Cx2
2

2
. (2.7)

Each uncoupled oscillator is assumed to have frequency C = mω2
0 . The resulting

dipoles interact with a potential

H1 =− 1

2πε0

e2x1x2

R3
. (2.8)

Writing normal modes for this problem with xs =
x1+x2√

2
, xa = x1−x2√

2
and ps =

p1+p2√
2

and ps =
x1−x2√

2
, we get

H0 +H1 =
p2

s

2m
+(C− e2

2πε0R3
)

x2
s

2
+

p2
a

2m
+(C+

e2

2πε0R3
)

x2
a

2
(2.9)

with frequencies

ω = m− 1
2 (C± e2

2πε0R3
)

1
2 = ω0(1±

e2

4πε0R3C
− 1

2
(

e2

4πε0R3C
)2 + . . .) (2.10)

Thus the zero-point energy of the system changes by

∆U =
1

2
h̄(∆ωa +∆ωs) =− h̄ω0

2
(

e2

4πε0R3C
)2 =− A

R6
. (2.11)

This is the Van der Waals attractive potential.

∆x

Fig. 2.12 Figure depicts how displacement ∆x of electron cloud increases energy and gives a

restoring force with spring constant C.

To put some numbers, Fig. 2.12 shows an helium atom with electron cloud dis-

placed. This displacement ∆x of electron cloud increases Coulomb energy and gives

a restoring force with spring constant C. We estimate C by finding how much is in-

crease in coulomb energy and equating it to 1
2
C∆x2. This gives C ∼ e2

a3
04πε0

, where
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e and a0 are the charge and radius of Helium cloud. We get C ∼ 104 J/m2 and

A ∼ 10−80 J m6.

The van der Waals attractive force goes as A/R6. When two inert gas atoms

are braught together as very small distances they develop a repulsive force as their

electron wavefunction overlap. By Pauli exclusion principle this is not allowed and

results in promotion of electrons to higher energy orbitals which leads to increase

of energy and hence a repulsive force. For inert gases a force law B/r12 models this

well and hence we have a total potential (also called Lenard Jones potential) of the

form

V (r) =
B

r12
− A

r6
. (2.12)

This is plotted in Fig. 2.13. It achieves it minimum at typical distance r0 ∼ 2−3A◦.

When inert gas atoms like Neoun , Argon, Xenon, are cooled to low temperatures

with densities with interatomic distance of r0, the inert gas atoms condense to form

a solid. These are solid held together with a cohesive force with origin as van der

Waals attraction.

V(r)

r
r 0

x
1

x
2

 

 

Fig. 2.13 Figure depicts Lenard Jones potential between two inert gas atoms which is attarctive at

large distances due to Van der Waals forces and becomes repulsive at small distances
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Problems

1. For ε0 =−4eV and t = 2 eV, find energy of bonding and antibonding orbital for

a covalent bond.

2. For εA =−4eV, εB =−4.5eV and t = 2 eV, find energy of bonding and antibond-

ing orbital for a ionic boand A−B.

3. How wide (in energy units) is a band for t = 2 eV.

4. In Fig. 2.5, estimate Madulung constant α .

5. Estimate Van der Waal potential A from spring constant C = 104J/m2.





Chapter 3

Phonons in Solids

3.1 Phonons

V(r)

r
r 0

A

B

x2
x 3 x

4

x
1

x
1

x
2

 

Fig. 3.1 Fig A shows atomic chain as masses coupled with springs. Fig B shows two such masses

coupled with springs.

Consider two atoms in a solid with their internuclear potential plotted in Fig 3.1B.

The potential is minimum at the equilibrium distance r0. When atoms are dislaced

from their locations by amount x1,x2, we get a change in potential energy

39
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∆V =
1

2
V ′′(r0)(x1 − x2)

2 =
1

2
k(x1 − x2)

2. (3.1)

Then equation of motion for atoms in Fig 3.1A in the 1d configuration is

d2

dt2











x−n

...

x0

...

xn











= β 2












−2 1 0 . . . 0

1 −2 1 0
...

...
. . .

. . .
. . .

...
... . . . 1 −2 1

0 0 0 1 −2












︸ ︷︷ ︸

A











x−n

...

x0

...

xn











, (3.2)

with β 2 = k
m

. Instead of matrix A, consider

d2

dt2











x−n

...

x0

...

xn











= β 2












−2 1 0 . . . 1

1 −2 1 0
...

...
. . .

. . .
. . .

...
... . . . 1 −2 1

1 0 0 1 −2












︸ ︷︷ ︸

B











x−n

...

x0

...

xn











, (3.3)

which correspond to a closed system.

Both matrix A and B in limit of n → ∞ are same. We study solution of B keeping

limit in mind. . Observe B is a circulant matrix and for N = 2n+ 1 and k = 2πm
Na

,

with −n ≤ m ≤ n, eigenfunction of B is of the form

e =
1√
N















exp(−inka)
...

exp(−ika)
1

exp(ika)
...

exp(inka)















, (3.4)

with eigenevalue 4sin2 ka
2

. The above solution is simply a wave solution exp(ikx),
with wavevector k and then the solution to Eq. 3.3 is simply a travelling wave

exp(i(kx−ωt)), with

|ω|= 2β |sin
ka

2
| ∼ υ |k|, (3.5)
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where υ = aβ , the velocity of sound. This dispersion relation is plotted in Fig. 3.2.

In the remaining part of this section, we generalize all this to three dimensions and

study phonons for different lattice structures [1, 3].

-4 -2 0 2 4

k in units of 1/a

0
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Phonon dispersion relation

Fig. 3.2 Fig. shows phonon dispersion curve.

Now consider atoms in three dimensions arranged in a simple cubic structure,

which is to say on vertices of a cube of size a as in Fig. 3.3.

Fig. 3.3 Fig. shows a simple cubic lattice with atoms at the corner points.

Consider x displacement, which now we index by three index uk,l,m (vk,l,m and

wk,l,m for y and z displacement), with −n ≤ k, l,m ≤ n . Then
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ük,l,m = β 2( uk+1,l,m +uk−1,l,m −2uk,l,m (3.6)

+
uk−1,l+1,m +uk−1,l+1,m +uk−1,l−1,m +uk+1,l−1,m

2
−2uk,l,m

+
vk+1,l+1,m − vk−1,l+1,m − vk+1,l−1,m + vk−1,l−1,m

2

+
uk−1,l,m+1 +uk+1,l,m+1 +uk−1,l,m−1 +uk+1,l,m−1

2
−2uk,l,m

+
wk+1,l,m+1 −wk−1,l,m+1 −wk+1,l,m−1 +wk−1,l,m−1

2
).

Let us sketch derivation of Eq. 3.6. let r be the distance between points k, l,m
and k′, l′,m′ (nominal value r0) The x-displacement uk,l,m and uk′,l′,m′ with ∆u =
uk′,l′,m′ −uk,l,m produces ∆r = cosθ∆u, where θ is angle r makes with x axis. From

Eq. 3.1 we get ∆V = 1
2
V ′′(r0)∆r2, which gives k =V ′′(r0) as spring constant which

gives a restoring force Fr =−k∆r along r direction which is resolved along x direc-

tion as Fx = cosθFr to give

ük,l,m = ∑V ′′(r0)cos2 θ∆u = ∑
k′,l′,m′

V ′′(r0)cos2 θ(uk′,l′,m′ −uk,l,m). (3.7)

Now we sum the RHS in above equation for all k′, l′,m′. We in practice only include

nearest or next nearest nghbs.

Fig. 3.4 Fig. shows ngbs as squares and circles.

For example in Fig. 3.4 if uk,l,m is in center, then the square nghs give cos2 θ = 1
2
,

the horizontal circles gives cos2 θ = 1 and cos2 θ = 0 for vertical circles. Then on

substitution in Eq. 3.6 we get
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ük,l,m = β 2( ( uk+1,l,m +uk−1,l,m −2uk,l,m)

+ (
uk+1,l+1,m +uk−1,l+1,m

2
+

uk−1,l−1,m +uk+1,l−1,m

2
−2uk,l,m)

+ (
uk−1,l,m+1 +uk+1,l,m+1

2
+

uk−1,l,m−1 +uk+1,l−1,m−1

2
−2uk,l,m)

+ v terms+ w terms ).

Now writing
uk+1,l+1,m+uk−1,l+1,m

2
=

uk+1,l+1,m+uk−1,l+1,m−2uk,l+1,m

2
+ uk,l+1,m, gives Eq.

3.6.

In Eq. 3.6, dividing and multiplying by a2 and taking limit of small a, the equa-

tion takes the form (υ = βa)

∂ 2u

∂ t2
= υ2(3

∂ 2u

∂x2
+

∂ 2u

∂y2
+

∂ 2u

∂ z2
+2

∂ 2v

∂x∂y
+2

∂ 2w

∂x∂ z
). (3.8)

Similarly, we have

∂ 2v

∂ t2
= υ2(3

∂ 2v

∂y2
+

∂ 2v

∂x2
+

∂ 2v

∂ z2
+2

∂ 2u

∂x∂y
+2

∂ 2w

∂x∂ z
). (3.9)

∂ 2w

∂ t2
= υ2(3

∂ 2w

∂ z2
+

∂ 2w

∂x2
+

∂ 2w

∂y2
+2

∂ 2u

∂x∂ z
+2

∂ 2v

∂y∂ z
). (3.10)

Then a direct substitution of the wave solution

u = u0 exp(ikxx)exp(−iωt), (3.11)

with −π
a
≤ kx ≤ π

a
and

ω =
√

3υ |kx|, (3.12)

constitutes a longitudinal phonon travelling in [1,0,0] direction. As in one 1d, we

have real travelling wave solution given by cos(kxx−ωt), travelling in x direction.

Similarly

u = u0 exp(ikyy)exp(−iωt), (3.13)

with −π
a
≤ ky ≤ π

a
and

ω = υ |ky|, (3.14)

constitutes a transverse phonon travelling in [0,1,0] direction.

How does a phonon in k′ = (kx,ky,kz) direction look. Let

u = Aexp(ikxx+ kyy+ kzz)exp(−iωt); v = Bexp(ikxx+ kyy+ kzz)exp(−iωt);

w = C exp(ikxx+ kyy+ kzz)exp(−iωt), (3.15)
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with −π
a
≤ kx,ky,kz ≤ π

a
. Then from Eq. 3.8, 3.9 and 3.10, we have

ω2





A

B

C



= υ2
(
2kk′+ |k|2

)





A

B

C



 . (3.16)

For nontrivial solution





A

B

C



= k and ω =
√

3υ |k|, is a longitudinal phonon.





A

B

C



=

k⊥ is a transverse phonon with ω = υ |k|.
The dispersion curves for longitudinal and transverse phonons differ as shown in

3.5

-4 -2 0 2 4
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β

Phonon dispersion curves

Transverse

Longitudinal

Fig. 3.5 Fig. shows dispersion curve for longitudinal and transverse phonon.

We calculated phonons for an cubic lattice, we now consider an fcc lattice as

shown in 3.6. The lattice is spanned by basis vectors a1 = x̂+ŷ
2

and a2 = ŷ+ẑ
2

and

a3 =
x̂+ẑ

2
. The index k, l,m denotes the point a(ka1 + la2 +ma3). A point has 12

ngbhs, 4 in each plane. They all look like squares as in Fig. 3.4. The displacement

u,v,w at lattice point k, l,m along x,y,z direction then satisfies the equation (υ = βa
2

)

∂ 2u

∂ t2
= υ2(2

∂ 2u

∂x2
+

∂ 2u

∂y2
+

∂ 2u

∂ z2
+2

∂ 2v

∂x∂y
+2

∂ 2w

∂x∂ z
). (3.17)

Similarly, we have
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a1

a
a2

3

Fig. 3.6 Fig. shows a fcc lattice, with atoms at corners and center of faces of a cube.

∂ 2v

∂ t2
= υ2(2

∂ 2v

∂y2
+

∂ 2v

∂x2
+

∂ 2v

∂ z2
+2

∂ 2u

∂x∂y
+2

∂ 2w

∂x∂ z
). (3.18)

∂ 2w

∂ t2
= υ2(2

∂ 2w

∂ z2
+

∂ 2w

∂x2
+

∂ 2w

∂y2
+2

∂ 2u

∂x∂ z
+2

∂ 2v

∂y∂ z
). (3.19)

How does a phonon in k = (Kx,Ky,Kz) direction look. Let

u = Aexp(iKxX +KyY +KzZ)exp(−iωt); v = Bexp(iKxX +KyY +KzZ)exp(−iωt);

w = C exp(iKxX +KyY +KzZ)exp(−iωt), (3.20)

This is a solution in real space. The real space coordinates r= (X ,Y,Z) has primitive

coordinates (x,y,z) where the point r = xa1 + ya2 + za3. The k = (Kx,Ky,Kz) in

solution

exp(ik · r)exp(−iωt), (3.21)

has corresponding primitive wavevectors (kx,ky,kz) where

k = kxb1 + kyb2 + kzb3, (3.22)

with bi reciprocal lattice vectors given by b1 =
a2×a3

a1·(a2×a3)
, b2 =

a3×a1

a2·(a3×a1)
and b3 =

a1×a2
a3·(a1×a2)

, which gives b1 = x̂ − ŷ + ẑ, b2 = x̂ + ŷ − ẑ and b3 = −x̂ + ŷ + ẑ with

−π
a
≤ kx,ky,kz ≤ π

a
. Fig. 3.7 shows the region in which k lies for cubic (A) and fcc

lattice (B).

Then from Eq. 3.17, 3.18 and 3.19, we have for

C =





K2
y +K2

z 0 0

0 K2
x +K2

z 0

0 0 K2
x +K2

y



 .
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ω2





A

B

C



= υ2
(
2kk′+C

)

︸ ︷︷ ︸

M(k)





A

B

C



 . (3.23)

Observe M(k) is a positive definite matrix. The three positive eigenvalues ω1(k),ω2(k),ω3(k)
give the dispersion relation for three acoustic phonons.

/a2

A B

π

 

Fig. 3.7 Fig. shows the region where the k vector lies (so called the Brillouin zone), for cubic (A)

and fcc lattice (B).

3.2 Phonon Heat Capacity of Solids

Consider a cubic lattice, with phonon dispersion relation

ω = υ |k|. (3.24)

A phonon with energy h̄ω is active when h̄ω < kBT , in which case it has n quanta

of energy such that nh̄ω = kBT . To count all the phonon modes that are active at

temperature T , we have to find the volume V = 4π|k0|3
3

of the sphere with radius

|k0| = kBT
h̄υ , and since k modes are spaced 2π

na
apart, the volume of the k cell is

V0 = ( 2π
na
)3. Then the total active phonons are V

V0
, with total energy E = kBT V

V0
.

Then dE
dT

∝ T 3 at low temperatures, when all phonon modes are not active. At high

temperatures, when all phonon modes are active, E ∝ kBT and hence heat capacity
dE
dT

is independent of temperature.
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Fig. 3.8 Fig. shows atomic masses and springs in three dimensions.

3.3 Electronic Heat Capacity of Solids

To find the electron heat capacity of solids, we distinguish between two kind of

electrons, bound and mobile. Next chapter is all about this so suffice to say that

in metals and conductors the outer most electrons of atoms are loosely bound and

become mobile in a condensed state. These electrons contribute to the specific heat

of a metal.

The Fermi-Dirac distribution for occupancy of energy level with energy ε is

φ(ε) =
1

1+ exp( ε−µ
kT

)
. (3.25)

For electrons in solids, probability density of electrons near Fermi-surface µ is

approximated as a linear slope. For ∆ = ε −µ , we can write this slope in the region

ε ∈ [µ − kT,µ + kT ]

φ(ε) =
1

2
− ∆

2kT
. (3.26)

Energy of electrons in this slope region is

E(T ) = g(µ)
∫ kT

−kT
(µ +∆)(

1

2
− ∆

2kT
) = g(µ)(µkT − (kT )2

3
). (3.27)
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µ ε

φ(ε)

 

Fig. 3.9

When temperature changes to T +∆T , this energy changes by ∆E = g(µ)(µk−
(k2T )

3
)∆T . In addition, we loose g(µ)(µ − kT )k∆T . Putting the two pieces together

we get

∆E =
2g(µ)

3
(k2T )∆T.

Then heat capacity is
2g(µ)kT

3
k . Compare with monoatomic gas with heat ca-

pacity 3
2
k. We have additional factor

2g(µ)kT

3
saying only electrons at Fermi-surface

contribute.

3.4 Electron-Phonon Interaction

Consider phonons in a crystalline solids. To fix ideas, we start with the case of one-

dimensional lattice potential. Consider a periodic potential with period a.

U(x) =
n

∑
l=1

V (x−al) = ∑V (x− la).

where
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V (x) = V0 cos2(
πx

a
),

−a

2
≤ x ≤ a

2
(3.28)

= 0 |x| ≥ a

2
. (3.29)

The potential is shown below in Fig. 4.2.

V
0

a

Fig. 3.10 Figure depicts the periodic potential in Eq. (3.28).

Now consider how potential changes when we perturb the lattice sites from their

equilibrium position, due to lattice vibrations.

∆U(x) = ∑V ′(x−al)∆al .

For a phonon mode with wavenumber k,

∆al = Ak

1√
n

exp(ikal), (3.30)

we have

∆U(x) = Ak exp(ikx)
1√
n

∑V ′(x−al)exp(−ik(x−al))
︸ ︷︷ ︸

p(x)

,

= Ak exp(ikx)
1√
n

∑V ′(x− la)exp(−ik(x− la))
︸ ︷︷ ︸

p(x)

,

where p(x) is periodic with period a. Note

V ′(x) = −V0
2π

a
sin(

2πx

a
),

−a

2
≤ x ≤ a

2

= 0 |x| ≥ a

2
.
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Using Fourier series, we can write

p(x) = a0 +∑
r

ar exp(i
2πrx

a
).

We can determine a0 by a0 =
1
a

∫ a
2

− a
2

p(x)dx, giving,

a0 = i
V0

a

∫ a
2

− a
2

2π

a
sin(

2πx

a
)sin(kx),

where k = 2πm
na

. Then,

a0 = i
V (0)

a

∫ a
2

− a
2

2π

a
sin(

2πx

a
)sin(kx) = i

V (0)

2a

∫ a
2

− a
2

2π

a
(cos(

2πqx

a
)− cos(

2πq′x
a

)),

where q = 1− m
n

and q′ = 1+ m
n

. We then get

a0 = i
V (0)

2a

∫ π

−π
(cos(qy)− cos(q′y))dy.

a0 = i
2V (0)

a

1

1− (m
n
)2

sin
mπ

n
.

We donot worry much about ar for r 6= 0, as these excite an electron to a different

band and are truncated by the band-gap energy. Now note, using equipartition of

energy, there is kBT energy per phonon mode, giving

Ak =

√

kBT

m

1

ωk

=

√

kBT

m

1

ωd sin(πm
n
)
, (3.31)

where ωd is the Debye frequency.

Then we get

∆U(x) =
i√
n
(

2V (0)

a

√

kBT

m

1

ωd

)

︸ ︷︷ ︸

V̄0

exp(ikx). (3.32)

At temperature of T = 300 K and ωd = 1013 rad/s, we have
√

kBT
m

1
ωd

∼ .3A◦ , with a = 3A◦, we have,

∆U ∼ i√
n
.1V0 exp(ikx),

with V0 = 10V , we have

∆U ∼ i√
n

exp(ikx) V,
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All our analysis has been in one dimension. For higher dimensions, lets fix ideas

with two dimensions, then three dimensions follow directly. Consider a two dimen-

sional periodic potential with period a.

U(x,y) = ∑
lm

V (x−al ,y−am) = ∑
lm

V (x− la,y−ma).

V (x,y) = V0 cos2(
πx

a
)cos2(

πy

a
),

−a

2
≤ x,y ≤ a

2
(3.33)

= 0 |x|, |y| ≥ a

2
. (3.34)

Now consider how potential changes when we perturb the lattice sites from their

equilibrium position, due to lattice vibrations.

∆U(x,y) = ∑
lm

Vx(x−al ,y−am)∆al +Vy(x−al ,y−am)∆am.

Lets consider phonons propagating along x direction. Then ∆al constitutes lon-

gitudinal phonons while ∆am constitutes transverse phonons. Transverse phonons

donot contribute to deformation potential as can be seen in the following. Lets focus

on the transverse phonons. Then

∆am = Ak

1√
n

exp(ikxal) (3.35)

We have due to ∆am

∆U(x,y) = Ak exp(ikxx)
1√
n

∑Vy(x−al ,y−am)exp(−ik(x−al))
︸ ︷︷ ︸

p(x,y)

,

where p(x,y) is periodic with period a.

Note

Vy(x,y) = −V0
2π

a
sin(

2πy

a
)cos(

πx

a
)2,

−a

2
≤ x,y ≤ a

2

= 0 |x|, |y| ≥ a

2
. (3.36)

Using Fourier series, we can write

p(x,y) = a0 +∑
r,s

ars exp(i(
2πrx

a
+

2πsy

a
).

We can determine a0 by a0 =
1
a2

∫ a
2

− a
2

∫ a
2

− a
2

p(x,y)dxdy, giving a0 = 0. Hence trans-

verse phonons donot contribute. The contribution of longitudinal phonons is same

as in 1-D case.
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We saw phonon exp(ikx) produces a deformation potential ∆U(x) as in Eq. 3.32.

Now in three dimension it is

∆U(x) =
i√
n3

V0

a
Ak(exp(ikx)exp(−iωkt)−h.c). (3.37)

where n3 is number of lattice points.

Using 1
2
Mω2

k A2
k = nkh̄ωk (there are nk quanta in the phonon), where M is the

mass of ion , ωk phonon frequency and replacing Ak we get

∆U(x) =
i√
n3

V0

a

√

2h̄

Mωk
︸ ︷︷ ︸

c

(
√

nk exp(ikx)exp(−iωkt)−h.c). (3.38)

Thus due to phonon, electron sees a potential of form

∆U(x) =
i
√

nk√
n3

c

︸ ︷︷ ︸

Ω

(exp(i (kx−ωkt) )− exp(−i (kx−ωkt) ). (3.39)

We see this interaction potential changes the electron momentum changes by k,

there must then be a corresponding change in phonon number to accomodate for the

change of momentum, then writing the electron-phonon coupling Hamiltonian we

get

Hin =
i√
n3

c(bk exp(i (kx−ωkt) )−b
†
k exp(−i (kx−ωkt) ). (3.40)

where b,b† are annihilation and creation operators for phonon.

This Hamiltonian shows coupling of electron and phonons with phonons moving,

i.e., in the interaction frame of phonon Hamiltonian

Hp = h̄ωkb
†
kbk (3.41)

If we include Hp, then the total Hamiltonain is

H0 = He +Hp +Hep (3.42)

where He,Hp is electron and photon Hamiltonian and Hep is the coupling given by

Hep =
c√
n3

i(bexp(ikx)−b† exp(−ikx)). (3.43)

Using a cosine potential with V0 ∼ 10 V, with a∼ 3A◦ and M ∼ 20 proton masses,

we have c ∼ 1 V.
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3.5 Resistance and resonant absorption of phonons

A B  

Fig. 3.11

ω
d

Fig. 3.12

Fig. 3.11 shows how it is when we accelerate electrons with an electric field say

in −x direction. The whole Fermi sphere displaces to the right by a small amount.

There is net momentum in the x direction and this constitutes the current. How does

the current stop. The electrons on the right shown as black dots in Fig. 3.11 are

scattered to the left as shown. This scattering is due to absorbtion of phonons and

annuls the forward x-momentum of electrons. How much is this scattering rate. If

we absorb a phonon, the electron energy rises by h̄ωd and the electron scatters to

states as shown in dotted sphere as shown in Fig. 3.12.
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A B
Fig. 3.13 Fig. A shows transition from ground to excited state. Fig. B shows excited state level

broadened.

Consider two level system as shown in 3.13A. Let Ω be the rate of on resonance

excitation from ground state to excited state. The dynamics of the system with ψ =
[

ψ1

ψ0

]

is

ψ̇ =− i

2

[
ω0 Ω exp(− jω0t)

Ω exp( jω0t) −ω0

]

ψ. (3.44)

In the rotating frame ψ → exp( i
2

[
ω0 0

0 −ω0

]

t)ψ we have

ψ̇ =− i

2

[
0 Ω
Ω 0

]

ψ. (3.45)

Now suppose the excited level is detuned by energy ∆ω , then

ψ̇ =− i

2

[
2∆ω Ω

Ω 0

]

ψ, (3.46)

then in the rotating frame ψ → exp( i
2

[
2∆ω 0

0 0

]

t)ψ , we have

ψ̇ =− i

2

[
0 Ω exp( j∆ωt)

Ω exp(− j∆ωt) 0

]

ψ. (3.47)

Then starting from ψ0(0) = 1, we have ψ1(∆ t) =
∫ ∆ t

0 Ω exp( j∆ωτ)dτ . Now

consider many excited levels as in 3.13B, with level ψn detuned by n∆ω . Then

ψn(∆ t) =
∫ ∆ t

0 Ω exp( jn∆ωτ)dτ . Then

ψ∗
k (∆ t)ψk(∆ t) =

∫ ∆ t

0

∫ ∆ t

0
Ω 2 exp( jk∆ω(t − τ))dτdt. (3.48)

Then Φ = ∑n
k=−n ψ∗

k (∆ t)ψk(∆ t) =
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Ω 2

∆ω

∫ ∆ t

0

∫ ∆ t

0
(
∫ B

−B
exp( jω(t − τ))dω) dτdt, (3.49)

=
Ω 2

∆ω

∫ ∆ t

0

∫ ∆ t

0

sin(B(t − τ)

t − τ
dτdt. (3.50)

=
Ω 2

∆ω
∆ t. (3.51)

where we use the approximation B ≫ Ω . There is time ∆ t such that Ω∆ t ≪ 1 and

B∆ t ≫ 1. Then

Γ =
Φ

∆ t
=

Ω 2

∆ω
, (3.52)

gives the transition rate out of ground state. Let N be the degeracy of every detuned

state above, then

Γ =
Ω 2N

∆ω
, (3.53)

With Eq. 3.53 also known as Fermi Golden Rule, we can also write it in terms of

density of states D = N

∆ω as,

Γ = Ω 2D, (3.54)

where D is density of states.

Coming to the figure 3.12, we can calculate Γ as follows. At say temperature

T = 100K, we have kBT = 10−21 SI units. The energy of a phonon is h̄ωd ∼ 10−21

SI units, so we can say that most phonon modes have one phonon.

Ω =
c√
n3

, (3.55)

D =
n3

ωF

(3.56)

Γ = Ω 2D =
c2

ωF

(3.57)

where h̄ωF is Fermi energy. Taking c = 1eV and ωF = 5eV , we get Γ ∼ 1014/s.

This is in agreement with typical relaxation times of 10−14 −10−15 sec.

3.5.1 Temperature dependence of resistivity and Bloch’s T 5 law

In understanding temperature dependence of resistivity, we consider two limits.

High temperature limit, when all phonon modes are occupied. Then number of

phonons nk in a mode satisfies nkh̄ωk = kBT with Ω as in Eq. 3.39, Ω ∝
√

nk.

Then observe Ω 2 ∝ kBT and we have Γ ∝ T . Linear variation with T .
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There is another regime, the low temperature regime in which only phonons with

small wavevectors which satisfy h̄ω = kBT are active. This is as shown by vector

OA in fig. 3.14.

A

θ

 

0

 

Fig. 3.14 Fig. shows at low temperatures, only the phonons with small wavevectors as OA are

active.

The length of wavevector OA that is active ∝ T and hence the the surace area

on the Fermi sphere that will be active due to phonon scattering is ∝ T 2 and hence

D ∝ T 2. Since Ω 2 ∝ T , we get Γ = Ω 2D ∝ T 3. However scattering by an angle θ as

shown in fig. 3.14, impedes the current by a factor 1− cosθ which for small angle

theta is ∝ θ 2 but from fig. 3.14, θ 2 ∼ T 2 or the resisitvity varies as ∝ T 5. This is

called the Bloch’s T 5 law.

In our treatment of electron-phonon scattering, we have worked with very spe-

cific cosine lattice potential functions. However there is genericity about our choice

and the qualitative picture remains the same as working with general periodic po-

tentials.

Problems

1. Consider a simple cubic lattice with m as the atomic mass and k as the spring

constant and a as the lattice parameter. Assume interaction with the nearest and

second nearest nghbs. Calculate the phonon spectrum for transverse and longitu-

dinal phonons and sketch first Brillouin zone.

2. Consider a BCC lattice with m as atomic mass and k as spring constant and a

as the lattice parameter. Assume interaction with nearest nghbs. Calculate the
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phonon spectrum and sketch first Brillouin zone.

3. Consider a FCC lattice with m as atomic mass and k as spring constant and a

as the lattice parameter. Assume interaction with nearest nghbs. Calculate the

phonon spectrum and sketch first Brillouin zone.

4. Consider a 3D periodic potential

V =V0 cos2(
πx

a
)cos2(

πy

a
)cos2(

πz

a
), (3.58)

with V0 = 10V and lattice parameter a = 3A◦ amd atomic mass of 20 protons.

At temperature T = 100K, calculate the parameter c in the book and use it to

estimate the relaxation time τ assuming debye frequency of ωd = 1013 Hz and

Fermi energy EF = 10 eV.

5. Phonon heat capacity of a solid per unit volume at low temperature goes as CT 3

, find the parameter C.

6. Electron heat capacity of a solid per unit volume goes as CT , find the parameter

C, asumming Fermi energy EF = 10 eV.

7. Given electric field of 1 V/m and relaxation time of electrons τ = 10−14 sec.

What is the drift velocity of the electrons.





Chapter 4

Electrons in periodic Potential

4.1 Free Electrons

In this chapter we study electrons in periodic potential arising due to atoms in crys-

talline solid [14]. First we start with free electrons.

The free electron wavefunction is ψ = exp(ikx). The momentum is h̄
i

∂
∂x

. This

gives the kinetic energy ε = p2

2m
= h̄2k2

2m
, which for ε = h̄ω gives,

ω(k) =
h̄k2

2m
. (4.1)

The dispersion is a parabola as shown below in figure 4.1 A.

Now, consider a wavepacket centered at k0, shown the figure 4.1 A, B. The packet

takes the form

φ(x) =
1√
N

∑
j

exp(ik jx), φ(x, t) =
1√
N

∑
j

exp(−iω(k j)t)exp(ik jx), (4.2)

where ω(k j) = ω(k0)+ω ′(k0)∆k j where ∆k j = k j − k0. Denote vg = ω ′(k0) =
h̄k0
m

, as the group velocity. Then

φ(x, t) =
1√
N

exp(i(k0x−ω(k0)t))∑
j

exp(i∆k j(x− vgt)). (4.3)

The function f (x) = 1√
N

∑ j exp(i∆k jx) =
2√
N

∑ j cos(∆k jx), is centered at origin

with width ∝ (∆k)−1 as shown in figure 4.1 B. Then

|φ(x, t)|= | f (x− vgt)|, (4.4)

the free electron wavepacket moves with a group velocity vg.

59
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k
0 k

B

ω(k)

A

φ

x

(x)

Fig. 4.1 Figure A shows the dispersion ω(k) vs k for a free electron. Figure B shows a wavepacket

centered at k0.

Now lets apply an electrical field E in the x direction at t = 0. Then the

Schröedinger equation is

ih̄
∂ψ

∂ t
=

1

2m
(−ih̄

∂

∂x
)2 + eEx ψ. (4.5)

The equation is satisfied by time varying wavevectors exp(ik(t)x), where k(t) = k−
eEt
h̄

, with energy (dispersion) ω(k(t)) = h̄(k(t))2

2m
=

h̄(k− eEt
h̄
)2

2m
, so that the wavefunction

becomes

exp(−i

∫ t

0
ω(k(τ)) dτ)exp(ik(t)x).

The initial wavepacket φ(x) evolves to φ(x, t), where,

φ(x) =
1√
N

∑
j

exp(ik jx), φ(x, t) =
1√
N

∑
j

exp(−i

∫ t

0
ω(k j(τ))dτ)exp(ik j(t)x).

(4.6)

The group velocity

vg(t) =
h̄k(t)

m
=

h̄(k− eEt
h̄
)

m
;

dvg(t)

dt
=−eE

m
. (4.7)

The electron wavepacket simply accelerates the way we know from classical

mechanics. Being more pedagogical, we have
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φ(x, t) =
1√
N

∑
j

exp(−i

∫ t

0
ω(k j(t)) )exp(ik j(t)x) (4.8)

=
1√
N

exp(−i

∫ t

0
ω(k0(t)) )exp(ik0(t)x)∑

j

exp(i∆k j(x−
∫ t

0
vg(σ)dσ)).

The wavepacket evolves with instantaneous velocity vg(t).
The above method can be generalized to arbitrary potential. Consider the Schröedinger

equation

ih̄
∂ψ

∂ t
= (− h̄2

2m

∂

∂x2
− eV (x))ψ. (4.9)

We approximate the potential V by piecewise linear potential such that V (x) =
V (xi)+V ′(xi)δx, where δx = x−xi, as shown in figure 4.2. We call these regions of

linearized potential, cells. We can rewrite the potential in a cell as V (x) = U(xi)+
V ′(xi)x

x

i

V(x)

φ(x)

X

Fig. 4.2 Figure shows linear approximation of potential V (x). The wavepacket φ(x) is confined to

a cell.

We assume that the wavepacket has large k0 such that ∆k ∼
√

k0 is large and

therefore for the wavepacket, ∆x ∼ (∆k)−1 is small so that it fits well within one

cell. Then in this cell, the Schröedinger equation takes the form

ih̄
∂ψ

∂ t
= (− h̄2

2m

∂

∂x2
− eV ′(xi)x− eU(xi))ψ. (4.10)

Since the wavepacket is confined to a cell, it evolution would be same if the po-

tential we have was not only true in the cell but globally true. This is because the

wavepacket doesn’t know what the potential is outside the cell, its confined to the

cell. Then lets solve the Schröedinger equation with this potential assumed globally

true and see how wavepacket evolves.
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Then as before for the Schröedinger equation is solved by wavevector ψ =
exp(ik(t)x). Let x(t) denote coordinates of center of wavepacket, then

k(t) = k+
e
∫ t

0 V ′(x(τ))dτ

h̄
, ω(k(t)) =

h̄(k+
e
∫ t

0 V ′(x(τ))dτ
h̄

)2

2m
− e

∫ t
0 U(x(τ))dτ

h̄
.

(4.11)

The group velocity

vg(t) =
h̄(k+

e
∫ t

0 V ′(x(τ))dτ
h̄

)

m
;

dvg(t)

dt
=

eV ′(x(t))
m

. (4.12)

This is classical mechanics. Therefore at high energies where k0 is large and

wavepacket is well confined, i.e., over the packet width, the second order change of

potential is small, V ′′(x)∆x ≪V ′(x). A linearized potential is a good approximation

and evolution in quantum mechanics mimics classical mechanics.

4.2 Electrons in Periodic Potential

We now turn to electrons in a periodic potential created by periodic arrangement of

ions in crystal/solid. Once again to ease exposition, we first analyze everything in in

one dimension.

Consider a periodic potential with period a.

U(x) =
n

∑
l=1

V (x−al) = ∑V (x− la).

where we choose a model potential V (x), which captures the essence of the prob-

lem.

V (x) = 2V0 cos2(
πx

a
),

−a

2
≤ x ≤ a

2
(4.13)

= 0 |x| ≥ a

2
. (4.14)

The potential is shown below in Fig. 4.3.

a

Fig. 4.3 Figure depicts the periodic potential in Eq. (4.13).
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How does the wavepacket evolve in this potential. This potential is rapidly vary-

ing on length scale of a (few A◦). To treat the particle classically, the packet width

should be confined to ∆x ∼ a. This gives ∆k = a−1. This means that packet should

have k0 ≫ a−1. However at room temperature, using mv2

2
= 3kT

2
, we get deBroglie

wavelength λ0 = 2πk−1
0 = h

p
of 100’s of A◦. Hence electron is much delocalized

compared to scale at which potential varies and we have to treat the problem of evo-

lution of electron in the periodic potential quantum mechanically. Let see how we

do this.

Let a be the lattice constant such that periodic potential V (x) =V (x+a). We can

Fourier decompose

V (x) = ∑
k

Vk exp(ikx). V−k =V ∗
k .

For example when V (x) is as in Eq. (4.13), we have

V (x) =V0(1+
exp(i 2π

a
)

2
+

exp(−i 2π
a
)

2
).

What does this potential do ? It couples wavevectors k± 2πm
a

. Then suppose we

have a wavefunction of the form

φ(x) = ∑
m

bm exp(i(k+
2πm

a
)x)

then we can write the Schröedinger equation as

d

dt











...

b−1

b0

b1

...











=−iH











...

b−1

b0

b1

...











,

where,

H =













. . . . . . . . . . . . . . .

0
h̄2(k+ 2π

a )2

2m
+V0

V0
2

. . . 0

0
V0
2

h̄2k2

2m
+V0

V0
2

0

0 0
V0
2

h̄2(k− 2π
a )2

2m
+V0

V0
2

0 . . . . . . . . .
. . .













. (4.15)

The V0 on the diagonal is just a phase factor, we can remove it to get
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H =













. . . . . . . . . . . . . . .

0
h̄2(k+ 2π

a )2

2m
V0
2

. . . 0

0
V0
2

h̄2k2

2m
V0
2

0

0 0
V0
2

h̄2(k− 2π
a )2

2m
V0
2

0 . . . . . . . . .
. . .













. (4.16)

The eigenfunctions of the Bloch electrons take the general form

ψk(x) = exp(ikx)uk,n(x),

where k is the crystal momentum lying in range −π
a

≤ k ≤ π
a

, uk,n(x+ a) = uk,n(x)
is the periodic part of the wavefunction and n is the band index. We have

uk,n(x) = ∑
k

bk exp(−i
2πkx

a
)

The corresponding energies ωk,n are eigenvalues of the system Hamiltonian

H =













. . . . . . . . . . . . . . .

0
h̄2(k+ 2π

a )2

2m
+V0

V0
2

. . . 0

0
V0
2

h̄2k2

2m
+V0

V0
2

0

0 0
V0
2

h̄2(k− 2π
a )2

2m
+V0

V0
2

0 . . . . . . . . .
. . .













. (4.17)

which for different l, couples free electron states exp(i(k+ 2πl
a
)), with the periodic

potential.

If (. . . ,b1,b0,b−1, . . .)
′ is the eigenvector of H in Eq. (4.17) corresponding to

energy εk,n = h̄ωk,n, then

uk,n(x) = ∑
l

bl exp(i
2πl

a
x); ψk,n(x) = ∑

l

bl exp(i(k+
2πl

a
)x).

H =













. . . . . . . . . . . . . . .

0
h̄2(k+ 2π

a )2

2m
V0
2

. . . 0

0
V0
2

h̄2k2

2m
V0
2

0

0 0
V0
2

h̄2(k− 2π
a )2

2m
V0
2

0 . . . . . . . . .
. . .













. (4.18)

Let us focus on a two by two block as shown below. For k ∈ [0, π
a
], the remaining

matrix in Eq. (4.17) can be taken to be diagonal as off-diagonal entries are truncated.
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H =

[
h̄2k2

2m
V0
2

V0
2

h̄2(k− 2π
a )2

2m

]

. (4.19)

In fig. (4.4), we sketch ω(k) as function of k (right half).

(k)ω

π/aπ/a− k

Fig. 4.4 Figure depicts the energy ωk as function of k for periodic potential in Eq. (4.19).

The eigenvalues of (4.19) can be written in closed form. For

H =

[
µ1 V0

V0 µ2

]

, (4.20)

we have the eigenvalues

µ1 +µ2

2
±
√

(
µ1 −µ2

2
)2 +V 2

0 .

At k = π
a

, we have µ1 = µ2 and the difference of eigenvalues is called the band gap.

For k ∈ [−π
a
,0], we focus on the following sub-block of Eq. (4.17).

H =

[
h̄2k2

2m
V0

V0
h̄2(k+ 2π

a )2

2m

]

. (4.21)

This helps us sketch ω(k) as function of k (left half).

We now consider when only n = 0 is populated, we suppress band index from

now with n = 0 implied. Now consider a wavepacket around k = k0 written as

φ(x) =
1√
N

∑
j

ψk j
(x) =

1√
N

u(x)∑
j

exp(ik jx),
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where uk(x) for k around k0 are approximated to be same u(x). Then this wavepacket

evolves as

φ(x, t) =
u(x)√

N
∑

j

exp(−iω(k j)t)exp(ik jx)

=
u(x)√

N
exp(−iω(k0)t)exp(ik0x)∑

j

exp(i∆k j(x− vgt)).

where vg =
dω
dk
|k0

. The wavepacket evolves with velocity vg.

Now lets analyze the evolution of the wavepacket in the presence of an electric

field E, say in x direction. We again introduce time varying k(t) with

k(t) = k+
eA(t)

h̄
, A(t) =−Et.

then

H(t) =














. . . . . . . . . . . . . . .

0
h̄2(k+ 2π

a +
eA(t)

h̄
)2

2m
+V0

V0
2

. . . 0

0
V0
2

h̄2(k+
eA(t)

h̄
)2

2m
+V0

V0
2

0

0 0
V0
2

h̄2(k− 2π
a +

eA(t)
h̄

)2

2m
+V0

V0
2

0 . . . . . . . . .
. . .














.

(4.22)

Then observe

ωk,n(t) = ω
k+

eA(t)
h̄

,n
= ω

k− eEt
h̄
,n. (4.23)

This is how energies of H(t) change when we apply electric field. To solve for time

varying Schröedinger equation we have to realize that for moderate E, the change

of H(t) is adiabatic and hence we really just follow the eigenvectors of H(t). To see

how this adiabatic following works, say at t = 0, we are in the ground state say X(0)
(note X(0) = (. . . ,a1,a0,a−1, . . .)

′, where ψk(x) = ∑l al exp(i(k+ 2πl
a
)x).) then X(t)

satisfies the Schröedinger equation

Ẋ =
−i

h̄
H(t)X .

Lets diagnolize H(t) as

H(t) =Θ(t)Λ(t)Θ ′(t),

where Θ(t) is matrix of eigenvectors and Λ(t) eigenvalues. H(t) is symmetric

and Θ(t) a real rotation matrix. As we will see, this will ensure we don’t have any
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geometric phases in our adiabatic evolution. Then we have Θ̇(t) = Ω(t)Θ , where

Ω(t) is a skew symmetric matrix and we get for Y (t) =Θ ′(t)X(t),

Ẏ = (
−i

h̄








λ1 0 0 0

0 λ2 0 0
... . . .

. . .
...

0 0 0 λn







+Θ ′Ω(t)Θ
︸ ︷︷ ︸

Ω̄

)Y. (4.24)

where λ1 is the smallest eigenvalue and so on. Note Y (0) = (1,0, . . . ,0)′.
Now there is a gap between the lowest eigenvalue and higher eigenvalues which

is atleast the band gap in range of eV. Ω̄1 j(t) are comparatively small as we will

show in following, and therefore they average out and Y (t) simply evolves at Y (t) =
exp(− i

h̄

∫
λ1(σ))Y (0) = exp(−i

∫
ωk(σ))Y (0) and we get that we just adiabatically

follow the eigenvector of H to get

ψ(t) = exp(−i

∫

ωk(σ)dσ)ψ
k+

eA(t)
h̄

= exp(−i

∫

ω
k− eEσ

h̄
dσ)u

k− eEt
h̄
(x)exp(ik(t)x).

To estimate how big are elements Ω̄1 j(t), observe

Ḣ = Θ(t)Λ̇(t)Θ ′(t)+ [Ω ,H]

Θ ′(t)ḢΘ(t) = Λ̇(t)+ [Ω̄ ,Λ ]

‖[Ω̄ ,Λ ]‖ ≤ ‖Θ ′(t)ḢΘ(t)‖= ‖Ḣ‖.

Let Ω̄∗(t) = max{Ω̄1 j(t)}, then we have

(λ1 −λ2)Ω̄∗(t)≤ ‖[Ω̄ ,Λ ]‖ ≤ ‖Ḣ‖. (4.25)

Note we truncate H in Eq. (4.17) to finite size, because when l on diagonal terms

of H become large the corresponding offdiagonals are rapidly truncated and in com-

puting the ground state the submatrix with few small l suffices. Usually n = 10 is

appropriate when Vl are of order eV .

When we compute Ḣ we only have terms on diagonal and they are of the form

eEh̄

m
(k+

eA(t)

h̄
),

then

‖Ḣ‖= eE√
m

√
√
√
√∑

l

h̄2(k+ 2πl
a
+ eA(t)

h̄
)2

m
=

eE√
m

√

2tr(H̄). (4.26)

where H̄ is just H without V0 on the diagonal. Then Ω̄∗(t) from Eq. (4.25) satisfies ,
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h̄Ω̄∗(t)≤
h̄eE√

m(λ1 −λ2)

√

2tr(H̄). (4.27)

Observe (λ1 − λ2) is few eV and tr(H̄) is also tens of eV , but for field say E =
10V/m, the term

h̄eE√
m

∼ 10−33 ×10−18

10−15
= 10−36.

h̄eE√
m(λ1 −λ2)

√

tr(H̄) = 10−36/
√

10−18 = 10−27J = 10−8eV.

Now we observe that (λ1 −λ2) is of order eV while h̄Ω̄∗(t) is of order 10−8eV ,

then in Eq. (4.24), we have elements Ω̄1l average out, giving us a pure adiabatic

evolution.

It should be noted that in the equation

ωk(t) = ω
k− eEt

h̄
.

we treat k− eEt
h̄

in reduced Brillouin zone i.e, for b> 0, k− eEt
h̄

= π
a
+b is reduced

to −π
a
+b ∈ [−π

a
, π

a
].

Now lets envisage a situation where we turn on a electric field in a conductor

for some time τ and switch it off. Then A(t) =−∫ t
0 E(τ)dτ rises from 0 to a steady

value A. This can be achieved as shown below in figure 4.5, where a conducting loop

is pierced by a solenoid of area ar. When current in the solenoid is turned on from

0 to a steady state value, that creates a magnetic field B(t) which goes from 0 to a

steady state value B and hence establishes a transient electric field in the conducting

loop and finally results in a steady A in the loop such that

A =
Bar

2πr
.

Then the electron wavefunction ψk = exp(ikx)uk(x) is adiabatically transformed

to exp(i(k+ eA
h̄
)x)u

k+ eA
h̄
(x). The initial wavepacket

φ(x) = 1√
N

uk0
(x)∑ j exp(k jx) is adiabatically transformed to

φ(x) =
1√
N

u
k0+

eA
h̄
(x)∑

j

exp((k j +
eA

h̄
)x).

If initially the wavepacket was moving with a group velocity vg =
dω(k)

dk
|k0

, now it

moves with a group velocity vg =
dω(k)

dk
|
k0+

eA
h̄

. This is shown in Fig. 4.6, where E(t)

is transiently turned on and off and A(t) reaches a steady state value A. The figure

shows how A in the conducting loop shifts the energy of a wavepacket and thereby

changes the group velocity and hence accelerates the wavepacket. Lets estimate

the shift eA
h̄

for the example we have. Suppose solenoid has N = 10 turns per c.m.

and carries a final current of I = 1 milli Ampere. Then it establishes a B field of
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B = µ0NI. Let r be .1 m and ar = 1 cm2. Then we have eA
h̄
= 104m−1. At half filling

k0 =
π
2a

, with a = 1A◦, k0 ∼ 1010m−1 and is displaced .0001% by electric field.

B

E

A

r

Fig. 4.5 Fig. shows a solenoid inside a loop conductor. As current in solenoid is turned on a

magnetic field B is established inside the solenoid, which creates a E in the loop that rises and

decays and A that goes from 0 to a steady state value.

We can now understand conduction in solids. Consider a half filled band in a

conductor (say the conducting loop in above example) as shown in the figure 4.7a.

There is no net velocity of electrons. There are as many wavepackets moving in

the positive direction as negative direction. While the wavepacket centered at k0 has

group velocity vg = dω
dk
|k0

, there is a wavepacket at −k0 with group velocity −vg.

There is no net current, though electrons are itenerant. Now say we apply a transient

electric field as in solenoid example above which shifts the energy ωk → ω
k+ eA

h̄
.

Then we reach a configuration as shown in Fig. 4.7b. Then we see we have excess

of wavepackets with positive vg. In the solenoid example we calculated the excess

to be around .0001%. This gives net conduction and current. Therefore half filled

bands conduct. Now imagine a insulator where band is completely filled, then all

k ∈ [−π
a
, π

a
] are occupied. After application of E we have ωk → ω

k+ eA
h̄

, but because

we are in the reduced Brillouin zone, nothing happens, as all energies are simply

shifted, the energy of one wavepacket takes the value of another and so on. Although

individual wavepackets are accelerated and deaccelerated the sum total of velocities

is still zero. It is a common understanding that in a insulator all k′s are filled so

electric field cannot accelerate a wavepacket and everything is stuck. In our picture,

wavepackets are accelerated/deaccelerated but sum total of vg of all the wavepackets

remains zero.

In an insulator as the electron wavefunction ψk = exp(ikx)uk(x) is adiabatically

transformed to exp(i(k+ eA
h̄
)x)u

k+ eA
h̄
(x), when k+ eA

h̄
> π

a
, then putting it back in

reduced Brillouin zone let k+ eA
h̄
= 2π

a
−k′, with k′ ∈ [−π

a
, π

a
], then observe u

k+ eA
h̄
(x)

really means exp(−i 2π
a

x)u−k′(x).
Now in presence of an electric field we have,
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n=1

n=0

a

− ππ/2a /2a

t t

E(t)
A(t)

k

(k)ω

Fig. 4.6 Bottom figure shows how application of current in solenoid in Fig. 4.5 establishes a tran-

sient E and A in the conducting loop which shifts the energy of a wavepacket and thereby changes

the group velocity and hence accelerates the wavepacket as in top figure.

n=1

n=0

n=1

n=0

E

a b
− −ππ π π/2a /2a /2a /2a

k

(k)ω

Fig. 4.7 Fig. a shows a half filled band. Fig. b shows how by application of electric field, the

energies are shifted.
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ωk(t) = ω
k− eEt

h̄
. (4.28)

Then the group velocity satisfies,

vg(t) =
dω

k− eEt
h̄

dk
, (4.29)

dvg(t)

dt
=

d

dk

dω
k− eEt

h̄

dt
=

d2ω
k− eEt

h̄

dk2

eE

h̄
= h̄−2

d2ε
k− eEt

h̄

dk2
eE

= − 1

m∗ eE, (4.30)

where m∗ = h̄2(
d2ε

k+ eEt
h̄

dk2 )−1 is the effective mass.

For pedagogical reasons we have restricted to 1D , we can easily generalize the

above to 3D. Let ∇′ be gradient written as a column vector and ∇ be gradient written

as a row vector. Writing vg as column 3 vector,

vg(t) = ∇′
kω

k+ eEt
h̄
, (4.31)

dvg(t)

dt
= ∇′

k

dω
k− eEt

h̄

dt
= ∇′

k∇kω
k− eEt

h̄

eE

h̄
= h̄−2∇′

k∇kε
k− eEt

h̄
eE

= − 1

m∗ eE, (4.32)

where m∗ = h̄2(∇′
k∇kε

k+ eEt
h̄
)−1 is the effective mass matrix.

We derived wavepacket dynamics of an electron in periodic potential. Of course,

the whole treatment in this paper is in the absence of a resistance. The wavepacket

in reality scatters of phonons and impurites. The present treatment only details the

dynamics of electron wavepacket between collisions with lattice.

4.3 Periodic potential in three dimensions: real solids

In last section, we studied one dimensional periodic lattices, and showed how elec-

tron energies get organized as bands, where each band is made up of block vectors

with their wavevector taking on values between [−π
a
, −π

a
]. All this can be generalized

to three dimensions. We can talk about plain wave states exp(−i(kxx+ kyy+ kzz)),
which we abbreviate (kx,ky,kz), for the electrons and how periodic potential couples

them. For example periodic potential can be simplified to

V (x,y,z) = 8V0 cos2(
πx

a
)cos2(

πy

a
)cos2(

πz

a
) (4.33)
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Fig. 4.8 Fig. shows a 3D lattice made from periodic arrangement of positively charged ions.

which is a periodic potential in three dimensions, with period a. The potential will

couple plain wave states (kx ± 2πl
a
,ky ± 2πm

a
,kz ± 2πn

a
). Let

E(kx,ky,kz) =
h̄2(k2

x + k2
y + k2

z )

2m
,

Then for each (kx,ky,kz), we can form the matrix

H =











. . . . . . . . . . . . . . .

0 E(kx +
2π
a
,ky,kz)

V0
2

. . . 0

0
V0
2

E(kx,ky,kz)
V0
2

0

0 0
V0
2

E(kx − 2π
a
,ky,kz)

V0
2

0 . . . . . . . . .
. . .











. (4.34)

when we diagonalize this matrix, we get the energies εn(kx,ky,kz), where n indices

the various bands. The corresponding eigenvectors are

un(kx,ky,kz) = ∑
lmn

blmn(kx ±
2πl

a
,ky ±

2πm

a
,kz ±

2πn

a
).

we do it for all −π
a
≤ kx,ky,kz ≤ π

a
and obtain energy bands. Fig. 4.10 shows ener-

gybands for periodic lattice in two dimensions.

The approach we have described in this section is so called the nearly free elec-

tron approximation. We start with free electrons and couple them with lattice poten-
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a

b

c

kx

k y

ε

Fig. 4.9 Fig. shows energy bands for periodic two dimensional lattice.

tial. There is another method for solving for electron energies and wavefunctions in

a periodic potential. It is called the tight binding approximation. Here our starting

eigenvectors are atomic orbitals localized on atom sites. As we bring atoms together

in lattice, these orbitals interact with potential of neighboring ions and get delo-

calized. We can solve for these delocalized waves and their energies as shown in

following section.

4.4 Tight Binding Approximation

The basic idea is as follows. Consider a periodic array of say hydrogen atoms. If

we take an isolated hydrogen atom then the electron around its nucleus organizes as

orbitals with energies εk. Now suppose we bring hydrogen atoms together, as long

as they are far nothing changes, as each hydrogen atom has its own electron and

they are isolated because electron of one hydrogen atom sees no potential due to

another because the electron in the other atom screens its charge. Then if we have a

array of isolated hydrogen atoms, well separated then the energies and eigenvectors

are as for individual ones. But now suppose we bring the atoms further close so

that electron of atom A enters the electron cloud of electron B. Then the electron of
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atom A will begin to also see some potential due to ion B, as its charge is not fully

screened and this will modify the wavefunction and energies of electron A.

B

A Bφ φ

A

Fig. 4.10 Fig. shows two potential wells A and B and their corresponding orbitals with overlap

between them.

Let us call the potentials of ions VA and VB and the wavefunctions φA and φB each

with energy ε0. There is a transition from φA to φB given by

〈φBVBφA〉=−t.

and similarly by symmetry there is transition from φB to φA given by

〈φAVAφB〉=−t.

Then in the basis φA and φB, we can write the Hamiltonian as

H =

[
ε0 −t

−t ε0

]

(4.35)

The eigenvalues now are ε0 ∓ t and eigenvectors 1
2
(φA ±φB). The two electrons

will now occupy the lower energy orbital 1
2
(φA + φB). The new orbitals are linear

combination of atomic orbital (LCAO).

Thus we have seen how atomic orbitals are modified when we bring atoms closer.

We form molecular orbitals. Now we extend this to a periodic array say first in one

dimension, also called a 1 d chain.
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A B

Fig. 4.11 Fig. shows two atomic orbitals φA and φB and their linear combinations with energy

ε0 − t and ε0 + t.

n

nk

k1 2

1 2
φ φ

φ φ

Fig. 4.12 Fig. shows atomic orbitals φ1 to φn and their potential wells.

H =














ε0 −t 0 . . . . . . −t

−t ε0 −t 0
. . .

...

0 −t ε0 −t 0
...

...
. . .

. . .
. . .

. . .
...

0 . . . . . . −t ε0 −t

−t 0 . . . . . . −t ε0














(4.36)

where we have introduced a transition between 1 and n to close the chain. H above

is a circulant matrix of the form














r0 r1 r2 . . . . . . rn

rn r0 r1 r2

. . .
...

rn−1 rn r0 r1 r2

...
...

. . .
. . .

. . .
. . .

...

r2 . . . . . . rn r0 r1

r1 r2 . . . . . . rn r0














(4.37)
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A circulant matrix is always diaganolized by a DFT matrix whose jth column is

1√
n









1

ω j−1

ω2( j−1)

. . .

ω(n−1)( j−1)









with eigenvalue ∑k rk(ω
j−1)k−1 where ω in nth root of unity

ω = exp(i 2π
n
). Then our eigenvalues are

ε0 −2t cos
2π j

n
, 0 < j < n−1.

which can be written as

ε(k) = ε0 −2t coska,
π

a
< k <

π

a
, (4.38)

This is called a dispersion relation. The eigen vectors are of the form

Ψ(x) = ∑
l

exp(ikla)φ(x− la) (4.39)

Recall the eigenfunction for the Block electrons in a periodic potential. It has the

form exp(ikx)p(x) where p(x) is periodic with period a. The orbital in 4.39 is simi-

lar, except its exponential part is sampled at lattice points.

Thus starting from isolated atomic orbitals, with one energy ε0, we branch into

many energies as we decrease the spacing between atoms. The energy gets broad-

ened into a band. This is shown in figure 4.13

ε

a

0ε

Fig. 4.13 Fig. shows how atomic orbital energy ε0 gets branched into many energies as we de-

crease the separation a between orbitals.

Now coming back to 1 d chain of hydrogen like atoms, we found that given N

atoms, we get N wavevectors with their k ranging from −π
a

to π
a

, we have N orbitals

with wavevector separation of 2π
N

between them. These are shown in figure 4.14.
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ε
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Fig. 4.14 Fig. shows a plot of dispersion relation in Eq. (4.38).

By Pauli exclusion principle, each orbital can carry only 2 electrons with opposite

spins. Since we have N electrons, if we fill the energy levels starting from minimum

energy, we get only N
2

filled orbitals as each can hold two electrons. The remaining
N
2

orbitals are empty. When we discussed chain of periodic potentials, we showed

how half filled bands conduct. Same is true now. After we do tight binding approx-

imation, we still have the same principle, half filled bands conduct. We can form

electron wavepackets

1√
n

∑
j

exp(ik jx)p(x), (4.40)

centered at wavevector k0 with p(x) the atomic or periodic part. Then this will

evolve with group velocity h̄−1 dε(k)
dk

|k0
. In presence of electric field it evolves as

1√
n

∑
j

exp(ik j(t)x)p(x), (4.41)

where k j(t)= k j− eEt
h̄

, with center k0(t)= k0− eEt
h̄

. Then this will evolve with group

velocity

vg(t) = h̄−1 dε(k)

dk
|k0(t). (4.42)

Observe then



78 4 Electrons in periodic Potential

dvg(t)

dt
= h̄−1 d2ε(k)

dk2
|k0(t)(k̇0(t)) =− h̄−2 d2ε(k)

dk2
|k0(t)

︸ ︷︷ ︸

1/m∗

eE. (4.43)

The wavepacket moves like classical particle in electric field E with mass m∗.

Now imagine an atom with many orbitals with energies ε1, . . . ,εN . Then as we

bring these atoms together, these energies will get broadened as shown in fig (4.15).

+

ε

ε

ε

1

2

3

a

ε

ε

ε1

2

3

ε

 

Fig. 4.15 Fig. shows how many orbitals with energies ε1, . . . ,εN get broadened as we decrease the

separation a between orbitals.

The tight binding approximation has been described using a 1-d chain. In real

solids, we have periodic arrangement of ions in three dimensions. Then we have

to solve tight binding approximation for three dimensions. To do this let us recall

1-dimension in a different format. There we solve a eigenvalue problem of the form

(xl are eigenvector entries)

−t(xl−1 + xl+1) = εxl . (4.44)

This is solved by using a wave-ansatz xl = exp(ikla) = ω l with ε = −2t cos(ka),
with −π

a
≤ k ≤ π

a
.

How does this problem look in two dimensions with periodic arrangement of

ions with spacing a. We find we have equation,

−t(xl−1,m + xl+1,m + xl,m−1 + xl,m+1) = εxlm. (4.45)

This is solved by using a wave-ansatz xlm = exp(ikxla)exp(ikyma) with ε =−2t(cos(kxa)+
cos(kyb)) with −π

a
≤ kx,ky ≤ π

a
. We plot below the function ε(kx,ky).
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Fig. 4.16 Fig. shows plot of ε =−2t(cos(kxa)+ cos(kyb)) as function of (kx,ky).

How does this problem look in three dimensions with periodic arrangement of

ions with spacing a. We find we have equation,

−t(xl−1,m,n + xl+1,m,n + xl,m−1,n + xl,m+1,n + xl,m,n−1 + xl,m,n+1) = εxl,m,n. (4.46)

This is solved by using a wave-ansatz xlmn = exp(ikxla)exp(ikyma)exp(ikzna) with

ε =−2t(cos(kxa)+ cos(kya)+ cos(kza)) with −π
a

≤ kx,ky,kz ≤ π
a

.

In the following figure 4.17, we show how does energies of atomic orbitals in

a 3D solid say (sodium or calcium) get broadened as we bring the atoms closer.

For sodium (atomic number 11) we have electronic state 1s22s22p63s1 with only 1

electrons in 3s. As this energy level gets broadened we have two electrons in each

k-state giving that the band is half filled. As a result Sodium is a conductor. How

about calcium (atomic number 12), it has electronic state 1s2,2s2,2p6,3s2 and has

2 electrons in 3s. As energy level gets broadened we have two electrons in each k-

state giving that the s band is fully filled hence we should have calcium as insulator.

However s band overlaps with p band and hence both of then get partially filled and

we get a conductor. For Aluminium (atomic number 13) we have electronic state

1s22s22p63s23p1 and we have three electrons. Again we fill both s and p and the s

band may get fully filled but p band is partially filled and we have conductor. Hence

all these are metals, they are good conductors.

Now lets take next element silicon (atomic number 14) we have electronic state

1s22s22p63s23p2. Since silicon will occupy most of the remaining chapter, we spend

some time studying its band structure. Its band structure is very interesting. There
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are atoms at corner of cube and at center of all faces of a cube. Such a structure

is called fcc structure. Silicon lattice is made of such a fcc lattice and its dispaced

version by an amount a
4
(1,1,1) as shown in fig. 4.18B. There is 1 3s orbital, and

three 3p orbitals, which combine to form four sp3 orbitals. Each silicon atom say

at lattice position a
4
(1,1, ,1) will form bonds with its four immediate nghs (0,0,0),

a( 1
2
, 1

2
,0), a(0, 1

2
, 1

2
) and a( 1

2
,0, 1

2
) with one sp3 orbital each, as shown in fig. 4.18B.

The two sp3 orbitals of the neighbouring silicon atoms strongly overlap as shown

in fig. 4.18B. Then as described in fig. 4.12, the two sp3 atomic orbitals combine to

form two molecular orbitals at energies ε+t and ε−t. Now these molecular orbitals

also overlap, and hence we have a picture like following fig. 4.19, where molecu-

lar orbitals are formed from atomic orbitals as in fig. 4.19a, which due to overlap

between them get further broadened as in fig. 4.19b with ∆ as the gap between the

lower and higher manifold as shown in 4.19b.

a

3p

3s
ε

Fig. 4.17 Fig. shows how 3s and 3p orbitals get broadened for an atom like sodium or calcium.

We develop a simple model to illustrate this process of first forming molecular

orbitals from atomic orbitals and then broadening them. The sp3 orbital has two

lobes a big positive lobe and a small negative lobe as shown in fig. 4.22A. Consider

a linear chain of atoms with two kind of orbitals at each site φi and φ̄i. With transfer

integral −t1 between φi and φ̄i+1 and transfer integral t2 between φi and φi+1 (pos-

itive lobe of φi talks to negative lobe of φi+1) . This is shown in fig. 4.20. Then we

have molecular orbitals Φi =
φi+φ̄i+1√

2
with energy ε − t1 and Φ̄i =

φi−φ̄i+1√
2

with en-

ergy ε + t1. But now Φi talk to each other with transfer integral t2 between them and

Φ ′
i talk to each other with transfer integral t2 between them. Then Φi gets broadened

into a band and Φ ′
i get broadened into another band as shown in figure 4.21.

Observe the maximum of lower energy manifold (called valence band) and min-

imum of the higher energy manifold (called conduction band) happens at different

k. Hence this is an indirect band gap. This is basically what happens in a silicon

crystal. In we have two electron per atomic orbital (left and right as in 4.20) then

all the lower energy manifold made out of Φi will be filled with two electrons per
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orbitals

A B

sp3

Fig. 4.18 Fig. A shows two inter-spaced fcc lattices that make the silicon lattice.

A B
A B

∆

k

(k)ω

Ec

E
v

c

 a b

Fig. 4.19 Fig. shows molecular orbitals are formed from atomic orbitals as in fig. a which due to

overlap between them get further broadened as in fig. b. Fig. c shows conduction and valence band.

The energy at bottom of conduction band is Ec and at top of valence band is EV .

orbital and we will end up in a insulator. However if the band gap is not too high

(band gap in silicon is around 1.1 eV) some of the electrons from the valence band

will be excited to conduction band at high temperatures. This will make the material

a conductor. Such a material which is insulator at low temperatures and conductor

at high is called a semiconductor. Silicon is a prime example.

We now look at another semiconductor, Gallium Arsenide (GaAs). Its structure

is same as silicon as shown in fig. 4.18A, except now we have a sites of Ga and

b sites of As. Outer electronic configuration of Ga is 4s24p1 and As is 4s24p3.
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i iφ φ

+ +− −

Fig. 4.20 Fig. shows two kind of atomic orbitals φ facing right and φ̄ facing left.

π/a
π/a π/aπ/a −2

ε

Fig. 4.21 The figure shows indirect bandgap for sp hybridized orbitals in a model for silicon.

1 2

3

+ +−

+

−
+

A

B
Fig. 4.22 The figure A shows two lobes of a sp3 orbital. Fig. B shows how these sp3 orbitals

overlap in a crystal.

Like silicon they also form sp3 orbitals except now sp3 orbitals of As are more

electronegative and have lower energy compared to Ga. Then a sites have energy
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ε1 = ε0 + ∆ε and b sites have energy ε2 = ε0 − ∆ε . Although we have transfer

integral between orbitals on a and b sites, due to large energy difference between

the two sites, it gets truncated, instead between consecutive a sites we have a second

order coupling between φi and φ̄i+2 of −t ′1 and between φi and φi+2 of t ′2. Similarly

between consecutive b sites we have a second order coupling between φi and φ̄i+2

of t ′1 and between φi and φi+2 of −t ′2. Then b sites give two bands as in figure 4.21

at lower energies (of b sites) and also two bands at higher energies (of a sites). The

lower two bands are the valence band that hold 2n electrons.

π/a
π/a

−

ε

0 2  

Fig. 4.23 The figure shows direct bandgap for material like GaAs.

To understand what this second order coupling is let H =





ε1 t 0

t ε2 t

0 t ε1



 the cou-

pling Hamiltonian of three site system a− b− a, with ε1 energy of site a and ε2

energy of site b. t is the coupling between the sites. The 13 entry in this matrix is

zero, but if we evolve H, we get an effective 13 coupling as a second order term of

magnitude t2

ε1−ε2
and furthermore due to large energy difference ε1 − ε2 the 12 and

23 entries are suppressed in effective evolution.

As remarked before in a semiconductor at low temperatures valence band is full

and conduction band is empty, as we raise the temperature electrons from top of

valence band are excited to conduction band. These excited electrons may fall back

and the difference of energy of the bands may be emitted as light, given be relation

h̄ω = ∆E . The wavenumber of this light k = ω
c

. For ∆E in couple of eV , we have ω

as 1014 and corresponds to k = 106. Compared to wavenumber π
a

, this is negligible.

Hence conservation of momentum says that wavenumber of electron in conduction

and valence band should be same, which is true in direct band-gap materials. Hence

direct bandgap materials can emit light. For instance GaAs emits red light. If we

take GaP (Gallium Phosphide) then the bandgap is even bigger, as phoshide is more
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electronegative than As and hence ∆E is bigger. Giving light of higher frequency

i.e. green light. It is even more in GaN (Gallium Nitride), giving blue light. With

these three colors, we can make white light which is how our LED bulb works. We

will say more about this when we discuss Light emitting diodes (LED).

Problems

1. Consider a simple cubic lattice with a and t as the lattice parameter and the hop-

ping parameter and onsite energy ε0. Find dispersion relation ε(k), where assume

interaction with nearest nghbs. Assuming one electron per site, how is the band

filled.

2. Consider a BCC lattice with a and t as the lattice parameter and the hopping

parameter and onsite energy ε0. Find dispersion relation ε(k). where assume in-

teraction with nearest nghbs. Assuming one electron per site how is the band

filled.

3. Consider a FCC lattice with a and t as the lattice parameter and the hopping

parameter and onsite energy ε0. Find dispersion relation ε(k), where assume in-

teraction with nearest nghbs. Assuming one electron per site how is the band

filled.

4. Consider a Silicon lattice with a and t as the lattice parameter and the hopping

parameter and onsite energy ε0. Assuming four sp3 hybridized electron per site,

find dispersion relation ε(k) for valence and conduction band.

5. Consider a Gallium-Arsenide lattice with a and t as the lattice parameter and the

hopping parameter and onsite energy ε1 on Gallium and ε2 at Aresenic. Assum-

ing four sp3 hybridized electron per site find dispersion relation ε(k) for valence

and conduction band.

6. Consider a 1D periodic potential with lattice parameter a = 3A◦ and t parameter

at 5eV . Calculate the fermi-velocity of a half filled band.

7. Now consider a 3D periodic potential with simple cubic lattice and lattice param-

eter a = 3A◦ and t parameter at 5eV . Calculate the fermi-velocity for an electron

in half filled band on Fermi sphere in direction (1,0,0).

8. Consider a 1D periodic potential with electrons treated in free electron approxi-

mation. With potential

V =V0 cos2(
πx

a
) (4.47)
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with V0 = 100V and lattice parameter a = 3A◦. Sketch first two energy bands and

find the band gap.

9. In the above find the band gap between 2nd and 3rd band.

10. Consider a 3D periodic potential with electrons treated in free electron approxi-

mation. With potential

V =V0 cos2(
πx

a
)cos2(

πy

a
)cos2(

πz

a
), (4.48)

with V0 = 100V and lattice parameter a = 3A◦. find the band gap between first

two energy levels.





Chapter 5

Electronic Devices

5.1 Doping

Lets consider silicon again, and now suppose we replace some of them with phos-

phorus atoms. Silicon outer shell is 3s23p2, while in phosphorus we have 3s23p3.

Thus phosphorus will give one more electron. We may just say that in silicon va-

lence band is all filled, so the extra electrons given by phosphorus atom will just

go into conduction band making silicon a conductor. We say silicon is n-doped. We

talked about n doped silicon. We can replace silicon with Aluminium Al, whose

outer shell is 3s23p1. Not all valence band will be filled now, there are vacancies,

we call holes. Since we have partially filled band we will again get a conductor. This

is called a p doped silicon.

Most of modern electronics [15, 16] is playing with n and p doped silicon and

making useful devices out of them. Next few sections are devoted to description of

these devices. We start with most basic of these called a p-n junction.

5.2 p-n junction

Fig. 5.1a shows a pn junction with p-doped silicon on right and n doped silicon

on the left. When we apply a positive voltage to p junction compared to n junction

(forward bias), the following happens. The valence electron in the p region moves

toward positive terminal, creating a positive p region, which pulls the conduction

electrons of the n region into the p region and current flows, see fig 5.1b. Some of

these electrons arriving from n region will recombine with the holes in the valence

band. Nonetheless, there is current flow in the forward bias.

Now apply a positive voltage to the n junction compared to p junction (reverse

bias), the following happens. We cannot pull valence of p, they are filled. The va-

lence electrons in p region cannot move in n junction, as all valence states in n

87



88 5 Electronic Devices
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Fig. 5.1 Fig. a shows a pn junction. Fig. b shows conduction and valence band separated by energy

gap ∆ . Dotted lines shows the fermi level, the energy upto which the band is full (at 0 temperature).

Ec and Ev are bottom and top of conduction and valence band energies respectively.

region are filled and they donot move under an electric field, see fig 5.1b. Thus we

donot have current flow in reverse bias.

In practice, when we we bring a p and n junction in contact there is transfer

of charge between them. The conduction electrons in n region are at higher energy

compared to electrons in the p region which are in valence band. Hence there is flow

of electrons from n region to p region. This leaves n region positively charged and p

region negatively charged and an electric field develops at the interface as shown in

fig. 5.2A, which prevents further flow of charges. Under this condition, if we make p

terminal slightly positive, current won’t flow. The n region conduction electron are

attracted to p region but they cannot come through to p-side due to interface field.

To make the current flow, we have to apply enough positive voltage (.7 V for silicon)

on the p terminal so that it cancels the interface field. Then current can flow. If we

apply a positive voltage (reverse bias) to n terminal, we cannot pull the valence of

n as they are filled. Which means valence of p cannot move in to n. We cannot pull

conduction of n as who will take there place, there are no conduction on p. We end

up with no current.

Fig. 5.2B shows the energy of the valence band and conduction band and fermi

level as function of position. Due to interface field, the energy of the bands is shifted

upwards on the p side. Fig. 5.2C shows the energy of the valence band and conduc-

tion band and fermi level as function of position under forward bias. Fig. 5.2C shows

the energy of the valence band and conduction band and fermi level as function of

position under reverse bias.

We saw p− n junction conducts when it is forward biased and doesnot conduct

in the opposite direction. Therefore a p-n junction is used as an rectifier and is called

a diode. It is shown in fig. 5.3B with arrow pointing towards n region. When diode
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Fig. 5.2 The fig A shows an electric field at the interface. Fig. B shows band energy diagram where

fermi levels get aligned due to interface field. Fig. C shows band energy diagram under forward

bias. Fig. D shows band energy diagram under reverse bias.

is forward biased, there is .7 V drop across the diode and remaining voltage drop

is across resistance. When diode is reverse biased, all drop across the diode and no

voltage drop is across resistance. Voltage V (t) across resistance is a rectified version

of voltage U(t) across source as in 5.3A. Rectifiers find use in all sorts of circuits

including communication circuits.

We saw how to build a rectifier using semiconductor junctions. Its called a diode.

Lets now see how to build an amplifier using semiconductor junctions.
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Fig. 5.3 The fig A shows how an voltage is rectified. fig. B shows the circuit to do rectification.
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Fig. 5.4 The fig A shows schematic of a transistor. Fig. B shows a cartoon of how electrons and

bands are in various regions without taking into account interface electric fields. Fig C shows the

energy level diagram of a transistor.

5.3 Transistor

Transistor has two junctions as shown in 5.4A. A p region called base sandwiched

between two n regions (called emitter and collector) as shown in fig 5.4A. One pn
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junction is forward biased (emitter and base) and other reverse biased (base and

collector). Forward biased pn junction sucks valence electrons from p region and

hurls conduction electrons from the n region in the p-region as shown in 5.4B.

These electron are immediately sucked by the reverse biased junction and on their

transit fraction α of them recombine and contribute to the p junction current, the

remaining 1−α fraction just fly by to other n region as shown in 5.4B. If I is the

base current, 1−α
α I = β I is the collector current and (1+ β )I the emitter current.

α is small, so β is large, and is called the current gain of the transistor. Fig. 5.4C

shows energy level diagram for the transistor.

5.3.1 Current Source and amplifier

n p n

E

R2

R1

R2

Vin

B

V 2 V0

B C

 

A

V1R1

V
2

Fig. 5.5 The fig A shows schematic of a transistor. Fig. B shows a cartoon of how electrons and

bands are in various regions without taking into account interface electric fields. Fig C shows the

energy level diagram of a transistor.

Transistor acts a current source. Fig. 5.5A shows by use of a forward bias and

resistance R1, we establish a current in emitter, simply given by Ie =
V1−.7

R1
. This

gives a collector current
β

β+1
Ie ∼ Ie and the potential drop across resistance R2 as

IeR2 =
R2(V1−.7)

R1
. Thus the voltage V1 is amplified to

R2
R1

V1, where
R2
R1

is the amplifier

gain. V1 can have oscillating parts as shown in figure 5.5B, which get amplified, the

DC part of V1 is used to bias the base emitter circuit as shown in figure 5.5B.

A good amplifier should have large input impedance as all voltage from a source

appears across it then. Similarly a good amplifier should have low output impedance

as all amplified voltage appears across the load. Lets compute the input and output

impedance of the amplifier in 5.5B. Changing input voltage by ∆V gives ∆ Ie =
∆V
R1

and ∆ Ib = ∆V
βR1

, then input impedance is ∆V
∆ Ib

= βR1. Similarly, if we measure the

voltage across R2 with a voltmeter with impudence R′ then R2 gets modified to
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R2R′
R2+R′ and hence the voltage is R′

R2+R′
R2
R1

V1, hence the voltage is reduced by a factor

R′
R2+R′ , this means output impudence is just R2.

5.4 Field effect transistor

What we have studied is a Bipolar junction transistor. One of its main application is

its use as an amplifier. Now we study another kind of transistor called Field effect

transistor (FET). Its main application is it acts like a switch. FET is as shown in fig.

5.8A. There is p doped channel sandwiched between two n doped regions, called

source (S)and drain (D) respectively. If we apply a voltage between source and drain

no current will flow as shown in fig. 5.8B as p region has only carriers in valence

band which cannot move to n regions as valence band is full. For conduction we

need carriers in the p region in the conduction band. We arrange this by building a

capacitor, a metal plate and a oxide dielectric and then we put positive voltage on the

metal. The effect is to attract excess charges in the p region to the oxide-p interface.

These excess charges will go to conduction band and we will be able to conduct,

this is shown in 5.8C. We say we have formed an inversion layer at oxide-channel

interface. We say we have turned on our switch, by applying a positive voltage to the

metal plate also called gate. This device is called Metal Oxide Field Effect Transistor

(MOSFET). In 5.8D is shown a cartoon of a communication system that transmits

when switch is on (transmit 1), and does not transmit when switch is off (transmit

0).

5.4.1 MESFET, GaAs, and High Mobility Transistors (HEMT)

We saw how we form an inversion layer by applying a positive voltage on the gate,

pulling electrons. When we remove the voltage, we relax back and inversion layer

disappears. How fast can be switch inversion layer on and off depends on how fast

can we accelerate electrons, with electric field, which is inversely proportional to

their effective mass or directly proportional to their mobility µ (µ = eτ
m

, where τ is

relaxation time) . In high speed communication, we need faster switching and hence

we need to have high mobility electrons. Therefore instead of silicon, we use GaAs

which has higher mobility. Why low mass and high mobility for GaAs. Recall in

GaAs, the conduction band is the gallium band with Gallium sites indirectly coupled

through As. The energy is of the form ε(k) = ε0−2t cos(ka) with m−1 ∝ d2ε
dk2 ∝ t a2.

a is large because Ga sites are farther part, and so is transfer integral t which is a

measure of how orbitals scatter through As site. Since As is more electronegative

than Si, we see larger t and larger mobility.

Therefore we use GaAs, which has larger mobility in the conduction band. The

device is simply a n GaAs channel between n based source and drain. Instead of

using oxide we simply use a metal gate. If no voltage is applied to gate then channel
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Fig. 5.6 Fig. A shows the schematic of a MOSFET. Fig. B shows the bands for the source, channel

and drain. Fig. C shows the formation of the inversion layer. Fig. D shows how FET can be used

as a switch in a communication transmit circuit.

conducts and on application of negative voltage will push electrons away from inter-

face creating a depletion region and we stop conducting. Due to higher mobility it

is faster to push/pull GaAs as compared to Si so it can be used for faster switching.

InAs has even higher mobility because Indium is more delocalized than Galium and

has larger transfer integral.

The mobility is GaAs is still limited because it is n doped (Si replaces Ga). We

can think of Si as Ga with extra charge at doping sites which act as scattering im-

purities and limits mobility. To get better mobility we should use undoped GaAs.

But now how will it work as there is no channel to begin with. We can get a chan-

nel, if we instead of oxide use n doped Al1−xGax As. This material has even larger

bandgap than GaAs as Al is more polar. Then electrons will flow from Al1−xGaxAs

to GaAs creating a inversion layer called 2DEG (2 dimensional electron gas). This

makes GaAs channel conducting. By putting a negative voltage on the gate, we re-

pel these electrons and channel disappears. This arrangement has very high mobility

and this FET is called High Mobility Transistors (HEMT). It is used for high speed

communication applications.
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5.5 Optoelectronics

5.5.1 Light emitting diodes and Semiconductor lasers

We have already discussed the basic idea of a light emitting diode. We have a direct

band gap material like GaAs. We make a pn junction out of it. Then we put positive

voltage on p junction and pull the valence electrons creating positively charged

region which hurls conduction electrons from the n side. These conduction electrons

then recombine with holes in the valence band emitting light. Depending on the

band-gap ∆E we emit red light in GaAs, green light in GaP and blue light in GaN.

∆∆ EE

PN

Fig. 5.7 Fig. shows the schematic of a LED. A positive voltage on p junction pulls the valence

electrons creating positively charged region which hurls conduction electrons from the n side.

These conduction electrons then recombine with holes in the valence band emitting light.

The emission from LED is not coherent. As electrons fall from conduction to

valence band they emit light of same frequency but the phase of light is not same i.e.

it is incoherent. Furthermore the wavevectors of emitted light are in all directions,

the emitted light is not directional. However if we build a cavity which can store

this light by reflecting it from its ends. Then the emitted light will induce more

emissions. This is called simulated emissions, very much like a two level system

driven by electric field. if λ is the spontaneous emission rate and µ is the rate of

simulated emission due to a single photon. Then as soon as a single photon is emitted

it induces another emission and does it before another spontaneous emission takes

place. Then we have two coherent photons which emit more and so on. If µ ≫ λ
we will emit many many photons before another spontaneous emission and they

all will be coherent. Furthermore simulated light has same wavevectors and hence

direction. Thus we have emitted directional and coherent light, this is a laser as in

your laser pointer.
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5.5.2 solar cells

We talked about how in an LED when electrons are hurled in the p region they

recombine with the holes and emit light. The opposite of this is that we shine light

of right wavelength and promote electrons from valence to conduction band. Then

we can collect these negative and positive carriers and make a battery out of them.

For instance in the depletion region of a pn junction there is a inbuilt electric field.

The carriers that are generated in the region will travel to opposite side due to this

field and form a battery. This is a solar cell. Its just a pn junction with light creating

electron-hole pairs in the depletion region. Its schemaic is shown in figure

E

Fig. 5.8 Fig. shows the schematic of a solar cell. Light creates electron hole pair. The electric field

E in depletion region sorts them.

5.6 Fermi-Dirac Distribution

Consider a half filled band. Lower half is all filled and upper half empty. This is only

true at 0 temperature. At finite temperatures we have a probability distribution that

even upper orbitals have finite probability of occupation. This is given by Fermi-

Dirac distribution. The probability of orbital with energy ε being occupied is given

by

f (ε) =
1

1+ exp( ε−µ
kT

)
,

where µ is a parameter called chemical potential. At T = 0, µ = εF the fermi

energy, else it is slightly above it. Then you can see at T = 0 nothing above εF is

filled. Going by this formula even high unfilled bands have finite occupancy. If we

consider a semiconductor like silicon, where valence band is full and conduction

band is empty, at finite temperatures we find finite occupancy in conduction band

which increases at high temperatures so that at temp like 1000 K, silicon is a con-

ductor because conduction band has sizeable carriers and at low temperatures it is

an insulator. This is shown in fig. 5.9. We can calculate

the concentration of carriers in conduction band n. if we take bottom of conduc-

tion band to be at 0 energy then this is simply
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µ  

Fig. 5.9 Fig. shows electrons and holes in conduction and valence band respectively at finite tem-

peratures.

∫ ∞

0
N(ε) f (ε) (5.1)

where N(ε) is density of states at ε . Recall ε = h̄2k2

2m
, then ∆ε

ε = 2 ∆k
k

. number of

states in band of width ∆k is 4πk2∆k V
(2π)3 =V

(2m)
3
2

h̄3(2π)2

√
ε∆ε

Then

n=
(2m)

3
2

h̄3(2π)2

∫ ∞

Ec

√
ε exp(− (ε −µ)

kT
)=

√
2

m
3
2

h̄3π2
exp(−Ec −µ

kT
)
∫ ∞

0
x2 exp(− x2

kT
)=NC exp(−Ec −µ

kT
)

(5.2)

Nc is around 1019/cm3 for Si at 300 K.

Similarly we can derive a formula for hole concentration p and is given by

p = NV exp(
Ev −µ

kT
) (5.3)

Then the product usig n = p = ni

n2
i = np = NCNV exp(−Eg

kT
) (5.4)

ni is called intrinsic carrier concentration and depends on bandgap Eg. using Nc =
NV ∼ 1019/cm3, and Eg = 1.1eV , ni = 1010 at room temperature.

if we dope say with donor concentration ND, then µ → µ ′ and we can show we

still have np = n2
i . With n = ND, we can find p. Furthermore

Ec −µ ′ = kT ln(NC/ND). (5.5)

If instead we dope with acceptors with concentration NA.

µ ′−Ev = kT ln(NV/NA). (5.6)
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Problems

1. We considered tight binding in monoatomic chain. We now consider diatomic

chain

A−B−A−B−·· ·−A−B

where onsite energy at site A is εA and site B is εB and transfer element is −t.

Find the dispersion relation and sketch it for this chain.

2. A silicon ingot is doped with 1016 arsenic atoms/cm3. Find the carrier concen-

trations and the Fermi level at room temperature (300 K).

3. Calculate the inbuilt potential for a silicon pn junction with NA = 1018/cm3 and

ND = 1015/cm3 at 300K.

4. In Fig. 5.5B of the book assume DC votage on the base of 1V (no ac voltage).

Find the collector current if the β = 100 and R1 = 100Ω .

5. In above what should be R2 for an amplifier gain to be 100.

6. Consider metal calcium or magnesium with two electrons it the outer shell. This

says that the conduction band will be full. Why is it a metal then.





Chapter 6

Superconductivity

There is a very interesting phenomenon that takes place in solid state physics when

certain metals are cooled below critical temperature of order of few kelvin. The re-

sistance of these metals completely disappears and they become superconducting.

This phenomenon whereby many materials exhibit complete loss of electrical re-

sistance when cooled below a characteristic critical temperature [19, 20] is called

superconductivity. It was discovered in mercury by Dutch physicist Onnes in 1911.

For decades, a fundamental understanding of this phenomenon eluded the many sci-

entists who were working in the field. Then, in the 1950s and 1960s, a remarkably

complete and satisfactory theoretical picture of the classic superconductors emerged

in terms of the Bardeen Cooper Schreiffer (BCS) theory [21].

In this chapter, we spell out the main ideas of the BCS theory. BCS theory tells

us how to use phonon mediated interaction to bind electrons together, so that we

have big molecule, we call the BCS ground state or the BCS molecule. At low

temperatures, phonons donot have energy to break the bonds in the molecule, hence

electrons in the molecule donot scatter of phonons. So lets see how BCS binds these

electrons into something big.

Fig. 6.1 shows how it is when we accelerate electrons with an electric field say

in −x direction. The whole Fermi sphere displaces to the right by a small amount.

There is net momentum in the x direction and this constitutes the current. How does

the current stop. The electrons on the right shown as black dots in Fig. 3.11 are

scattered to the left as shown. This scattering is due to absorbtion of phonons and

annuls the forward x-momentum of electrons. The current stops. Fig. 6.2A shows

that in superconductivity, antipodal electron pair forms a bond. Resonant absorbtion

of phonon as in Fig. 6.2B breaks this bond. At low temperatures, phonons donot

have enough energy to break this bond, i.e., they are off-resonant. Then scattering of

electrons doesnot happen, and current doesnot stop, and we have superconductivity.

In remaining chapter, we study this bond between antipodal electrons.

99
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6.1 Cooper Pairs and Binding

A B  

Fig. 6.1 Figure shows how electrons are scattered by absorbtion of phonons.

A B

Fig. 6.2 Figure shows how resonant absorbtion of phonon breaks a pair of antipodal electrons as

in Fig. A to as in Fig. B, something superconductivity resists.

Let us take two electrons, both at the Fermi surface, one with momentum k1 and

other −k1. Lets see how they interact with phonons. Electron k1 pulls/plucks on

the lattice due to Coulomb attraction and in process creates (emits) a phonon and

thereby recoils to new momentum k2. The resulting lattice vibration is sensed by

electron −k1 which absorbs this oscillation and is thrown back to momentum −k2.

The total momentum is conserved in the process. This is depicted in Fig. 6.3A. The

corresponding Feynman diagram for this process is shown in Fig. 6.3B. The above

process where two electrons interact with exchange of phonon can be represented as

a three level atomic system. Level 1 is initial state of the electrons k1,−k1 and level

3 is the final state of the electrons k2,−k2 and the level 2 is the intermediate state

k2,−k1. There is transition with strength Ω = h̄d between level 1 and 2 involving
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Fig. 6.3 Fig. A depicts the Fermi sphere and how electron pair k1,−k1 at Fermi sphere scatters

to k2,−k2 at the Fermi sphere. Fig. B shows how this is mediated by exchange of a phonon in a

Feynman diagram. Fig. C shows a three level system that captures the various transitions involved

in this process.

emission of a phonon and a transition with strength Ω between level 2 and 3 in-

volving absorption of a phonon. Now lets pause and remember what is Ω . It comes

from electron-phonon interaction as discussed in chapter 3. The electron-phonon

coupling Hamiltonian (Fröhlich Hamiltonian ) is of form

c√
n3

︸︷︷︸

Ω

i(bexp(ikx)−b† exp(−ikx)). (6.1)

where b,b† are annihilation and creation operators for phonon. We estimated c ∼ 1

V.

Now let E1,E2,E3 be energy of the three levels as in Fig. 6.3C. E1 = 2ε1 = 2h̄ω1 ,

E3 = 2ε2 = 2h̄ω2 and E2 = ε1+ε2+ h̄ωd
︸︷︷︸

εd

. The state of the three level system evolves

according to the Hamiltonian

H =





E1 0 0

0 E2 0

0 0 E3





︸ ︷︷ ︸

H0

+Ω





0 1 0

1 0 1

0 1 0





︸ ︷︷ ︸

H1

. (6.2)

Let e1,e2,e3 be coordinate vectors which are eigenevectors of H0 with eigenval-

ues E1,E2,E3 respectively. H1 is a perturbation which to first order perturbs these

eigenvectors to
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e1 → e1 +αe2, (6.3)

e2 → e2 −αe1 −βe3, (6.4)

e3 → e3 +βe2, (6.5)

(6.6)

where α = Ω
E1−E2

and β = Ω
E3−E2

. We make these perturbed eigenvectors orthonor-

mal to second order as

e1 → e1(1−
α2

2
)+αe2 −

αβ

2
e3, (6.7)

e2 → e2(1−
α2 +β 2

2
)−αe1 −βe3, (6.8)

e3 → e3(1−
β 2

2
)+βe2 −

αβ

2
e1, (6.9)

(6.10)

and now we write H in these new basis as

H ′ =





E1 +αΩ 0
α+β

2
Ω

0 E2 − (α +β )Ω 0
α+β

2
Ω 0 E3 +βΩ



 . (6.11)

We find there is second order coupling between state 1 and 3 given by

H ′
13 =

α +β

2
Ω =

1

2

(
Ω 2

E1 −E2
+

Ω 2

E3 −E2

)

= h̄
d2ωd

(ω1 −ω2
︸ ︷︷ ︸

∆ω

)2 − (ωd)2
. (6.12)

When ε1 = ε2, we get

H ′
13 =−h̄

d2

ωd

. (6.13)

This effective coupling gives us the attractive potential responsible for supercon-

ductivity [21]. We say the electron pair k1,−k1 scatters to k2,−k2 at rate −h̄ d2

ωd
.

The scattering rate is infact V = −h̄ 4d2

ωd
as k1 can emit to k2 or −k2. Similarly −k1

can emit to k2 or −k2, making it total of four processes that can scatter k1,−k1 to

k2,−k2.

How does all this help. Suppose |k1,−k1〉 and |k2,−k2〉 are only two states around

of same energy 2ε . Then a state like

φ =
|k1,−k1〉+ |k2,−k2〉√

2
(6.14)
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has energy 2ε +V . That is lower energy than the individual states in the superposi-

tion. V is the binding energy.

We said there are only two states, |k1,−k1〉 and |k2,−k2〉 . In general we have for

i = 1, . . . ,N , |ki,−ki〉 states on Fermi sphere as shown in fig. 6.4A and if we form

the state

φ =
1√
N

∑
i

|ki,−ki〉, (6.15)

it has energy 2EF +(N −1)V where EF is fermi-energy.

B
A

ω d

Fig. 6.4 Fig. A shows electron pairs on the fermi surface. Fig. B shows electron pairs in an annulus

around fermi surface.

In Eq. (6.12), as long ∆ω < ωd , in BCS theory, we approximate V ∼ − 4Ω 2

εd
.

Therefore, if we take an annulus in 6.4B to be of width ωd , we get total number of

states in the annulus N to be N

n3 ∼ ωd
ωF

, where n3 is total number of k points in the

fermi-sphere and EF = h̄ωF is fermi-energy. This gives a binding energy ∆b =∼ c2

EF
.

With the fermi energy EF ∼ 5− 10 eV, the binding energy ∼ meV. Thus we have

shown how phonon mediated interaction helps us bind a electron pair with energy

∼ meV. This paired electron stae is called Cooper pair.
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6.2 Cooper problem

Consider a electron pair |k,−k〉 at the Fermi surface with energy 2(EF + ξk) that

scatters to states |l,−l〉 in an annulus of width h̄ωd at fermi surface with rate V .

Then lets compute the minimum energy and corresponding eigenvector. Writing the

eigenvector as

φ = ∑
k

xk|k,−k〉. (6.16)

The eigenvalue equation reads

2ξkxk −∑
l

V xl = Exk, (6.17)

or

xk =
V ∑l xl

2ξk −E
, (6.18)

summing over k , with D as density of states at Fermi surface, we get

1

DV
=
∫ h̄ωd

0

1

2ξ −E
dξ . (6.19)

This gives for DV ≪ 1 , we get

E =−2h̄ωd exp(− 1

DV
). (6.20)

Thus we get that energy is reduced below the Fermi enery of 2EF .

6.3 Dummy ground state

In Cooper problem, we talked about a superposition state of two electrons, that has

smaller energy than the Fermi energy of 2EF . This superposition was formed from

two antipodal electrons on Fermi sphere and antipodal states in an annulus around

Fermi surface. But we donot have just two electrons. What should be the state of all

the electrons near the Fermi surface so that there is enough room to scatter to empty

states for all the electron pairs present so as to reduce the total energy. For this we

propose a simple solution, we call the dummy ground sate. It highlights the essence

of real solution to the problem studied in the next section. Imagine an annulus of

energy width h̄ωd around the Fermi sphere as shown in 6.5. We have say 2N possible

antipodal pairs in this annulus. Lets say half of them N, are occupied and remaining

empty (Clearly the occupied ones have come for filled states in annulus of width
h̄ωd

2
below the Fermi-surface in normal conductor). Lets denote the occupied states

as φi1φi2 . . .φiN . Not consider a massive superposition of all such half filled states.
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ωd

 

Fig. 6.5

Φ =
1

Z
∑

i1,...,iN

φi1φi2 . . .φiN , (6.21)

where Z is appropriate mormalization to get norm 1 for Φ .

There are N empty pairs, φi1 can scatter to. Similarly φi2 , and so on. Then there

are N2 states that can scatter to the state φi1φi2 . . .φiN . This is true of all the terms

in Φ and hence Φ is an eigenvector of the pair wise scattering Hamiltonian with

eigenvalue −N2V . Thus potential energy of the state Φ in 6.21 is −N2V . Each

term in 6.21 can be reflected around the Fermi-surface. So that if φi1 has kinetic

energy 2EF − 2ξ , then the reflected state has energy 2EF + 2ξ . This ensures that

total kinetic energy of the state Φ in 6.21 is simply 2NEF . Then the total energy is

EΦ = 2NEF −N2V. (6.22)

What is the energy of the normal state, in which all pairs are in the annulus of width
h̄ωd

2
below the Fermi-surface. It is simply 2NEF −N

h̄ωd
2

. Then the difference is

EΦ −EN =−N2V +N
h̄ωd

2
. (6.23)

But note N = D
h̄ωd

2
. This means

EΦ −EN =
h̄ωd D

4
(−DV +1) (6.24)

If DV > 1 , which we call strong coupling regime, we reduce the total energy by

forming the dummy state and this state has lower energy than the normal state.

However if DV < 1, which is what is called the weak coupling limit, we increase

then energy over normal state. However there is another solution to arrangement of

pairs, which even gives lower energy than normal energy in weak coupling limit. It
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is called the BCS ground state that we describe in next section. Before we proceed

we mention two interesting facts.

Elementary excitations: Suppose in our dummy state, we introduce an extra elec-

tron in the plane wave state |k〉, at Fermi surface. Then that renders the pair φk out

of service as we cannot scatter in and out of this pair. Then if we compute EΦ , we

can only scatter to remaing N1 pairs, hence total energy is

EΦ = (2N +1)EF −N(N −1)V. (6.25)

This means that introduction of an extra electron at Fermi-surface has raised the

energy not just by EF but EF +∆ where ∆ = NV .

Broken pair: Suppose we break an antipodal state |k,−k〉 into plain wave state |k〉
and |l〉 at Fermi surface. This renders two pairs out of service. Of the remaing N−1

electron pairs, we form a state Φ ′ where each pair can scatter to N − 1 pairs. Thus

the total energy is

EΦ = 2NEF − (N −1)2V (6.26)

Thus the total energy rises by 2∆ . Now we study the weak coupling limit DV < 1

and the BCS ground state.

6.4 BCS Ground State

Once again imagine an annulus of energy width h̄ωd around the Fermi sphere as

shown in 6.5. We have say 2N possible antipodal pairs in this annulus. In last section,

we said half of them, N, are occupied. Now lets relax this hard constraint and say

pair φk is occupied with probability v2
k and emplty with probability u2

k and postulate

the state

Φ0 = ∏
k

(uk + vkφk) = ∑ci1,...,in φi1 . . .φin , (6.27)

where k runs over 2N possible antipodal pairs in this annulus. Lets find uk,vk so that

energy E0 of Φ0 is minimized.

E0 = 2∑
k

ξkv2
k −V ∑

k,l

ukvkulvl . (6.28)

Φ0 = ∏
k

(cosθk + sinθkφk). (6.29)

E0 = 2∑
k

ξk cos2 θk −
1

4
V ∑

k,l

sin2θk sin2θl . (6.30)

Minimize E0,
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0 =
∂E

∂θk

= 2ξk sin2θk +V cos2θk ∑
l

sin2θl . (6.31)

Let

∆l =
V

2
∑

l

sin2θl , (6.32)

which we take as same for all l i.e, ∆l = ∆ .

Let Ek =
√

∆ 2 +ξ 2
k , then

tan2θk =− V

2ξk
∑

l

sin2θl , (6.33)

This gives

tan2θk = − ∆

ξk

. (6.34)

2ukvk = sin2θk =
∆

Ek

. (6.35)

v2
k −u2

k = cos2θk =− ξk

Ek

, (6.36)

Then we get,

∑
k

1

Ek

=
1

V
. (6.37)

We can sum the left side. Let D denote density of states then

1

DV
=
∫ h̄ωd

2

0

dξ
√

ξ 2 +∆ 2
=

1

∆
sinh−1(

h̄ωd

2
). (6.38)

∆ =
h̄ωd

2sinh( 1
DV

)
∼ h̄ωd exp(− 1

DV
). (6.39)

6.4.1 Energy of the ground state

Having determined the coefficients uk,vk, we can ask what is the energy of the

ground state. By simply using defininition of ∆ in Eq. (6.32),

E0 = 2 ∑
|k|<kF

ξkv2
k +2 ∑

|k|>kF

ξkv2
k −

∆ 2

V
. (6.40)

If we subtract from it the energy of the normal state En where the fermi sphere is all

filled we get
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En = 2 ∑
|k|<kF

ξk. (6.41)

We get by substituting for v2
k =

1
2
(1− ξk

EK
),

E0 −En = 2 ∑
|k|>kF

(ξk −
ξ 2

k

Ek

)− ∆ 2

V
. (6.42)

E0 −En = 2 ∑
|k|>kF

(ξk −Ek)+
∆ 2

V
. (6.43)

Evaluating

2 ∑
|k|>kF

(ξk −Ek) = 2D

∫ h̄ωd
2

0
ξ −

√

ξ 2 +∆ 2 (6.44)

= 2D

∫ ∆

0
ξ −

√

ξ 2 +∆ 2 +
∫ h̄ωd

2

∆
ξ −

√

ξ 2 +∆ 2 (6.45)

∼ −D∆ 2

2
− ∆ 2

V
. (6.46)

Then

E −En ∼−D∆ 2

2
. (6.47)

6.4.2 Energy of elementary excitation

Suppose we add an extra electron in the state ψm = |m〉, then it forbids Coopper pair

φm. The resulting state is

Φe = ∏
k 6=m

(uk + vkφk)ψm. (6.48)

Lets calculate energy of Φe. We donot have state φm to scatter to by cooper pairs

which raises the energy by

V

2
sinθm ∑sinθl = sin2θm∆ .

The change of energy then is
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Ee −E0 = EF +ξm −2v2
mξm + sin2θm∆ , (6.49)

= EF +Ek. (6.50)

Thus introduction of an extra electron in the superconducting state raises the

energy by a minimum of EF +∆ . If we break a pair which amounts to removing

states φm and φn to scatter to. This means we raise the energy by 2Ek the minimum

of which is 2∆ .

6.4.3 Finite temperatures

At finite temperature, there is probability that we have elemetary excitation of state

|k〉 which happens with probability (β−1 = kT )

f (Ek) =
1

1+ exp(βEk)
(6.51)

Similarly elementary excitation of state | − k〉 which happens with probability

f (Ek) and the total probability that there is excitation in k pair is 2 f (Ek) and no

excitation is 1− 2 f (EK). Then the energy of the ground state in presence of these

elementary excitations is

E0 = 2 f (Ek)ξ +2ξkv2
k(1−2 f (Ek))−V ∑

kl

ukvkulvl(1−2 f (Ek))(1−2 f (El)),

(6.52)

again denoting uk = cosθk and vk = sinθk, we find that variation gives

tan2θk =− V

2ξk
∑

l

sin2θl(1−2 f (El)), (6.53)

As before define

∆ =
V

2
∑

l

sin2θl(1−2 f (El)), (6.54)

tan2θk = − ∆

ξk

. (6.55)

sin2θk =
∆

Ek

. (6.56)

which gives

∑
k

tanh(βEk/2)

Ek

=
2

V
, (6.57)
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which reads

∫ h̄ωd
2

0

tanh(β
√

ξ 2 +∆ 2/2)
√

ξ 2 +∆ 2
=

1

DV
. (6.58)

At Tc, ∆ → 0, which gives

∫ h̄ωd
2

0

tanh(βcξ/2)

ξ
=

1

DV
, (6.59)

which is evalutated to give

β−1
c = kTc = 1.13

h̄ωd

2
exp(− 1

DV
), (6.60)

which gives

kTc

∆(0)
= 1.13/2, (6.61)

or ∆(0) = 1.76kTc. From Eq. (6.58), we can plot ∆(T ) as shown below in fig. 6.6.

.2 .4 .6 .8 1.0

∆(T)

T/Tc

(0)∆/ 

Fig. 6.6 Plot of ∆(T ) as function of T .



6.5 Meisner Effect 111

6.5 Meisner Effect

When a superconductor placed in an magnetic field is cooled below its critical Tc,

we find it expells all magnetic field from its inside. It doesn’t like magnetic field in

its interior. This is shown in fig. 6.7

T > Tc T < Tc
Fig. 6.7 Fig. depicts the Meisner effect whereby the magnetic field inside a superconductor is

expuled when we cool it below its superconducting temperature Tc.

The German physicists Walther Meissner and Robert Ochsenfeld discovered this

phenomenon in 1933 by measuring the magnetic field distribution outside supercon-

ducting tin and lead samples. The samples, in the presence of an applied magnetic

field, were cooled below their superconducting transition temperature, whereupon

the samples cancelled nearly all interior magnetic fields. A superconductor with lit-

tle or no magnetic field within it is said to be in the Meissner state. The Meissner

state breaks down when the applied magnetic field is too large. Superconductors

can be divided into two classes according to how this breakdown occurs. In Type-

I superconductor if the magnetic field is above certain threshold Hc no expulsion

takes place. In type-II superconductors, raising the applied field past a critical value

Hc1 leads to a mixed state (also known as the vortex state) in which an increasing

amount of magnetic flux penetrates the material, but there remains no resistance to

the electric current as long as the current is not too large. At a second critical field

strength Hc2, no magnetic field expulsion takes place. How can we explain Meisner

effect ?

Lets say we switch on a magnetic field inside a superconductor, then the act

induces electric field according to Maxwell equations
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∇×E =−∂B

∂ t
. (6.62)

This induced electric field accelerates superconducting electrons as

m
dv

dt
=−eE. (6.63)

If we write the current density as J =−nev, we get

Λ
dJ

dt
= E, (6.64)

where Λ = m
ne2 . Then from Eq. (6.62), we get

Λ∇× J =−B. (6.65)

We can write B = B0 +B′
0 where B0 is constant external field and B′

0 is produced by

electrons. Then we have

∇×B′
0 = µ0J, (6.66)

which gives

∇×∇×B′
0 =−µ0B

Λ
, (6.67)

or

∇2B′
0 =

µ0B

Λ
(6.68)

or

∇2B =
µ0B

Λ
=

B

λ 2
l

, (6.69)

which gives exponential decay in B inside the conductor. For example see fig. 6.8

with superconductor as x > 0. For a field B = Bzẑ, the field decays as Bz exp(− x
λl
).

λl is called the London penetration depth.

6.6 Giaver Tunelling

When we bring two metals in proximity, separated by an thin insulating barrier, and

apply a tiny voltage then the current will flow in the circuit. There is thin insulating

barrier, but electrons will tunnel through the barrier. Now what will happen if one

of these metals is replaced by a superconductor. These are the set of experiments

carried out by Norwegian-American physicist Ivar Gavier who shared the Nobel

Prize in Physics in 1973 with Leo Esaki and Brian Josephson “for their discoveries

regarding tunnelling phenomena in solids”. What he found was that if one of the
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x

z

B
z

 

Fig. 6.8 Fig. depicts the perefect diamagnetism of a superconductor where an applied magnetic

field in z direction decays exponetially inside the superconductor as we move along x direction.

metal is superconductor, the electron cannot just come in, as there is an energy

barrier of ∆ , the superconducting gap. Your applied voltage has to be atleast as big

as ∆ for tunelling to happen. This is depicted in fig. 6.9. Lets see why this is the

case.

Recall in our discussion of superconducting state, if we have N superconducting

electrons, with Es energy, and we break a pair. Then as discussed in section 6.4.2,

we supply a minimum energy of 2∆ . When the broken pair is at Fermi energy the

energy of the system is (N −2)Es +2EF and we have

NEs +2∆ = (N −2)Es +2EF , (6.70)

giving

Es = EF −∆ . (6.71)

Thus superconducting electrons are ∆ energy below the the Fermi energy and an

incoming electron has an minimum energy EF +∆ . Therefore we need to apply a

voltage as big as ∆
e

for this electron to tunell in. All this is depicted in 6.10B.
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M M M S

A B
Fig. 6.9 Fig. A shows how a tiny voltage between two metals seprated by an insulating barrier

generates current that goes through insulating barrier through tunelling. Fig. B shows if one of the

metals is a superconductor, then the applied voltage has to be atleast as big as the superconducting

gap.

ΕF

A

B
2∆ ∆

 

Applied voltage

Applied voltage

Fig. 6.10 Fig. shows how an extra electrons enters the superconductor with an energy ∆ above the

Fermi energy EF . The applied voltage in Fig. B must then be ∆
e

large for this tunelling to happen.
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6.7 Superconductor tunelling, Josephson junctions and Squids

Consider a superconducting state

Φ0 = ∏
k

(uk + vk exp(i2θ)φk). (6.72)

Then 2θ is called phase of superconductor.

k−k

S1
S2 S

1
S

2

Fig. 6.11 Fig. shows tunneling of a k wave from one superconductor to another creating excitation

in both.

Now consider a scenario where we have two superconductors S1 and S2 as shown

in 6.11 seprated by a thin insulator called weak link. This arrangement is called a

Josephson junction. Then a electron with wave state |k〉 can tunnel from S1 to S2.

This will cost energy as it will create an excitation both in S1 and S2 and raise the

energy of system by 2∆ . What is left behind in S1 is state | − k〉. This process is

energetically unfavorable, however immediately, |− k〉 can transition to S2 making

possible a second order process. This is shown in 6.12, where initial state of the

system is two superconductors with n pair in each and we make a transition to

intermediate state with wave state k in S2 and −k in S1 and finally we transit to final

state n−1 pairs in S1 and n+1 pairs in S2.

n,n n−1, n+1

∆2
Ω*

 

−kkS2

Ω

S1

Fig. 6.12 Fig. shows how tunneling of a cooper pair between two superconductors can be repres-

neted as a three level diagram, where intermediate state, level 2 is excited sttae of both supercon-

ductors.
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If Ω is the transtion rate to intermediate state, then the second order transition

rate from initial to final state is

t =
|Ω |2
2∆

(6.73)

n+1,n−1 n,n n−1, n+1

Fig. 6.13 Fig. shows how tunneling of cooper pairs can be represneted as hopping between sites

in tight binding model, where lattice site represent number of cooper pairs in two superconductors.

Initial state is represented as a wave-packet spread over few lattice sites.

Then we can describe transition between number states of the two superconduc-

tors as shown in 6.13 by a transition matrix

H =














0 t 0 . . . . . . 0

t 0 t 0
. . .

...

0 t 0 t 0
...

...
. . .

. . .
. . .

. . .
...

0 . . . . . . t 0 t

0 0 . . . . . . t 0














, (6.74)

If there is a phase difference 2θ between the superconductors this transition ma-

trix takes the form

Hθ =














0 t exp(i2θ) 0 . . . . . . 0

t exp(−i2θ) 0 t exp(i2θ) 0
. . .

...

0 t exp(−i2θ) 0 t exp(i2θ) 0
...

...
. . .

. . .
. . .

. . .
...

0 . . . . . . t exp(−i2θ) 0 t exp(i2θ)
0 0 . . . . . . t exp(−i2θ) 0














,

(6.75)

Observe Hamiltonian in Eq. 6.74 is reminiscent of tight binding approximation.

How does a wavepacket φ(x) as shown in fig. 6.13 evolve under Hθ as in Eq. 6.75.

It evolves the same way as evolving exp(ikx)φ(x) under H with ka = 2θ , with a

thought of as lattice spacing in 1-d tight binding model. But we know the energy for

a tight-binding model is
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ω(k) = 2t cos(ka). (6.76)

Then the group velocity of the packet is s

vg = 2at cos(2θ), (6.77)

and therefore current in superconductor S2 is

i = 2qvg/a = 4qt cos(2θ). (6.78)

If we apply a potential difference between the superconductors then dθ
dt

= qV
h̄

and

therefore the current

i = 2qvg/a = 4qt cos(
2qVt

h̄
). (6.79)

S1

S2

S

φ

φ

φ

B

k

2

1

 

k

 

Fig. 6.14 Figure shows local BCS states/superconductors arranged in a loop, threaded by a mag-

netic field in center, leading to phase difference between adjacent superconductors.

Now consider the local BCS states/superconductors S1, . . . ,Sn as in Fig. 6.14 put

in a loop. If we turn on a magnetic field (say in time T ) through center of the loop,

it will establish a transient electric field in the loop given by

∫ T

0
E(τ) =

Bar

2πr
=

Φ0

2πr
,

where r is radius and ar area of the loop. Electric field in the loop means potential

difference between adjacent superconductors which gives superconductor phases

φk, with ∆φ as the phase difference between adjacent superconductors. If distance

between adjacent superconductors is ∆x, with n∆x = 2πr, then
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∆φ =
(2e∆x)

∫ T
0 E(τ)

h̄
=

(2e∆x)Φ0

2πrh̄
.

Since we have closed loop

n∆φ =
2eΦ0

h̄
= 2π, (6.80)

giving

Φ0 = Bar =
h

2e
.

This is the magnetic quantum flux. When one deals with the superconducting loop

or a hole in a bulk superconductor, it turns out that the magnetic flux threading such

a hole/loop is quantized [25, 26] as just shown.

Φ

V

S1
S2

δ

δ

a

b

 

Fig. 6.15 Fig. depicts the schematic of a SQUID where two superconductors S1 and S2 are sepa-

rated by thin insulators.
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Fig 6.15 depicts the schematic of a superconducting quantum interference device

(SQUID) where two superconductors S1 and S2 are separated by thin insulators. A

small flux through the SQUID creates a phase difference in the the two superconduc-

tors (see discussion on ∆φ above) leading to flow of supercurrent. If an initial phase

δ0 exists between the superconductors. Then this phase difference after application

of flux is from Eq. (6.80), δa = δ0+
eΦ0

h̄
across top insulator and δa = δ0− eΦ0

h̄
across

bottom insulator, see fig. 6.15. This leads to currents Ja = I0 sinδa and Jb = I0 sinδb

through top and down insulators. The total current J = Ja + Jb = 2I0 sinδ0 cos
eΦ0

h̄
.

This accumulates charge on one side of SQUID and leads to a potential difference

between the two superconductors. Therefore flux is converted to a voltage differ-

ence. The voltage oscillates as the phase difference
eΦ0

h̄
goes in integral multiples

of π for every flux quanta Φ0. SQUID is the most sensitive magnetic flux sen-

sor currently known. The SQUID can be seen as a flux to voltage converter and it

can generally be used to sense any quantity that can be transduced into a magnetic

flux, such as electrical current, voltage, position, etc. The extreme sensitivity of the

SQUID is utilized in many different fields of applications, including biomagnetism,

materials science, metrology, astronomy and geophysics.

Problems

1. Consider a 3D periodic potential

V =V0 cos2(
πx

a
)cos2(

πy

a
)cos2(

πz

a
), (6.81)

with V0 = 10V and lattice parameter a = 3A◦ amd atomic mass of 20 protons.

Calculate the parameter c in the book and use it to find the binding energy per

electron and superconducting gap assuming debye frequency of ωd = 1013 Hz

and Fermi energy EF = 10 eV.

2. In the above problem if the hopping parameter t = 5 eV, calculate ωF and binding

energy and superconducting gap.

3. How will the superconducting gap change if the mass of the ions was doubled.

4. How will the superconducting gap change if the spring constant of the lattice was

doubled.

5. How will the superconducting gap change if the lattice parameter a was doubled.

6. How will the superconducting gap change if the hopping parameter t was dou-

bled.
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7. What is minimum magnetic field allowed through a hole of radius 1 mm in a

superconductor.



Chapter 7

Electrons in Magnetic Fields

In this chapter, we study electrons in magnetic field. Consider an electron moving

in the 2D plane with magnetic field B applied in the z direction. Then the electron

feels the Lorentz force evB perpendicular to its motion and its direction changes. for

radius r such that

mv2

r
= evB (7.1)

the electron executes a circular motion called cyclotron orbit with radius r and ve-

locity v = ωr, such that its angular velocity satisfies

ω =
eB

m
. (7.2)

For a field of B = 10 T, we get ω ∼ 1012 rad/s.

Now consider a conductor in magnetic field along z direction with current moving

along x axis as shown in 7.1. The electron moving along x axis, feels a Lorentz force

along y axis, which pushes them to edges and leads to development of a repulsive

hall field EH (hall voltage VH ) along y direction which balances this force, which

gives

VH

d
= EH = vB (7.3)

The velocity v is related to current density jx as jx = nev where n is the carrier

density and jx = I/A, where A is the cross section area of the conductor. Substituting

we get

RH =
VH

I
=

Φ

N0e
(7.4)

where N0 is total carriers in the conductor and Φ magnetic flux through the sample.

This is called classical Hall effect. When we put a current carrying conductor in the

magnetic field, it develops a Hall voltage. The voltage develops because electron

moving along x direction is deflected along y direction. This will make charge ac-

121
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a

Fig. 7.1 Figure a shows a conductor in magnetic field along z direction with current moving along

x axis. Fig, b shows the top view of the conductor with Hall field in the y direction

cumulate along the top and bottom edge of the conductor as shown in 7.1b which

gives the hall fied EH and voltage VH .

On closer inspection, we may find that electrons in the bulk of the 2D plane will

be deflected along y direction and they will just execute cyclotron motion. However

at edges we donot have room to execute cyclotron motion. These electrons then

press against the edge and develop an Hall field due to electron repulsion. Therefore

one may conclude that Hall field is seen only be edge electrons and they give rise

to Hall voltage the bulk doesnot. This phenomenon is revealed in a classical set of

experiment called the quantum hall effect. We describe this effect in the next section.

7.1 Quantum Hall effect

The quantum hall effect is a quantum-mechanical version of the Hall effect, ob-

served in two-dimensional electron systems, subjected to strong magnetic fields and

low temperatures, in which the Hall conductance σ undergoes quantum hall transi-

tions to take on the quantized values [27]-[39].
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σ =
Ichannel

VHall

= ν
e2

h
, (7.5)

where Ichannel is the channel current and Vhall is the Hall voltage, e the electron

charge and h the Planck’s constant The prefactor ν is called the filling factor and

can take on either integer (ν = 1,2,3) or fractional (ν = 1
3
, 2

5
) values [27]-[39]. The

quantum hall effect is referred to as integer or fractional depending on if ν is a

integer or a fraction.

The quantization of the Hall conductance has the important property of being

exceedingly precise. Actual measurements of the Hall conductance have been found

to be integer or fractional multiples of e2

h
, to nearly one parts in a billion. This has

allowed for definition of a new practical standard for electrical resistance, based on

the resistance quantum given by von Klitzing constant RK = h
e2 = 25812.807557

ohms. This is named after Klaus von Klitzing who in 1980 made the unexpected

discovery that the Hall conductivity was exactly quantized [27].

In this chapter, we study the plateaus that are characteristic of Hall resistance

in quantum hall effect. A two dimensional (2D) electron system as found in the

inversion layer of a MOSFET, when placed in strong magnetic field B, shows char-

acteristic plateaus, when Hall resistance RH is plotted as function of gate voltage

Vg at fixed B, or as function of B at fixed Vg. In literature, we attribute this charac-

teristic to disorder in the system and the presence of extended and localized states.

Here we present an alternate theory that does not need disorder. Using a quasiparti-

cle approach, we show that electrons in the bulk of such a 2D system do not carry

any current. They simply execute a cyclotron motion. All current is carried by edge

states, we call boundary layer, which is the source of the Hall voltage. When we

increase gate voltage and fill in electrons, we first fill the bulk and then boundary

layer and hence we have to wait before we increment the electrons in the boundary

layer which gives the characteristic plateaus.

7.1.1 Theory

Consider a two dimensional electron system as shown in fig. 7.2 with magnetic

field B perpendicular to plane. The classical electron with velocity v in plane orbits

around the field B, with centripetal force

mv2

r
= evB, (7.6)

with v = ωr, the angular velocity ω = eB
m

with radius of the cyclotron orbit v
ω = mv

eB
.

In fig. 7.2, consider an electron moving from left to right with velocity v. It feels

an upward force evB which is offseted by a Hall field EH pointing vertically up,

which pushes the electron down and balances the force due to the magnetic field as

evB= eEH where EH = VH
Lx

, where VH is Hall voltage, from which we get VH = vBLx.
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B

Lx

Ly

Fig. 7.2 Figure shows a two dimensional electron system in magnetic field B.

Now the current I which is left to right is I = jLxd, where j = ncev is the current

density, nc carrier concentration, v carrier velocity and d the thickness of the 2d

plate. Then this gives v = I
ncdLxe

or VH = ΦI
eN0

, with N0 total number of carriers and

Φ = BLxLy the flux through the plane. The Hall resistance

RH =
VH

I
=

Φ

eN0
. (7.7)

Lets calculate electron energies in the magnetic field B. We write the Schröedinger

equation

ih̄
∂φ

∂ t
= Hφ , (7.8)

where H is the Hamiltonian of the system.

H =
1

2m
{(−ih̄

∂

∂x
+ eAx)

2 +(−ih̄
∂

∂y
+ eAy)

2}, (7.9)

where Ax,Ay are vector potentials. We choose Landau Gauge with Ax = 0 and Ay =
Bx. This gives

H =
1

2m
{(−ih̄

∂

∂x
)2 +(−ih̄

∂

∂y
+ eBx)2}. (7.10)

Then exp(ikyy)φ n
ky
(x) is an eigenfunction, where φ n

ky
is a eigenfunction of the

Harmonic oscillator Hamiltonian

H0 =
−h̄2

2m

∂ 2

∂x2
+

k

2
(x+

h̄ky

eB
)2, (7.11)
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with k = e2B2

m
. φ n

ky
has energy (n+ 1

2
)h̄ω where ω =

√
k
m
= eB

m
and φ n

ky
is centered

at x(ky) =− h̄ky

eB
.

The x−y dimension of the 2D electron system is Lx,Ly respectively as in fig. 7.2.

Then we take ky at spacing of 2π
Ly

to localize electrons in the y dimension. Then for

each n, we have total number of modes (also called Landau levels) as

M0 = Lx(
h̄2π

eBLy

)−1 =
eΦ

2π h̄
,

where Φ = BLxLy is the total flux passing through the 2D system. For a sample

measuring 100′s of microns on sides and B = 10 tesla we find M0 ∼ 107.

Observe total electrons in the plane N0 = νM0, where ν are different n′s in the

harmonic oscillator. Then substituting in Eq. 7.7 we get

RH =
Φ

eνM0
=

2π h̄

e2ν
. (7.12)

Recall N0 denotes the total number of electrons. As we increase N0, the M0 lan-

dau levels get filled corresponding to n = 0. Then again M0 landau levels get filled

corresponding to n = 1 and so on. Thus ν increases from 1 to higher values.

Conversely for fixed N0, for large B, number of Landau levels M0 are large and

all electrons can be accommodated in n = 0. As we decrease B, M0 decreases and

for same N0, ν increases.

A two dimensional electron system is realized [27] as inversion layer in a MOS-

FET with n-doped source and drain and a p channel connecting them. A positive

bias on gate voltage, pulls the electrons near the gate-channel interface and creates a

2D electron system. N0 can be controlled by changing gate voltage Vg and the whole

setup is in a magnetic field B. The direction from source to drain is our y direction

and transverse to it is the x direction. When we measure Hall resistance for a fixed

B (say at 10 T) and variable N0, by changing Vg, we find a characteristic as in 7.3A.

When we fix Vg, and vary B, we get a characteristic as in 7.3B.

Now we come to main point of this chapter. Why are there characteristic plateaus.

In literature, this is attributed to disorder and presence of localized and extended

states [39]. The localized states do not carry current and all current is carried by

extended states. In this paper, we present an alternate theory that does not need

disorder. On application of the magnetic field, electrons reside in Landau levels.

The Landau electrons don’t evolve in space as the the different kx have same energy

then a kx wavepacket doesn’t travel. This is shown as cyclotrons in the bulk in 7.4.

But if we apply an electric field along x axis the Landau state increases in kx →
kx +

qEt
h̄

, which pushes the Landau particle to the top of the plate. This is because

the wavepacket exp(kxx)φn(y− y0) is centered at y0 = h̄kx
qB

, as kx changes the the

packet center moves.

We still need to show as y0(t) =
h̄kx(t)

qB
changes, the process is adiabatic and we

stay in the eigenstate, exp(kxx)φn(y−y0(t)). For n= 0, we have φ0 ∝ 1
sqrtσ exp(− (y−y0(t))

2

2σ2 )
, then
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Fig. 7.3 Figure A shows a characteristic plot of Hall resistance RH for a fixed B (say at 10 T) and

variable N0 When we fix Vg, and vary B, we get a characteristic as in fig. B. Increments of RH are

in units of h
e2 while B is in tens of Tesla and N0 increments are ∼ 107.

h̄〈φ̇0(t),φ1〉=
h̄E

Bσ
,

where σ2 = h̄
mω0

, for adiabaticity h̄E
Bσ ≪ h̄ω0 , the energy spacing between the eigen-

values. For E ∼ 100V/m and B ∼ 10T, we have the adiabaticity condition read
m
h̄
< 1011, which is true hence we are in adiabatic regime and electric field drags

the packet upwards on the plane.

More landau states accumulate at the top, we call edge states. But the edge states

have their harmonic potential bottom y0 outside the plane, but they themselves are

not outside hence they gain in energy and more energy for larger k, which means

the edge state will travel, and this is the current, only at the top of the plane, shown

as arcs in 7.4. Accumulated edge states give the Hall voltage. We can write Landau

states as x states exp(kxx)φn(y− y0) or as y states exp(kyy)φn(x− x0). When hall

voltage becomes big, will push the y landau states to the side (move x0) opposing

the applied field till it is nulled.

Now we are ready to answer plateaus. The formula in Eq. (7.7) and (7.12) are true

in the boundary layer because it is here we have x direction current. The bulk just

doesn’t evolve. Therefore N0, ν all make sense for the boundary layer. The electrons

in top boundary layer in fig. 7.4 travel from left to right. Application of electric field

(voltage between drain and source) gives electron crowd and vacuum at the top and

bottom respectively, resulting in Hall voltage. Now for a fixed B, as we fill electrons,

we fill the bulk first and then boundary layer as shown in fig. 7.5. As we fill, ν in

the boundary layer increments. We have to wait to fill the bulk first and then the

boundary layer increments. This gives the plateaus and we get discrete jumps in
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Fig. 7.4 Figure shows how bulk of 2D system executes cyclotron motion. Current is carried by

edge states.

7.3A. Similarly, when we fix N0 and change B, we are changing M0 and hence for

large B, first Landau levels can accommodate all electrons. As we decrease B, we

increase ν again first filling bulk and then filling boundary layer and with decreasing

B, we have characteristic as in 7.3B with the plateaus.

In summary, plateaus arise because bulk does not carry any current. All current

is in boundary layer the edge states.

top edgex

E

n=0

n=1

n=2

bottom edge

 

Fig. 7.5 Figure shows how we fill Landau levels, first bulk then edges as they have slightly higher

energy.
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7.2 Fractional Quantum Hall Effect

In quantum hall effect we have eΦ
h

degenerate Landau level that fills the 2D plane.

At large magnetic fields, this may even exceed the total particles N0. Then how do

we fill. We may not even have anything at the edge and that means very high hall

resistance. However there is repulsion between the electrons. Which means even if

say N0 =
1
3

of ( eΦ
h
), we may spread these electron on the plane so that we minimize

the repulsion. Which means we will still get edge states though now at fractional

filling ν = 1
3
. This is the basis of fractional quantum hall effect. We observe plateaus

in hall resistance as function of magnetic field, which correspond to fractional filling

ν . The plateaus have been seen for filling fractions ν = 1
5
, 2

5
, 1

3
, 2

3
, 3

7
, 4

9
etc [29].

Problems

1. In classical hall effect if conductor has top face area cm2 and thickness mm, find

the Hall voltage for electron density 1029/m3 and B = 1 T and current I = 1 A.

2. For magnetic field B = 10T, find the cyclotron frequency.

3. For a plane 100× 100 micron, find the landau degeneracy at magnetic field of

10T.

4. In above find number of Landau levels if number of electrons N0 = 1010.

5. In above find the Hall resistance and filling factor.



Chapter 8

Magnetism

In this chapter we study the fundamental solid state phenomenon of magnetism [13].

Magnetism has many manifestations, like ferromagnetism, paramagnetism, dimag-

netism, antiferromagnetism etc.

Ferromagnetism is the basic mechanism by which certain materials (such as iron)

form permanent magnets, or are attracted to magnets. An everyday example of fer-

romagnetism is a refrigerator magnet used to hold notes on a refrigerator door. Per-

manent magnets (materials that can be magnetized by an external magnetic field and

remain magnetized after the external field is removed) are either ferromagnetic or

ferrimagnetic, as are the materials that are noticeably attracted to them. Only a few

substances are ferromagnetic. The common ones are iron, nickel, cobalt and most

of their alloys, and some compounds of rare earth metals. Ferromagnetism is very

important in industry and modern technology, and is the basis for many electrical

and electromechanical devices such as electromagnets, electric motors, generators,

transformers, and magnetic storage such as tape recorders, and hard disks, and non-

destructive testing of ferrous materials.

Solid materials may loose or gain energy in the magnetic field and hence are

attracted or repelled my magnetic field and are called paramagnetic and diamagnetic

respectively. The applied magnetic field H0 induces a magnetic moment M = χH0

per unit volume. The total H = (1+ χ)H0 and

B = µ0H = µ0(1+ χ)H0. (8.1)

Then χ is called magnetic susceptibility which is positive for paramagnetic and neg-

ative for diamagnetic. The induced field in paramagnet supports, while in a diamag-

net, opposes the applied field. Metals like silver, gold, lead, zinc, copper, bismuth,

mercury are all diamagnetic. There susceptibility is negative.

Paramagnetism arises as excess spins get oriented in direction of magnetic field.

Diamagnetism arises as electron waves develop a magnetic moment that is oriented

opposite to the applied field. In ferromagnetism, we saw how spins spontaneously

align in same direction. Antiferromagnetism is a kind of magnetic ordering in which

spins of neighboring atomic sites anti-align.
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8.1 Diamagnetism

In last section we talked about paramagnetic metals. Metals like silver, gold, lead,

zinc, copper, bismuth, mercury are all diamagnetic. There susceptibility is negative.

To understand diamagnetic susceptibility we have to understand diamagnetism of

free electrons also called Landau Diamagnetism.

8.1.1 Diamagnetism of free electrons: Landau Diamagnetism

 

 

B

Lx

Ly

Fig. 8.1 Figure shows a two dimensional electron system in magnetic field B.

Free electrons also contribute to diamagnetism. Lets calculate the susceptibility.

When we apply a magnetic field, it induces a magnetic moment M, such that

µ0
M

V
=−χB, (8.2)

where χ is susceptibility. Then energy in magnetic field is E =−M ·B = V
µ0

χB2 and

hence

χ =
µ0

2V

∂ 2E

∂B2
, (8.3)

where V is total volume.

To calculate energy E we need eigenfunctions in the magnetic field B in z di-

rection as in Fig. 8.1. The eigenfunctio as shown in last chapter is of the form

ψ = exp(ikzz)exp(ikxx)φn(y), with energy
h̄2k2

z

2m
+En where φn(y),En satisfies the

equation
( −1

2m

∂ 2

∂y2
+

mω2
0

2
(

h̄kx

qB
+ y)

)

φn = Enφn. (8.4)
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Clearly φn are Harmonic oscillator eigenfunctions wit htenergy En = (n+ 1
2
)h̄ω0

with ω0 =
qB
m

. kx steps in increments of 2π
Lx

and hence number of eigenfuctions for

given n is ∆ = qLxLyB
h

= qΦ0
h

, where Φ0 is flux through plane area in Fig. 8.1.

Then the total energy is from n filled Landau levels and n+1 filled to fraction ξ
such that total electrons N = (n+ξ )∆

E =
Lz

a

(

∆ h̄ω0

(

∑
j

( j− 1

2
)+(n+

1

2
)ξ

) )

(8.5)

where
Lz

a
counts number of planes, where a is lattice spacing.

Then

χ =
µ0

2V

∂ 2E

∂B2
=

µ0q2

4πma
ξ (1−ξ ) (8.6)

For a ∼ 3A◦, we have χ ∼ 10 ppm (10−6). If there are Z electrons per atom, we

have

χ =
Zµ0q2

4πma
ξ (1−ξ ) (8.7)

When B changes ξ changes from 0 to 1 and χ oscillates. This phenomenon of

oscillation of χ is called De Haas-van Alphen effect.

k x

k
y

k z

A1

A2
 

 

 

 

k
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Fig. 8.2 Figure shows the fermi-surface for a metal with extremal areas A1 and A2.
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The de Haas-van Alphen effect, is useful in measuring fermi surface of metals.

As we vary the magnetic field, we find the susceptibility oscillates. This is the de

Haas-van Alphen effect. Consider a metal in magnetic field along say z direction.

Fig. 8.2 a shows the fermi-surface of metal. Shown are extremal areas A1 and A2 at

specific kz values. There are many electrons at the fermi surface for these specific kz

values. Lets take one of these extremal areas say A2, call Ae.

At successive oscillations, with field strength B1, B2, we have Landau degeneracy

∆1 and ∆2 such that

∆1n = ∆2(n+1) = N (8.8)

Ae(
1

B2
− 1

B1
) =

2πe

h̄
(8.9)

From above equation we can find Ae. Hence we can find the extremal area of

Fermi-surface by period of this oscillation and by choosing different directions for

magnetic field we can map the Fermi-surface.

8.2 Paramagnetism

Solid materials may loose or gain energy in the magnetic field and hence are at-

tracted or repelled my magnetic field and are called paramagnetic and diamagnetic

respectively. The applied magnetic field H0 induces a magnetic moment M = χH0

per unit volume. The total H = (1+ χ)H0 and

B = µ0H = µ0(1+ χ)H0. (8.10)

Then χ is called magnetic susceptibility which is positive for paramagnetic and

negative for diamagnetic. The induced field in paramagnet supports, while in a dia-

magnet, opposes the applied field.

Metals with partially filled shells have equal electrons in the spin up and down

state as shown in Fig. 8.3a. On application of the magnetic field, the energy of

spin up state is lowered by an amount µ ·B, where µ = h̄q
2m

is magnetic moment of

spin, and energy of the spin down state is raised by an amount µB. This prompts

more electrons to move to spin up state, lowering the overall energy as shown in

Fig. 8.3b. This is called Pauli-paramagnetism. Lithium, sodium, magnesium, alu-

minium, cesium etc are some examples of paramagnetic metals. Most of transition

metals including scandium, titanium, vanadium, chromium, manganese, molybde-

num etc., are all paramagnetic. Similarly most of rare earth metals like cerium,

praseodymium, neodymium, samarium, europium etc., are all paramagnetic

If at Fermi level with energy ε f , a small band of energy ∆E = µB of down

spins is converted to up. Then number of states in this small band = D(ε f )∆E and

the resulting magnetic moment is µD(ε f )∆E. But if we consider a Fermi sphere

of radius k f . Then in a small annulus ∆k we have number of electrons ∆N such

that ∆N
N

= 3∆k
k f

, where N is number of electrons in fermi sphere. Furthermore Fermi
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Fig. 8.3 Figure shows how in magnetic field energy of states with spin up is lowered and spin

down is raised

energy ε f =
h̄2k2

f

2m
which gives ∆ε

ε f
= 2∆k

k f
, which gives D(ε f )=

3N
2ε f

. Then the resulting

magnetic moment per unit volume is M = 3nµ2B
2ε f

, where n is density and

χ =
dM

dH
=

3nµ0µ2

2ε f

. (8.11)

This is paramagnetic susceptibility of free electrons.

8.3 Exchange and Ferrmomagnetism

Consider two electrons with wave-vector k1 and k2, then the don’t know which one

is k1 and k2 and the wavefunction is a symmetrized one

ψ(r1,r2) =
1√
2

(
exp(ik1 · r1)exp(ik2 · r2)+ exp(ik2 · r1)exp(ik1 · r2)√

2

)

.

The total energy for k = k1 − k2 is
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ET =
∫

ψ†(r1,r2)
1

4πε0(r1 − r2)
ψ(r1,r2)dr1dr2 (8.12)

= Ecoulomb +Eexchange (8.13)

Ecoulomb =

∫
1

4πε0(r1 − r2)
dr1dr2 (8.14)

Eexchange =
∫

cos(k · (r1 − r2)

4πε0(r1 − r2)
dr1dr2 (8.15)

If k = 0, the two electrons are same state and hence large exchange energy (Pauli

exclusion principle). If kl ≫ 1, where l is volume dimension, then exchange integral

oscillates fast and close to 0. In general if electrons are on in wave orbitals φa and

φb, we have

Ecoulomb =
∫ |φa(r1)|2|φb(r2)|2

4πε0(r1 − r2)
dr1dr2 (8.16)

Eexchange =

∫
φ ∗

a (r2)φ
∗
b (r1)φa(r1)φb(r2)

4πε0(r1 − r2)
dr1dr2 (8.17)

Id φa,φb disjoint Eexchange = 0. Ofcourse exchange energy is 0 if w ehave unlike

spins.

Consider conduction electrons in a metal. Imagine we have half filled bands as

shown in Fig. 8.4a . Then we have as many spin up as down. Fig. 8.4b shows a

ferromagnetic metal with excess of spin up compared to spin down. Spin up is full

band.

Why do we have this excess of spins and full band, can be understood when we

look at exchange repulsion between electrons. When we have full band we can lo-

calize them to atomic sites and hence make exchange interaction between like spins

negligible. The band under consideration is ususally made out of d-orbitals so called

d-band. This is because d-bands have small bandwidth , i.e., t parameter is small and

hence kinetic energy is small. Then makin gthe band full and localization doesn’t

cost much. This is called Ferromagnetism, where excess like spins get localized on

atomic sites as in metals iron, nickel, cobalt.

Thus ferromagnetism arises in an attempt to minimize exchange repulsion which

is or order of eV. When we have more spins of one kind as in Fig. 8.4b, we have to

pay a price as we are populating k-states with higher energy. When the the conduc-

tion band has small bandwidth as a d-band formed from d-orbitals, then this price is

less severe. This is the case in iron, nickel, cobalt etc. Metals like sodium, calcium,

aluminium that are primarily s band have large bandwidths and are therefore not

ferromagnetic.
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Fig. 8.4 Figure a shows half filled bands in a metal with as many spin up as down. Fig. b shows a

ferromagnetic metal with excess of spin up compared to spin down.

8.4 Antiferromagnetism

In ferromagnetism, we saw how spins spontaneously align in same direction. Anti-

ferromagnetism is a kind of magnetic ordering in which spins of neighboring atomic

sites anti-align. Instead of electrons in bands, we are talking now about electrons on

atomic sites. When a band is full, we can form superposition of k-states, such a su-

perposition is localized to an atomic site. We can make replica of this and put it at

all atomic sites. These states also called Wannier states are localized and their total

energy is same as sum total of energy of all k states. Except Wannier states donot

overlap and hence they have minimum electron-electron repulsion between them.

when we have a narrow d-band which is half filled with two electrons in every

k-state, it makes sense to fill all k-states with one electron per state instead and then

Wannierize them. This way we save the energy of electron repulsion. Ofcourse you

pay a price in filling high energy k-states but that is not much for narrow bandwidth

d-bands. This is shown in fig. 8.5. It is in this sense we talk about atomic sites.

We have one electron in all k-states and after Wannierization, we have one electron

per site. This phenomenon occurs commonly among transition metal compounds,

especially oxides. Examples include hematite, metals such as chromium, alloys such

as iron manganese (FeMn), and oxides such as nickel oxide (NiO). Transition metals

have unpaired electrons in d-orbitals which form narrow d-bands.
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Fig. 8.5 Figure shows how a mott-insulator is formed by filling all k-states.

Now why anti-align neighbouring sites. This opens the possibility that one can

hop to a neighboring site which has opposite spin. If you recall, our discussion

of bounding-antibonding orbital, this hopping is done through a transfer term of

strength −t. If onsite energy is ε0, then the energy of state A with electron on neigh-

bouring site is 2ε0 and energy of state B with two electrons on same site is 2ε0 +U ,

where U is the electron-electron repulsion. Then Hamiltonian for state A and B takes

the form

H0 =

[
2ε0 −t

−t 2ε0 +U

]

(8.18)

On diagonalization we find that energy 2ε0 → 2ε0 − t2

U
. Anti-alignment helps to

reduce the energy. This is how one may explain anti-Ferromagnetism. When we

Wannierize, we automatically fill all k states making a fully filled band which is

an insulator. Such an insulator where we we have a narrow d-band and we localize

electrons to save in electron repulsion is called Mott-Insulator.

Problems

1. For lattice spacing a = 3 A◦, find the diamagnetic susceptibility for Z = 1.

2. In above find paramagnetic susceptibility for ε f = 5 eV and n = 1028/m3.

3. In above find paramagnetic susceptibility if hopping parameter t = 2 eV and lat-

tice paramter is a = 3 A◦.

4. Find exchange energy between two like spin electrons with wavevector differ-

ence ∆k = 108/m.
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5. For repulsion energy U = 5 eV and hopping parameter t = 2 eV, find the energy

reduction due to antiferromagnetic ordering.





Chapter 9

Imaging Solids

9.1 X-ray Diffraction

X-ray diffraction is an important modality for determining crystal structures [10, 11,

12]. Inter-atomic spacing in a crystal is few A◦. The wavelength of x-ray light is of

the same order. When light travels between atoms, it gathers a phase which is prod-

uct of inter-atomic distance and the wavenumber and hence for large wavenumbers

as in X-rays, this gathered phase is sizeable and can give information about inter-

atomic spacing by wave interference.

9.1.1 X-ray scattering and antenna arrays

Atoms scatter light (X-ray light in this case). Each atom acts as an antenna, resulting

from induced dipole due to incident light and acts as a current element that radiates.

Collection of atoms acts as an antenna array. The array is displayed as in Fig. 9.1.

Observe the atoms, as we move horizontally right, get the radiation later, hence the

induced current in the antenna is phase delayed. However if the incident and re-

flected wave make the same angle θ with the vertical, the path travelled by atoms

on right is shorter by the same amount as the delay and the two factors cancel to

give a coherent addition of reflected radiation from the atoms in a horizontal layer.

How do different layers add coherently. As shown in Fig. 9.1, the path difference

between the reflected light by successive layers is 2d sinθ and for the wavefronts to

coherently add up, we should have for wavenumber k = 2π
λ , where λ is the wave-

length,

2k d sinθ = 2nπ, (9.1)

or

2d sinθ = nλ . (9.2)

139
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This condition is called Bragg’s condition.

Then if θ1 is the angle at which we get coherent addition and if we change θ
(rotate our crystal) till we again get coherent addition at θ2, then we have

2d(sinθ2 − sinθ1) = λ , (9.3)

from which we can determine d the spacing between lattice planes. This is how we

can use X-rays to determine structure of material.

θθ

Fig. 9.1 Fig. shows atomic layers that reflect X-rays in a crystal.

9.2 Neutron Diffraction

Thermal electrons have wavelengths of 50 A◦. Neutrons are 103 times as massive,

and hence have wavelength of couple of A◦. Then like X-rays, they can be used

for finding crystal structures [43] . Now instead of X-ray light, we have neutrons.

The question then is how does a neutron wave, scatter of atomic lattice. The neu-

tron wave, when it passes by the nucleus of the atom will occupy the same space

as the nucleons. Fermions cannot be at the same place and hence it will see a re-

pulsive potential from the nucleus. Scattering of neutron arises due to this repulsive

potential.

As shown in Fig. 9.2 the incoming neutron wave with wavevector k1, scatters of a

nucleus to k2, with a scattering matrix element Vk1,k2
= 〈exp(ik2 · r)|V |exp(ik1 · r)〉.

Then the transition element from another nucleus that is displaced by vector r0 is



9.2 Neutron Diffraction 141

k1

k2

 

Fig. 9.2 Fig. shows scatttering of neutron plane wave with momentum k1 to k2

exp(i(k1 − k2) · r0)Vk1,k2
. In general, the scattering amplitude due to all the nuclei is

then

Vk1,k2 ∑
n

exp(i(k1 − k2) · rn). (9.4)

For all the amplitudes to add coherently, it should be the case that

(k1 − k2) · r0 = 2nπ, (9.5)

where r0 is a lattice displacement vector that displaces you from one lattice point to

neighbouring lattice point. This condition is called Laue’s Condition.

θ θ

Fig. 9.3 Fig. shows neutron wave scattering of atomic nuclei.

In 9.3, when k1 and k2, are as shown making an angle θ with the horizontal. Then

observe
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k1 − k2 =
4π sinθ

λ
. (9.6)

along −z direction. Then Eq. (9.5), implies that

2d sinθ = nλ , (9.7)

as seen before in X-ray diffraction, we have recovered Bragg’s condition. For correct

θ , as in Eq. (9.7), we find a detector in direction of k2 registers scattered neutrons.

9.3 Neutron Spectroscopy of Phonons

sam
ple

A
nalyser

D
etector

ki

k
f

m
onochrom

ator

 

Fig. 9.4 Figure shows schematic of a neutron spectrometer.

.

In neutron diffraction, we studied scattering of neutron waves from stationary tar-

gets of the atomic nuclei. In neutron spectroscopy [44], we study scattering of neu-

tron waves from oscillating atomic nuclei, the phonons (lattice deformation waves).

The neutron inside a crystal feels lattice potential and exchanges momentum with

the lattice. In particular a neutron with momentum ki, when interacts with a phonon

of momentum k changes its momentum to k f = ki+k and in the process the phonon

is annihilated. Conservation of energy dictates that if h̄ω is the phonon energy then
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Fig. 9.5 Figure shows phonon dispersion curve and phonons at different, k,ω(k) pairs. After scat-

tering with a neutron, the phonons lose energy, momentum at certain k,ω(k) location.

.

h̄2k2
f

2m
− h̄2k2

i

2m
= h̄ω (9.8)

By detecting the momentum and energy of the scattered neutron we can find

the momentum and energy of the phonon and hence its dispersion relation. Fig. 9.4

shows schematic of a neutron spectrometer. Incident beam of neutrons are passed

through a monochromator to choose to choose for a particular incident momen-

tum/wavelength. The neutron after scattering from sample is passed through a an-

alyzer crystal to read its momentum. Both monochromator and analyzer work on

principle of neutron/bragg diffraction. Fig. 9.5 shows energy/momentum relation

of the annihilated phonon can be used to measure the phonon dispersion curve. By

changing orientation of analyzer we can sample different k f on the dispersion curve.

9.4 Angle Resolved Photoelectron Spectroscopy (ARPES)

An important modality for band mapping in solids is angle resolved photoelectron

spectroscopy (ARPES) [45].

Incident photons of the right energy (X-ray) when impinge the surface of a solid,

eject valence electrons in direction given by the wave-vector of electron (momentum

of photon is insignificant compared to electron momentum). Putting a detector in

that direction and finding the energy of the ejected electron and using the incident

photon energy photon can generate (k,ω(k)) information, and map the band in a

solid. ARPES is also called microscope into momentum space of valence electrons.
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Fig. 9.6 Figure shows the basic set up of angle resolved photoelectron spectroscopy. Incident

photons of the right energy when impinge the surface of a solid eject valence electrons in direction

given by the wave-vector of electron, which are detected by a detector at right angular position and

analyzed for their energy.

Consider free Bloch electrons with energy organized as energy band. Incoming

photon promotes the Bloch electron in the valence band to higher energy band as

shown in fig. 9.7. The Bloch states in higher energy band are almost plane wave

states. The higher energy band has positive total energy and electron in this band is

able to escape the lattice and reach the detector. The transition from valence band

to higher band preserves energy. Momentum is also preserved as incoming photon

has very small momentum compared to electron. The. We call the momentum of the

higher energy band with plane wave like states as ki, with i standing from in-crystal

state. This plane wave leaves the lattice and becomes a free electron and we call its

momentum k. The energy of ki is

Ei =
h̄2k2

i

2m
−V0, (9.9)

where V0 is average lattice potential as in 4.15 (we take V0 positive here and put

negative sign outside). Then in-crystal wave as it moves out, follows the Snell’s law

of refraction, i.e. (ki)‖ = (k)‖ (wave inside and outside the crystal is matched at the

interface). Where ‖ is the momentum parallel to surface plane as in fig. 9.6. Using

Ei = E, we get from
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Fig. 9.7 Figure shows transition from lower energy band to higher energy band in photo electron

spectroscopy.

h̄2(ki)
2
⊥

2m
−V0 =

h̄2k2
⊥

2m
= E cosθ . (9.10)

h̄2(ki)
2
‖

2m
=

h̄2k2
‖

2m
= E sinθ . (9.11)

From (E,θ), we can construct ki the band momentum and from Ei − h̄ω , where h̄ω
is the photon energy we can know the band energy and this way we can map the

band.

9.5 Electron Microscopy

How do we see small. Small objects with small separation between them can be seen

if we use light with small wavelengths. Then the light will bounce of the objects,

but photons will also pass through the gaps between objects, and illuminate a screen

behind the sample. Small wavelength means transmitted photons donot diffract and

donot illuminate all the screen behind them. The transmitted light will then carry

dark spots of objects, that reflected electrons, and bright spots of gaps between them.

If light photon was big wavelength it will diffract as it passes through the gaps, and

we will only see a big bright spot.

In Electron microscopy [46], instead of light we use electron bars/wavepackets

to see small. The De-Broglie wavelength at room temperature is calculated as
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1

2
mv2 =

3

2
kT (9.12)

which gives for h̄k = mv that k−1 = λ = h̄√
3kT m

, which gives, λ = 1nm.

In practice, we accelerate electrons to energies of order of 100 kev, where we

now have De-Broglie wavelengths in sub-angstrom regime. If such small electrons

are fired at a sample, there are parts of sample that scatter them and do not let

them pass through but the gaps between such parts can be as small as angstrom and

still the small electrons will pass through these pores without much diffraction and

hence give a very high resolution image where we can see gaps between scatterers

as bright spots and scatterers as dark spots. This is the principle of transmission

electron microscopy.

Electron microscopes are used to investigate the ultra-structure of a wide range of

biological and inorganic specimens including microorganisms, cells, large molecules,

biopsy samples, metals, and crystals. Industrially, electron microscopes are often

used for quality control and failure analysis.

Another mode of operation of electron microscopes is called scanning electron

microscope, whereby electrons are focused to a spot of nanonmeter resolution and

reflected electrons is a measure of contrast of the spot. Different objects give differ-

ent contrast generating an image of nanometer resolution.

9.6 Scanning Tunelling Microscopy

In this section, we study an important technology for imaging the surfaces of solids,

the Scanning Tunelling Microscopy [47].

In March 1981 G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel at the IBM Zurich

Research Laboratory observed vacuum tunneling of electrons between a sharp tung-

sten tip and a platinum sample. Com- bined with the ability to scan the tip against the

sample surface, the scanning tunneling microscope (STM) was born. Since then, this

novel type of microscopy has continuously broadened our perception about atomic

scale structures and processes. The STM allows one to image atomic structures di-

rectly in real space, giving us the opportunity to make the beauty of nature at the

atomic level directly visible. More-over, the sharp tip can be regarded as a powerful

local probe which allows one to measure physical properties of materials on a small

scale by using a variety of different spectroscopic methods.

The general principle of operation of a scanning tunneling microscope (STM)

and related scanning probe microscopies (SPM) as well is surprisingly simple. In

STM a bias voltage is applied between a sharp metal tip and a conducting sample to

be investigated (metal or doped semiconductor). After bringing tip and sample sur-

face within a separation of only a few Angstrom, a tunneling current can flow due

to the quantum mechanical tunneling effect before ’mechanical point contact’ be-

tween tip and sample is reached. The tunneling current can be used to probe physical

properties locally at the sample surface as well as to control the separation between
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Fig. 9.8 Figure shows a schematic of STM.

tip and sample surface. The distance control based on tunneling is very sensitive to

small changes in separation between the two electrodes because the tunneling cur-

rent is strongly (exponentially) dependent on this separation, as we will see later.

By scanning the tip over the sample surface while keeping the tunneling current

constant by means of a feedback loop, we can follow the surface contours with the

tip which to a first approximation will remain at constant distance from the sample

surface. By monitoring the vertical position z of the tip as a function of the lateral

position (x, y), we can get a three-dimensional image z(x,y) of the sample surface.

Motion of the tip both laterally and vertically with respect to the sample surface can

be realized with sub-atomic accuracy by means of piezoelectric drives.

In contrast to other electron microscopes and surface analytical tech- niques us-

ing electrons, STM can be operated in air and in liquids as well as in vacuum because

there are no free electrons involved in the STM experiment. Therefore, the applica-

tion of STM is not limited to surface science, but has particularly great potential for

in situ electro- chemical studies and in vivo investigations of biological specimens.

The brightest prospects for STM/SPM are offered in the field of nanometer-scale

science and technology. As electronic devices become increasingly smaller, there is

a strong need for understanding the physical properties of matter on a nanometer

scale. Technology at the nano- meter level requires nanopositioning and control,

nanoprecision machining and reproducible creation of nanometer scale structures

as well as the use and control of super-smooth surfaces.
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Since tunneling is at heart of STM technology, we review the basics of tunneling.

In this following, we revisit the classical problem of a electron tunneling through a

potential barrier. The classical treatment on the subject considers a electron wave at

energy E, and potential barrier of height U with E < U . One computes the trans-

mission and reflection coefficients for this wave by solving for the eigenfunction

of the Schröedinger equation in different regions and matching the solution at re-

gion boundaries. We review the classical treatment on tunneling. In section 9.6.2,

we provide a wave packet interpretation of tunneling. We show how we make sense

of incident, transmitted and reflected wave, i.e, how do we calculate the dynamics

of wavepacket that is incident on the barrier. In this section we show how the clas-

sical solution can be understood in terms of wavepackets and resulting tunneling

dynamics computed.

9.6.1 Wave Solution

U

0

I II III

a−a

Fig. 9.9 Figure shows a potential barrier and incident, reflected and transmitted wave.

Consider the potential barrier of height U as shown in fig 9.9. The solution with

energy E <U to the Schröedinger equation,

ih̄
∂φ

∂ t
=− h̄2

2m

∂ 2φ

∂x2
+V (x)φ , (9.13)

for this potential can be written in region I as
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φ = exp(ikx)+Rexp(−ikx), (9.14)

where E = h̄2k2

2m
. The solution in region II is

φ = Aexp(k1x)+Bexp(−k1x), (9.15)

where U −E =
h̄2k2

1
2m

. Finally solution in region III is

φ = T exp(ikx). (9.16)

We call R and T , reflection and transmission coefficients. To determine R and T , we

match φ and φ ′ at x =−a and x = a in fig 9.9. This gives

exp(−ika)+Rexp(ika) = Aexp(−k1a)+Bexp(k1a).

ik(exp(−ika)−Rexp(ika)) = k1(Aexp(−k1a)−Bexp(k1a)).

T exp(ika) = Aexp(k1a)+Bexp(−k1a).

ikT exp(ika) = k1(Aexp(k1a)−Bexp(−k1a))

We can solve these equations to get

T =
exp(−i2ka)

cosh2k1a− c+c−1
2

sinh2k1a
. (9.17)

where c = −ik1
k

, with

|T |= 1
√

cosh2 2k1a+
2+ k2

k2
1

+
k2
1

k2

4
sinh2 2k1a

. (9.18)

|R|=
2(1+

k2
1

k2 )sinh2a
√

cosh2 2k1a+
2+ k2

k2
1

+
k2
1

k2

4
sinh2 2k1a

. (9.19)

We call T exp(ikx) is region III and Rexp(−ikx) in region I as transmitted and re-

flected wave. However all we really have is φ , the eigenstate of the system Hamilto-

nian. We are interpreting parts of this wavefunction as incident, reflected and trans-

mitted wave. How can we justify this by genuinely talking about an incident electron

wavepacket and calculating how it gets transmitted and reflected. We study this in

the following section.



150 9 Imaging Solids

exp(ikx)

Rexp(−ikx)

T exp(ikx)

0
Fig. 9.10 Figure shows decomposition of an eigenstate as incident, reflected and transmitted wave.

9.6.2 Wavepacket Interpretation

In the previous section we wrote a wavefunction φ . Lets call it φk, as it is parame-

terized by the wavenumber k. Let the corresponding energy be Ek. We can write φk

as sum of three parts

φk = φ a
k +φ b

k +φ c
k (9.20)

where φ a
k = exp(ikx), x < 0 is the incident wave , φ b

k = Rexp(−ikx), x < 0 the

reflected wave and φ c
k = T exp(−ikx), x > 0, the transmitted wave.

Now consider the superposition

ψ = ∑exp(ikx), (9.21)

of different k centered around a nominal k0. This is shown on k,Ek dispersion

curve fig. 9.11A.

The superposition takes the form

ψ = exp(ik0x)∑
k

exp(i(k− k0)x) = 2exp(ik0x)
N

∑
n=0

cosn∆kx

= 2exp(ik0x)
B

∆k

sin(Bx)

Bx
= exp(ik0x) f (x)

where we take k′s, ∆k apart, with total bandwidth B = N∆k . f (x) is a sinc function

as shown in 9.11B.

How does this wavepacket evolve.
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k

E(k)

k0
/Bπ/Bπ−

A B
Fig. 9.11 Figure A shows dispersion curve for free electron wave with a packet prepared around

k0. Fig B shows such a wavepacket.

ψ(x, t) = exp(ik0x)∑
k

exp(−iωkt)exp(i(k− k0)x)

= exp(ik0x)exp(−iω0t)
N

∑
n=0

exp(−iω ′(k0)(k− k0)t)exp(i(k− k0)x)

= exp(ik0x) f (x−ω ′(k0)t),

where vg = ω ′(k0) =
dωk
dk

|k0
is the group velocity of the packet. The wavepacket

travels from left to right with velocity vg.

Now lets evolve the packet ψ(x) for negative time starting from origin at time 0.

Then at −T , the packet is far left of the origin at x =−b. Therefore at negative time

−T we have coefficients ak(−T ) = exp(iωkT ) such that

∑
k

ak(−T )φk = ∑
k

ak(−T )(φ a
k +φ b

k +φ c
k ) = ∑

k

ak(−T )φ a
k = ψ(x+b),

where for these coefficients ak(−T ), contribution of φ b
k is zero as for −k, this super-

position gives a packet on the right hand of origin (mirror of one for positive k) but

there is no φ b
k on right. Similarly contribution of φ c

k is zero as packet for positive k is

produced on the left hand side of origin but φ c
k exits on right side. Now when we let

this superposition evolve as ∑k ak(−T )exp(−iωkt)φk, then the packet travels right

till it hits the origin, after which positive k produce a packet on right and negative k

on left and hence we get contribution from φ b
k as a reflected packet on the left and

contributions from φ c
k as transmitted packet on the right and no contribution from

φ a
k . All this is depicted in fig. 9.12.
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0

I R T

−b
Fig. 9.12 Fig. shows incident, reflected and transmitted packet.

All we are saying is that an incident packet from left can be written as superpo-

sition of eigenstates φk and we know how this superposition evolves. It evolves into

a reflected packet and a transmitted packet.

In summary in STM a positive voltage on the tip pulls the elctrons on the surface

which then tunnel through the air-gap. We reviewed the basics of tunneling above.

Problems

1. For a lattice with spacing a = 3 A◦ find the longest wavelength λ such that we

get x-ray scattering at angle θ = 30◦.

2. Find the minimum energy of neutrons to get a neutron diffraction at an angle

θ = 30◦.

3. In photoelectron spectroscopy, if work function U = 3 eV and kinetic energy of

emitted electron is 1 eV, what is the wavelength of incident light

4. If crystal is though of as a square well with potential U = −5 eV. What is the

angle and wavelength of refracted electrons when they are incident at an angle

30◦ with the normal with energy 10 eV.

5. A 1 eV electron is incident on a barrier with height 5 V and thickness 100 nm.

What is the tunnelling probability.
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