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Preface

The book grew out of author’s research in Nuclear Magnetic Resonance (NMR).
Modern NMR spectrometers use a superconducting magnet to create a very large
and stable magnetic field. The superconducting coil in magnet carries current that
never dissipates. One just has to cool the coil with liquid Helium and it operates
round the clock. What an amazing physical phenomenon, called superconductivity.
In superconductivity electrons at Fermi surface scatter of each other by exchange
of phonons to form bound cooper pairs. Superconductivity arises out of phonon
mediated scattering. Scattering is a phenomenon of emission and absorption of a
Boson or vice-versa. It is ubiquitous and heart of this book.

Most mundane scattering is blue sky. The sky is blue, at night it is red, because
red light from sun is scattered (photon direction changes when it meets an atom
in atmosphere), and we get blue light and at night of-course sun is on side and
we see red scattered light. This is called Rayleigh scattering. Rayleigh scattering is
elastic scattering only direction of light changes, we can also have scattering where
wavelength also changes, called in-elastic scattering as in Raman scattering. Light
when scatters of molecules changes wavelength and lost energy excites vibrational
modes of a molecule. Rayleigh and Raman scattering happens when photon talks to
bound electron of an atom. We also have high energy X-ray photons scattering of
the free electrons in a solid, something called Compton scattering.

Raman scattering is enhanced if the light is emitted into a laser with the same
frequency called stimulated Raman. In Rayleigh scattering, we have atom absorbing
and re-emitting photon. But we can have more interesting scenarios. The atom may
absorb a photon and emit two photons of half the frequency, or absorb two photons
and emit a photon of twice the frequency. In nonlinear optics [48], light of frequency
l gets converted to 2l, called second harmonic generation (SHG). One photon of
2l get converted to two one photons of 2l. More generally photons at l1 and l2

get converted to l3 = l1 +l2. Also called sum frequency generation (SFG).
Electron can exchange momentum with a atom raising it to higher energy state

as in Frank Hertz experiment and sodium, neon, mercury vapor lamps, or ionization
of atom as in bubble and cloud chamber experiments, or just production of X-rays
as in Bremsstraulung, where scattered electron emits radiation. Elastic scattering
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of electrons happens in electron diffraction and electron microscopes. Scattering
of electrons in the condensed matter range from scattering of electrons of periodic
potential, to give Bloch waves, scattering of electrons of phonons and impurities to
give resistance, scattering of electrons of lattice to give cooper pairs and supercon-
ductivity. Beautiful scattering happens in electron-proton scattering both elastic and
inelastic, as in deep inelastic scattering experiments and understand the indepen-
dence of inelastic cross-section of with respect to transferred momentum. We see,
why we can just say that there are three quarks in proton from elastic cross-section.

Two electrons can exchange photon (one emit other absorb) and hence exchange
momentum. The net energy of a two electron system gets modified by a second order
energy correction, which is the beautiful Coulomb potential. The exchanged photon
energy can get modified when it interacts with electron vacuum creating electron-
positron pairs and annihilating then. Modification is a second order calculation that
is heart of High energy physics. This modification, modifies he coulomb potential a
phenomenon termed vacuum polarization. A electron can directly scatter a photon
changing its and photon momentum a phenomenon termed Compton scattering
observed a change in wavelength of a scattered X-ray light. Coulomb potential
between moving electrons is different, that can be thought of a part of moving
frame and due to Einstein relativity have enhanced interaction which is manifested
as a magnetic field which gives spinor its energy ` · �, but ` gets modified (due
to vacuum coupling) to what we call anomalous magnetic moment of electron, a
second order effect we can calculate in QED. Coupling to vacuum also modifies
the orbital energies around nucleus of an atom a phenomenon that manifests itself
as Lamb shift in hydrogen, a second order effect that we can calculate in QED.
Electron-Positron when collide can of-course scatter but can also annihilate and then
create another particle-antiparticle pair, which may be heavier (like muons) as long
as their is enough kinetic energy in colliding beam.

Photons are of-course excitation of Electromagnetic (EM) vacuum. This is not the
only vacuum, we have W-Z vacuum (weak interaction vacuum), whose excitations
are heavy bosons ,+,,− and / . Electrons can change momentum by emitting
heavy boson, and changing to a neutrino, similarly quarks can change flavor by
emitting, absorbing heavy bosons. Neutrinos are of-course without charge but can
scatter of electrons, positrons by exchange of heavy bosons. Heavy particle can
change to light particle (neutron to proton) by emitting W Boson which can create a
electron neutrino pair a process called V decay. Similarly pions can decay to muons
and muons to electrons. These are all weak interactions, because interacting boson
is very heavy.

But of-course there are strong force or color interactions that binds quarks into
hadrons, mesons (pions and kaons) and Baryons (protons and neutrons). The inter-
action is color interaction where by quarks have three possible colors red, green,
blue and can exchange momentum and color with interaction strength much higher.
Color interaction is mediated by photons we call gluons, of eight kinds. Protons
collide, exchange momentum with gluons, lose energy and create pions and kaons
etc. Quarks are confined to protons, protons to nuclei with nuclear force. Protons are
color neutral cannot mediate interactions with exchange of gluons but can produce
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pions whose exchange leads to nuclear force, which is very short range as pions are
massive. Gluons can interact, scatter of each other, the exchanged gluon can change
energy due to this second order effect which can weaken the interaction between
gluons, a effect very pronounced at close distances called asymptotic freedom.

Collisions do not have to be between leptons (electron-positron, electron-
neutrino), or between hadrons (proton-proton), we can collide electrons with protons.
The interaction if of-course EM photon. At low energies, the electron just elastically
scatters of the proton and scattering cross-section dependence with exchanged mo-
mentum says how many quarks we have, three in this case. If electron is very
energetic it can excite internal modes (quark orbitals) and can create a heavy proton,
a process called inelastic scattering. The exchanged photon may generate pions or
other mesons a signature of inelastic scattering.

I will like to thank the wonderful colleagues and academic environment of
SYSCON at IIT Bombay that provided ample opportunity for self development.
Finally I like to acknowledge the support of my family which made this effort
possible.

IIT Bombay, Navin Khaneja

March 2024
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Chapter 1

Introduction to Scattering

1.1 Introduction

This is a text on scattering, the beautiful subject of scattering. The sky is blue, at
night it is red, because red light from sun is scattered (photon direction changes
when it meets an atom in atmosphere), and we get blue light and at night of-course
sun is on side and we see red scattered light. This is called Rayleigh scattering.

Fig. 1.1 Fig. shows Rayleigh scattering

Rayleigh scattering is elastic scattering only direction of light changes, we can
also have scattering where wavelength also changes, called in-elastic scattering as
in Raman scattering. Light when scatters of molecules changes wavelength and lost
energy excites vibrational modes of a molecule.

Rayleigh and Raman scattering happens when photon talks to bound electron of
an atom. We also have high energy X-ray photons scattering of the free electrons in
a solid, something called Compton scattering.

X-rays can of-course elastically scatter from a group of atoms and scattering
amplitudes coherently add to give what is called Bragg-scattering where we get a
strong reflection when wavelength of X-rays match lattice spacing.

Scattering happens when photon collides with an electron. Photon is absorbed and
can be re-emitted a process called scattering. Electron can also scatter of electrons
by emitting a photon which is absorbed by the second electron. Electrons of right

3
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Fig. 1.2 Fig. shows Raman scattering
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Fig. 1.3 Fig. shows Compton scattering

energy and wavelength can also Bragg scatter of the lattice, a phenomenon called
X-ray diffraction, first absorbed in nickel crystal by Davisson and Germer in 1927,
that reaffirmed wave nature of electrons. Neutrons have much smaller wavelength
and can Bragg scatter of lattice at much lower energy.
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Fig. 1.4 Fig. shows Bragg scattering

1.2 Variants of Raman Scattering

Many optical phenomenon can be understood as variants of Raman scattering. These
include Resonance Raman, Stimulated Raman and CARS (coherent anti-stokes ra-
man scattering). When the scattering molecule has excited state energy close to
incoming photon energy then the amplitude of the Raman scattering is greatly en-
hanced and we call it Resonance Raman. when scattering is done in presence of
second external radiation whose frequency is the energy of outgoing scattered light
then again scattering amplitude is enhanced and it is called stimulated Raman.

p

p

 

 
 

Ground  State

Virtual States

ksk

k kAS

Excited Vibrational State  

Fig. 1.5 Figure shows the Coherent Raman Anti-stokes process. Starting from ground state, pump
laser :? is absorbed and stokes :B emitted and we transit to excited vibrational level, then, :? is
absorbed and anti-stokes :�( emitted, returning to ground state.

CARS [45] is like Raman, except two Raman back to back. In Fig. 3.9 starting
from ground state, pump laser : ? is absorbed and stokes :B emitted and we transit to
excited vibrational level, then, : ? is absorbed and anti-stokes :�( emitted, returning
to ground state. : ? , :B form a Raman pair with amplitude M1 and : ? , :�( form
another Raman pair with amplitude M2.
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1.3 Nonlinear Optical scattering

In Rayleigh scattering, we have atom absorbing and re-emitting photon. But we
can have more interesting scenarios. The atom may absorb a photon and emit two
photons of half the frequency, or absorb two photons and emit a photon of twice the
frequency.

In nonlinear optics [48], light of frequency l gets converted to 2l, called second
harmonic generation (SHG). One photon of 2l get converted to two one photons of
2l. More generally photons at l1 and l2 get converted to l3 =l1 +l2. Also called
sum frequency generation (SFG).

In Down conversion light of frequency 2l gets converted to l. Also called
Difference Frequency Generation (DFG), one photon of l3 get converted to photons
of l1 and l2 such that l3 = l1 +l2.
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A B
Fig. 1.6 Fig. A shows second harmonic generation (SHG) and Fig. B shows down conversion.

Fig. 3.12 A shows second harmonic generation (SHG) and Fig. 3.12 B shows
down conversion. The 4 level system analogy is as shown in 3.11.

All these phenomenon become transparent, when we study electron-photon in-
teraction in Dirac equation subsequently.

1.4 Absorption vs Scattering

Scattering is emission and absorption of photon or vice-versa. But in many optical
processes we can simply absorb a photon and transit to higher energy atomic orbital.
This is the simple processing Laser spectroscopy where laser light of right frequency
promotes an electron to higher atomic orbital.
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1.4.1 Laser cooling

v
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C
Fig. 1.7 Figure A shows how an atom is hit with light with momentum ℏ: and slows down. Figure
B shows atom will absorb light if frequency ℏl matches the difference of energy between the
internal energy levels. Figure C shows these energy levels for sodium. These are the electronic
states with = = 3.

Many experiments in physics require slow atoms [38]. At room temperatures, we
have atoms moving at say 300 m/s. We like to slow them down to say 10 m/s. Slow
atoms are used to make Bose Einstein condensates (velocity as low as cm/s). How
do we slow atoms. We can do it by hitting them with light of the right frequency.
Atoms have internal energy levels. When the frequency of the laser light matches
this, the light is absorbed (optical transition). But light carries momentum ℏ: and
therefore on absorption atom gets a kick which slows it down. The absorbed photon
is spontaneously emitted but in a random direction. When we average over many
such absorption and emission, the kick is always in the same direction while the
recoil due to spontaneous emission is random and averages to zero and in the end
atom slows down. If frequency of the laser light is l an atom moving towards the
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light source will see the frequency shifted to l(1 + E
2
). Then if detune the laser

frequency to be slightly less than the internal energy level, due to this Doppler shift
the atom will see just the right frequency and will absorb it. Atoms moving slowly
will have negligible Doppler shift and will not absorb light. Hence we will only cool
fast atoms and not slow ones. This way we will bring all to same velocity. This is
the basic idea of laser cooling. It has been successful in cooling atoms to very low
velocities where they form a Bose Einstein condensate. Figure C shows these energy
levels for sodium. These are the electronic states with principal quantum number
= = 3. The transition shown is called the �2 line.

1.4.2 Two photon microscopy
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Fig. 1.8 Figure shows a two photon absorption process. There is atomic transition at 2l frequency.
A laser a frequency l is absorbed to a virtual level. Then another photon is absorbed making
transition to excited atomic state. This together constitutes a Raman process. This is followed by
spontaneous emission to ground state.

Figure, 3.10 shows a two photon absorption process [43, 44] . There is atomic
transition at 2l frequency. A laser a frequency l is absorbed to a virtual level. Then
another photon is absorbed making transition to excited atomic state. This together
constitutes a Raman process. This is followed by spontaneous emission to ground
state.

1.4.3 World of Colors

We are surrounded by beautiful colors. Really beautiful. Our clothes have beautiful
colors on them. Plants are green, blood is red. What is the source of this color.
Clothes have dyes containing pigments, like paints have pigments. These pigments
are primarily inorganic in the sense, they have a transition metal element in them.
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Transition metal elements are the one found in the center of the periodic table
that have electrons in their d-orbitals. These include, for example, Cobalt (Co) ,
Cadmium (Cd), Chromium (Cr), Manganese (Mn) etc. For example, Cobalt (atomic
number 27), has electronic configuration 1B22B22?63B23?63374B2. The d-orbitals
are five fold degenerate. These orbitals are 3I2 , 3G2−H2 , 3GH , 3HI , 3GI . However in a
transition metal compound, binding with other atoms called ligands, this degeneracy
gets broken. We have orbitals 3I2 , 3G2−H2 called 46 manifold at higher energy than
the orbitals 3GH , 3HI , 3GI called C26 manifold as shown below

z2 x2− y2

xy xz yz

∆

 

 

  

e
g

t 2g

Fig. 1.9 Fig. shows splitting of energy of d-orbitals in 46 manifold and C26 manifold.

The energy difference Δ = ℏl0 is sub-eV and corresponds to visible wavelength.
When we shine light the right color is absorbed, rest scattered back, which we see.
We see complimentary colors.

1.5 Electron Scattering

In this book we study electron scattering. A electron of mass <, when electrically
scatters of nucleus, of mass " , transfers momentum @ to the nucleus. The energy
lost by electron is more than the energy gained by the nucleus. The resulting energy
goes in exciting the atom to a higher energy state as in Frank Hertz experiment and
sodium, neon, mercury vapor lamps, or ionization of atom as in bubble and cloud
chamber experiments, or just production of X-rays as in Bremsstraulung. In this book,
we study these phenomenon. These experiments are inelastic scattering experiments.
We remark, why neutrinos donot scatter and can penetrate earth, why muons travel
further than electrons in materials and why a material like lead plate can slow down
electrons and positrons efficiently. We look at the elastic scattering of electrons as
in electron diffraction and electron microscopes. We look at scattering of electrons
in the condensed matter, these phenomenon range from scattering of electrons of
periodic potential, to give Bloch waves, scattering of electrons of phonons and
impurities to give resistance, scattering of electrons of lattice to give cooper pairs
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and superconductivity. We study electron scattering from exchange potential as
in Fermi liquid theory and resulting )2 resistance at low temperatures. Electron
scattering of exchange potential resulting in chemical reactions. We turn our attention
to electron-proton scattering both elastic and inelastic, as in deep inelastic scattering
experiments and understand the independence of inelastic cross-section of with
respect to transferred momentum. We see, why we can just say that there are three
quarks in proton from elastic cross-section.

1.6 Scattering in High energy physics

1.6.1 Scattering in quantum electrodynamics (QED)

QED is the science of electron photon scattering , where by two electrons can scatter
by exchanging a photon, which gives rise to Coulomb potential between electron
pairs. Photon can scatter of a electron exchanging momentum and hence changing
color as in Compton scattering. Electron-Positrons can collide and annihilate to give
photons which can create muon-antimuon pairs.

Quantum electrodynamics (QED) is one of the most successful theories of modern
physics era [9, ?, 63, 13]. In QED, electrons interact by electromagnetic coupling to
vacuum. Electron emits photon which is absorbed by the second electron leading to
momentum exchange between electrons which we call electric force. The emission
and absorption changes the energy of the two electrons by what we call the electric
potential energy. In calculating this energy, which is a second order calculation, we
make use of the energy of photon �: = ℏ2: where : is its momentum. But this
emitted photon can further interact with the vacuum by creating electron positron
pairs, which annihilate to give the photon back. This again has its own energy which
modifies the energy of the photon �: to � ′

:
. we can calculate this modification or

correction and we find this will change the electromagnetic potential between two
electrons. We may think of this as simply changing n0 the vacuum permittivity and
this is called vacuum polarization, very much like light propagating in a medium
polarizes it and changes n0 and slows down. On another note, an electron can emit
and absorb a photon and the process modifies the rest energy of the electron <22 to
<′22 a process we call mass correction.

1.6.2 Scattering in Weak Interactions

Photons are of-course excitation of Electromagnetic (EM) vacuum. This is not the
only vacuum, we have W-Z vacuum (weak interaction vacuum), whose excitations
are heavy bosons ,+,,− and / . Electrons can change momentum by emitting
heavy boson, and changing to a neutrino, similarly quarks can change flavor by
emitting, absorbing heavy bosons. Neutrinos are of-course without charge but can
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scatter of electrons, positrons by exchange of heavy bosons. Heavy particle can
change to light particle (neutron to proton) by emitting W Boson which can create a
electron neutrino pair a process called V decay. Similarly pions can decay to muons
and muons to electrons. These are all weak interactions, because interacting boson
is very heavy. This is scattering at its best, we emit and absorb, heavy photons

1.6.3 Scattering in Quantum Chromodynamics

But of-course there are strong force or color interactions that binds quarks into
hadrons, mesons (pions and kaons) and Baryons (protons and neutrons). The inter-
action is color interaction where by quarks have three possible colors red, green,
blue and can exchange momentum and color with interaction strength much higher.
Color interaction is mediated by photons we call gluons, of eight kinds. Protons
collide, exchange momentum with gluons, lose energy and create pions and kaons
etc. Quarks are confined to protons, protons to nuclei with nuclear force. Protons are
color neutral cannot mediate interactions with exchange of gluons but can produce
pions whose exchange leads to nuclear force, which is very short range as pions are
massive. Gluons can interact, scatter of each other, the exchanged gluon can change
energy due to this second order effect which can weaken the interaction between
gluons, a effect very pronounced at close distances called asymptotic freedom.

1.6.4 Collisions

Collisions do not have to be between leptons (electron-positron, electron-neutrino),
or between hadrons (proton-proton), we can collide electrons with protons. The inter-
action if of-course EM photon. At low energies, the electron just elastically scatters
of the proton and scattering cross-section dependence with exchanged momentum
says how many quarks we have, three in this case. If electron is very energetic it can
excite internal modes (quark orbitals) and can create a heavy proton, a process called
inelastic scattering. The exchanged photon may generate pions or other mesons a
signature of inelastic scattering.





Chapter 2

Relativity, electrons and photons

2.1 notation

Three vectors are denoted by boldface type.

G` = (G0,x) (2.1)

G` = (G0,−x) (2.2)

m` = ( m

mG0
,∇) (2.3)

m` = ( m

mG0
,−∇) (2.4)

G`G` = (G0)2 − (G1)2 − (G2)2 − (G3)2

and

m`m
`
= ( m

mG0
)2 − ( m

mG1
)2 − ( m

mG2
)2 − ( m

mG3
)2

2.2 Relativity

Consider lab frame$ and a frame$ ′ , moving with respect to lab frame with velocity
E in the x-direction as shown in Fig. 2.1.

Then the space time increment (ΔG,ΔC) in $, corresponds to (ΔG ′,ΔC ′) in $ ′.
The phase increment of the light wave in both frames is the same. The velocity of
light is same in both frames, which is the central tenet of theory of relativity.

Then

:ΔG−lΔC = : ′ΔG ′−l′
ΔC ′ (2.5)

: (ΔG− 2ΔC) = : ′(ΔG ′− 2ΔC ′). (2.6)

13
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0 0’x x’

y

z

y’

z’

Fig. 2.1 Fig. shows frames$′ moving relative to$ at velocity E .

For light travelling in opposite direction

: ′(ΔG + 2ΔC) = : (ΔG ′+ 2ΔC ′). (2.7)

The two relations give

(2ΔC)2 −ΔG2
= (2ΔC ′)2 −ΔG ′2. (2.8)

For ΔG ′ = 0, we have, ΔG = EΔC and this gives

ΔC =
ΔC ′√
1− E2

22

(2.9)

This is called time dilation. Furthermore

: ′

:
=

1− E
2√

1− E2

22

(2.10)

Then combining Eq. (2.6. 2.7, 2.10), we get[
ΔG

2ΔC

]
=

1√
1− E2

22

[
1 E
2

E
2

1

] [
ΔG ′

2ΔC ′

]
(2.11)

For a rod of length ; ′ in $ ′ we have (ΔG ′,ΔC ′) = (; ′,0), the ; = ΔG − EΔC =
; ′
√

1− E2

22 . This is called length contraction.

For an object moving at velocity in the frame $ ′ at velocity D, for time ΔC ′, we
have (ΔG ′,ΔC ′) = (DΔC ′,ΔC ′). Then from (Eq. 2.11), the relative velocity

h =
ΔG

ΔC
=
D + E

1+ DE
22

(2.12)
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Of-course world is three dimensional, with - = (G, H, I, 2C), we have for$ moving

with E along G direction to $ ′, we have for W =
√

1− E2

22 ,

Δ- =

©­­­«

1
W

E
2W

0 0
E
2W

1
W

0 0

0 0 1 0
0 0 0 1

ª®®®¬
Δ- ′ (2.13)

Now with D = (DG , DH , DI), we have

h = ( DG + E
1+ DG E

22

,
DHW

1+ DG E

22

,
DIW

1+ DG E

22

) (2.14)

For conservation of momentum to hold in relativistic frame transformation we
have to define momentum as

p =
<

W
(EG , EH , EI) (2.15)

Kinetic energy can be computed by finding work done in accelerating <0 from
rest to E, this is

, =

∫
3 (<E)E =

∫
3 (<E2) −<E3E = <E2 +

∫
3 (<02

2

√
1− E

2

22
= <22 −<02

2

(2.16)
But we have rest mass energy <02

2, giving total energy <22. To see rest mass
energy, Let the energy of the rest mass <0 in $ ′ be *. Then its energy in $

is * + (< −<0)22. let this mass disintegrate giving two photons in forward and
backward direction of energy ℏl0 =

*
2 each. Then in frame 0, the energies of

photons are ℏl1 and ℏl2. Then we get

ℏl1 +ℏl2 = 2ℏl0 (
l1

2l0
+ l2

2l0
) = 2ℏl0√

1− E2

22

This gives* = <02
2 and � = <22.

We can define ? = 2(<2, ?G , ?H , ?I) and then a direct verification gives the frame
transformation,

? =

©­­­«

1
W

E
2W

0 0
E
2W

1
W

0 0

0 0 1 0
0 0 0 1

ª®®®¬
?′ (2.17)
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Consider now mass <0 moving with velocity D = (DG , DH , DI), its energy � =

<02
2√

1− D2

22

increments slightly if we go in the frame moving with velocity E such that

the new velocity is given by Eq. (2.14), and

3�

3EG
|EG = 0 = <DG ,

, this is a new interpretation of G momentum, it is differential energy change as we
move in a frame in G direction. Similarly H and I momentum can be defined. Now
let us use this new interpretation of momentum.

Consider a electron matter wave with frequency, wave-vector (l, :) and (l′, : ′)
respectively. Then

The phase increment of the matter wave in both frames is the same.
Then

:ΔG−lΔC = : ′ΔG ′−l′′
ΔC ′ (2.18)

[
: − l

2

] [
ΔG

2ΔC

]
=

[
: − l

2

] 1√
1− E2

22

[
1 E
2

E
2

1

] [
ΔG ′

2ΔC ′

]
=

[
: ′ − l′

2

] [
ΔG ′

2ΔC ′

]
(2.19)

This gives

[
: − l

2

] 1√
1− E2

22

[
1 E
2

E
2

1

]
=

[
: ′ − l′

2

]
(2.20)

Rewriting this equation we get[
:
l
2

]
=

1√
1− E2

22

[
1 E
2

E
2

1

] [
: ′
l′

2

]
(2.21)

Once again we use our interpretation of momentum and ask what is 3� (E)
3E

|0 = ℏ: ′.
Therefore momentum of our complex wave l′, : ′ is simply

ℏ: ′.

Thus we have two basic results in quantum mechanics the energy is ℏl and momen-
tum ℏ: .

Also note that directly be definition � =
√
(?2)2 + (<022)2.
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2.3 Photon

Consider Maxwell equations in free space in coordinate system $.

∇ ·� = 0, (2.22)

∇ · � = 0, (2.23)

∇×� = `0
m�

mC
, (2.24)

∇×� = −m�
mC
. (2.25)

In coordinate system$ ′, the �, � transform to � ′, �′ such that Maxwell equations
stay same, i.e., the new � ′ and �′ fields should also satisfy Maxwell equations. So
what should be the transformation rule. Recall, we call write from 2.23 that

� = ∇×A. (2.26)

(A = (�G , �H , �I)) and substituting in 2.25, we get

� = −mA

mC
−∇�0. (2.27)

With �` = (�0,A) , observe the gauge Transformation

�` → �` − m`j, (2.28)

does not change � and � so we choose Lorentz gauge

m`�
`
= 0. (2.29)

Substituting for �, � in terms of � in Eq. 2.22 and 2.24, we find

m`mD�
a
= 0. (2.30)

Now define

�′(G ′(G)) = Λ �(G). (2.31)

Then we can check that
m`�

′`
= 0, (2.32)

and

m`mD�
′a
= 0. (2.33)

Now we can define � ′ and �′ in terms of �′ as in 2.26 and 2.27, this insures that
�′ and � ′ satisfy Maxwell equation 2.23 and 2.25. Then using 2.32 and 2.33, we get
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� ′ and �′ also satisfy 2.22 and 2.24. Therefore the new � ′ and �′ fields also satisfy
Maxwell equations. Remember, transformation rule is 2.31.

Electromagnetic field is

�`a = m`�a − ma�` =



0 −�G −�H −�I
�G 0 −�I �H
�H �I 0 −�G
�I −�H �G 0


(2.34)

We know give a variational interpretation to the equation of � field 2.33. We
equip � with a dynamics by defining Lagrangian as density

! = − n0
4
�`a�

`a
=
n0

2
(�2 −�2). (2.35)

The corresponding energy density is

� = n0 (�0`�
0` + 1

4
�`a�

`a) = n0
2
(�2 +�2). (2.36)

Once we have the Lagrangian, we can write the Euler Lagrange equations that
give us Eq. 2.33. Lets make a small detour on how Euler Lagrange equations arise
from Lagrangian.

2.3.1 Euler Lagrange Equations

Recall given a mechanical system with Lagrangian !(G, ¤G), we want to find the
trajectory connecting two fixed points that minimize

( =

∫
!(G, ¤G) 3C. (2.37)

X( =

∫
X!(G, ¤G) 3C, (2.38)

X( =

∫
m!

mG
XG + m!

m ¤G X ¤G. (2.39)

Integrating by parts with XG as 0 at the endpoints/boundary, we have

X( =

∫
( m!
mG

− 3

3C

m!

m ¤G )XG. (2.40)

For above to be true for arbitrary X we have

3

3C

m!

m ¤G =
m!

mG
. (2.41)
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As an example consider a spring mass system with mass < and spring constant
: , then

!(G, ¤G) = 1

2
(< ¤G2 − :G2). (2.42)

Then Euler Lagrange equations read

< ¥G = −:G. (2.43)

2.3.2 Klein Gordon Field

Consider a scalar field with Lagrangian density

! =
1

2
(m`qm`q−<q2), (2.44)

Given the action

( =

∫
! 33G (2.45)

Then

X( =

∫
m`qm

`Xq−<qXq 33G (2.46)

X( =

∫
(−m`m`q−<q)Xq 33G (2.47)

where we integrate by parts with variation zero at boundary and we get for arbitrary
Xq, it should be true that

m`m
`q+<2q = 0, (2.48)

or

m2q

mC2
−∇2q+<2q = 0. (2.49)

2.3.3 Variation of A field

We equip � with a dynamics by defining Lagrangian as density

! = − n0
4
�`a�

`a . (2.50)

( =

∫
! 33G (2.51)
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Then

X( =

∫
�`a (m`X�a − maX�`) 33G, (2.52)

X( =

∫
m`�`aX�

a 33G, (2.53)

where we used integration by parts and zero variation at the boundary to get

m`�`a = 0. (2.54)

These are four beautiful Maxwell’s equations. If we transform � = Λ�′ , then we
see that Maxwell’s equations are satisfied in the transformed frame, that says it must
indeed be the way that � transforms. This transformation gives �`a = Λ� ′`aΛ) .

Invoking the Lorentz gauge we get

m`m`�a = 0, (2.55)

i.e.,

( m2

22mC2
−∇2)�a = 0. (2.56)

The solution is for Y` = (Y0, Y), we have

� = Y cos(k · r−lC), (2.57)

is a wave propagating in k = (:G , :H , :I) direction with l = 2 |k|. with :` = ( l
2
,k).

The Lorentz gauge condition then becomes

:`Y
`
= 0. (2.58)

For example,
� = Y cos(: · I−lC), (2.59)

is a wave propagating in I direction with l = 2 |: |. From 2.36, the energy of this �

field is (Y2
2 + Y2

3)
n0l

2

222 + . Therefore for Y2
2 + Y2

3 = 1, we have,

� = 2

√
2ℏ

+n0l
Y cos(: · I−lC) = 2

√
ℏ

2n0l+
Y ( exp 8(: · I−lC) +exp −8(: · I−lC) )

(2.60)
has energy ℏl, and this elementary excitation is termed Photon. More generally,
when Y is complex

� = 2

√
ℏ

2n0l+
(Y exp 8(: · I−lC) + Y∗ exp −8(: · I−lC) ) (2.61)



2.4 Electron 21

For instance if Y = 1√
2



0
1
8

0


, we have

� = 2

√
ℏ

n0l+



0
cos(: · I−lC)
sin(: · I−lC)

0


(2.62)

constitutes circularly polarized light. if we move into a frame that rotates around I
axis with angular velocity Δl, the find the � transforms to

�′
= 2

√
ℏ

n0l+



0
cos(: · I− (l+Δl)C)
sin(: · I− (l+Δl)C)

0


(2.63)

If we calculate the energy of �′, we get two contributions, one due to I dependence

of ℏl
2 and C dependence, which is ℏ(l+Δl)2

2l . Going from � to �′ the energy changes

by Δ� = ℏΔl and the angular momentum is just Δ�
Δl

= ℏ. Thus circularly polarized
light carries angular momentum of ℏ.

2.4 Electron

We now come to relativistic equation of an electron. Recall Pauli matrices

fG =

[
0 1
1 0

]
; fH =

[
0 −8
8 0

]
; fI =

[
1 0
0 −1

]
; 1 =

[
1 0
0 1

]
(2.64)

For an electron wave exp(8(: · A −lC), we want relativistic dispersion relation

ℏl =

√
(<>22)2 + (2ℏ:G)2 + (2ℏ:H)2 + (2ℏ:I)2.

For this we make the wave a four vector k = exp(8(: · A −lC)D, where D is

+1 eigenvector of cos\U` + sin\V, where sin\ = <02
2

�
and V = fG ⊗ 1 and UD =

−fI ⊗f`.
k satisfies,

8ℏ
mk

mC
= (<22V− 82ℏU 9m 9 )k.

Using ℏ = 2 = 1 and multiplying both sides with V gives

(8W`m` −<)k = 0,

where W0 = fG ⊗ 1 and W` = 8fH ⊗f`. Let us diagonalize the matrix
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� = <V+ ? 9U 9 = � (−cos\fI ⊗fU + sin\fG ⊗ 1 ) (2.65)

= � exp(8 \
2
fH ⊗fU)(−fI ⊗fU) exp(−8 \

2
fH ⊗fU) (2.66)

Let b±U be eigenvectors of fU with eigenvalues ±1. Then

[
1
0

]
⊗ b±U are eigen-

evectors of −fI ⊗fU with eigenvalues ±1 and

[
0
1

]
⊗ b±U are eigenevectors of with

eigenvalues ∓1. Then

exp(8 \
2
fH ⊗fU)

[
1
0

]
⊗ b±U =

[
cos \2
±sin \

2

]
⊗ b±U (2.67)

are eigenvectors of � with eigenvalues ±� .

exp(8 \
2
fH ⊗fU)

[
0
1

]
⊗ b±U =

[
∓sin \

2
cos \2

]
⊗ b±U (2.68)

are eigenvectors of � with eigenvalues ∓� . let D and E be these eigenvectors with ±
eigenvalues respectively. Then let

D1(?) =
[
cos \2
sin \

2

]
⊗ b+U; D2(?) =

[
sin \

2
cos \2

]
⊗ b−U; (2.69)

E1 (?) =
[
−sin \

2
cos \2

]
⊗ b+U; E2(?) =

[
cos \2
−sin \

2

]
⊗ b−U (2.70)

where 1,2 represent positive and negative helicity respectively.

2.4.1 Completeness Relation

Then using ∑
B=1,2

DB (?)DB (?)† + EB (?)EB (?)† = 1 (2.71)

and

�?

∑
B=1,2

DB (?)DB (?)†− EB (?)EB (?)† = (<22V+ 2 U8 ?8) (2.72)

This gives for m = <22,

∑
B=1,2

DB (?)D̄B (?) =
/? +m

2�?
(2.73)

∑
B=1,2

EB (?)ĒB (?) =
/?−m

2�?
. (2.74)
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where /? = ?`W`.
Coming back to Dirac equation

(W`?` +<)D(?) = 0. (2.75)

Let momentum ?′ is related to ? by a Lorentz transformation. The Lorentz transfor-
mation that takes ? to ?′ can be written as boost from ? to rest and arbitrary rotation
and then boost from rest to ?′. We can represent this as

Λ = �?′ (Z ′) exp(\1ΩU)�? (−Z), (2.76)

where �G is boost along G direction. On spinor, it takes the form,

D(?′) = ΣD(?), (2.77)

where

Σ = exp(− Z
′

2
fI ⊗f?′) exp(8 \1

2
1 ⊗fU) exp( Z

2
fI ⊗f?). (2.78)

Then it can be verified that

(W`?′` +<)D(?′) = 0. (2.79)

It should be noted that Eq. (2.77) does not preserve norm. However what is true
is that if we normalize the spinors such that u(?) =

√
�?D(?) then under Lorentz

transformation,

Σu(?) = u(?′). (2.80)

To see this, let

D(?) =
[
cos \ (?)2

sin \ (?)
2

]
⊗ b? . (2.81)

Consider a spinor u(0) =
√
<
2

[
1
1

]
× b? at rest. If we boost it to momentum ?, we

can write D(0) → w.

w = exp(− Z
2
fI ⊗f?)D(0) =

1
√

2

[
exp(− Z2 )
exp( Z2 )

]
× b? . (2.82)

Since w ∝ D(?), we have

tan
\ (?)

2
= exp(Z). (2.83)

Then

|w|2 = < cosh(Z) = <

sin\ (?) = �? , (2.84)
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but this says that

u(?) = w. (2.85)

Then from 2.78,

Σ u(?) = exp(− Z
′

2
fI ⊗f?′) exp(8 \1

2
1 ⊗fU) u(0), (2.86)

=
√
< exp(− Z

′

2
fI ⊗f?′)(0

1
√

2

[
1
1

]
⊗ b+?′ + 1

1
√

2

[
1
1

]
⊗ b−?′), (2.87)

where 02 + 12 = 1. Then

Σ u(?) =
√
< (0 1

√
2

[
exp(− Z

′

2 )
exp( Z

′

2 )

]
⊗ b+?′ + 1

1
√

2

[
exp( Z

′

2 )
exp( −Z

′

2 )

]
⊗ b−?′), (2.88)

∝ (0
[
cos \ (?

′)
2

sin \ (?′)
2

]
⊗ b+?′ + 1

[
sin \ (?′)

2

cos \ (?
′)

2

]
⊗ b−?′). (2.89)

Then equating coefficients of b?′ we get ∝ in last equation is
√
�?′ and

Σu(?) = u(?′). (2.90)

2.5 Electron-Photon Interaction

2.5.1 Electric-Magnetic Field Lagrangian and Hamiltonian

A charged particle with mass < and charge @ in electric-magnetic field has La-
grangian

! =
<

2
( ¤G2 + ¤H2 + ¤I2) + @( ¤G�G + ¤H�H + ¤I�I) − @�0, (2.91)

where A is vector potential and � = ∇×A, i.e.,

�G =
m�I

mH
−
m�H

mI
, (2.92)

�H =
m�G

mI
− m�I
mG

, (2.93)

�I =
m�H

mG
− m�G
mH

. (2.94)
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�G = −m�G
mC

− m�0

mG
, (2.95)

�H = −
m�H

mC
− m�0

mH
, (2.96)

�I = −m�I
mC

− m�0

mI
. (2.97)

We have Euler Lagrange equations

< ¥G + @ ¤�G = @( ¤G
m�G

mG
+ ¤H

m�H

mG
+ ¤I m�I

mG
) − @ m�0

mG
. (2.98)

Writing

¤�G =
m�G

mC
+ ¤G m�G

mG
+ ¤H m�G

mH
+ ¤H m�G

mH
. (2.99)

Substituting in 2.98 we get ,

< ¥G = @( ¤H�I − ¤I�H) − @(
m�G

mC
+ m�0

mG
), (2.100)

and similarly for H, I gives in all that

< ¤E = @(E×�+�). (2.101)

The Lorentz force law. The momentum ?G =
m!
m ¤G = < ¤G + @�G and similarly for H, I

gives the Hamiltonian or energy

� = ¤G?G + ¤H?H + ¤I?I − ! =
(?G − @�G)2

2<
+
(?H − @�H)2

2<
+ (?I − @�I)2

2<
+ @�0.

(2.102)
The energy � is then

� − @�0 =
(?G − @�G)2

2<
+
(?H − @�H)2

2<
+ (?I − @�I)2

2<
. (2.103)

The relativistic generalization is

� − @�0 = 2

√
(?G − @�G)2 + (?H − @�H)2 + (?I − @�I)2 + (<2)2. (2.104)

We use this energy to define Dirac equation in the electric-magnetic field.
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2.5.2 Gauge Coupling and Transitions

Recall how the Dirac equation reads with ?` = (�,p2), we have

(W`?` −<)k = 0 (2.105)

From 2.104, we have the Dirac equation in presence of electromagnetic field as
?` → ?` − @�`. If we identify ?` with 8m` , the Dirac equation reads

(8W`m` −<2− @�`W`)k = 0 (2.106)

or in terms of matrices U 9 , V,

8mCk = (−2U 9 8m 9 +<22V− @� 9U 9 + @�0)k (2.107)

without �, we have the free Dirac equation

8mCk = (−2U 9 8m 9 +<22V)k (2.108)

The term

) = −@� 9U 9 + @�0, (2.109)

is transition term. In absence of this if electron is in eigenstate of the Dirac equation
k1 = D1(?) exp(8? · A), it will stay in this state. In presence of the transition term it
makes a transition. Lets imagine a photon is present, then � is as in Eq. 2.110

� = 2

√
2ℏ

n0l+
Y cos(: · A −lC) = 2

√
ℏ

2n0l
Y ( exp 8(: · A −lC) + exp −8(: · A −lC) )

(2.110)
Then ) acting on k1 induces change D1(?) exp(8? · A) → D1(? + :) exp(8(? + :) · A).
Lets call the state D1(? + :) exp(8(? + :) · A) as k2. Let G1 and G2 denote coefficients
of k1 and k2, Then

3

3C

[
G1

G2

]
=
−8
ℏ

[
�? Ω† exp(8lC)

Ωexp(−8lC) �?+:

] [
G1

G2

]
(2.111)

where �% and �?+: are energies of the initial and final electron states and

Ω = @2

√
ℏ

2+n0l
D
†
1(? + :)(−n 9U 9 + n0)D1(?) =

�
√

2�:
D̄1(? + :)(n`W`)D1(?),

(2.112)
where D̄ = D†V, �: = ℏl the energy of the photon and
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� =
@2ℏ
√
+n0

. (2.113)

If we denote G̃1 = exp(−8lC)G1, then

3

3C

[
G̃1

G2

]
=
−8
ℏ

[
�? +�: Ω∗

Ω �?+:

] [
G̃1

G2

]
(2.114)

where �: = ℏl: the energy of the photon. Observe G̃1 is coefficient of state evolving
with energy �? + �: , the joint state of electron and photon. 3 then represent the
transition out of this state. The initial state has electron and photon, while the final
state only has electron. We denote this as

|?, :〉 → |? + :〉 (2.115)

Drawn as a energy level diagram it looks like Fig. 2.2.

p, k

p + k

 

Fig. 2.2 Fig. shows transitions between electron, photon states.

We showed transition to state D1(? + :), similarly we have transition to state
D2(? + :), etc, where 1,2 represent helicity.

2.5.3 Feynman Diagrams

The above level diagram is also represented by so called a Feynman diagram as
shown in 2.3. An electron and photon of momentum ? and : respectively react to
form an electron of momentum ? + : .

This reaction is very unfavourable for large energy difference between input and
out states of the two levels as shown in fig. 2.2. However the outgoing electron can
immediately dissociate into an electron and photon of momentum ?′ and : such
that ?′ + : ′ = ? + : . Furthermore �% + �: = �?′ + �:′ . so that the initial and final
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p

k

p + k

Fig. 2.3 Fig. shows a Feynamn diagram of electron and photon of momentum ? and : respectively
react to form an electron of momentum ? + :

states have same energy-momentum. Then the overall reaction which is represented
by a level diagram in 2.4A and Feynman diagram 2.4B becomes favorable. We can
compute the rate of this reaction, which we do in the next chapter on Quantum
Electrodynamics a subject that calculates such reaction rates.

Ω Ω

Fig. 2.4 Fig. A shows a three level diagram and Fig. B shows a Feynman diagram for electron-
photon scattering.

2.6 Lorentz gauge vs K · x gauge

For a plane wave along I direction, with electric field �G sin(:I−lC), the Lorentz
gauge is
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(�0, �G , �H , �I) =
�G

l
cos(:I−lC)(0,1,0,0)

. But this gauge is not suited for calculating optical transitions, because we don’t
recover the Rabi frequency @�G3 (3 electric dipole moment). What we find is
something orders of magnitude smaller. Nor is it suitable for calculating electron
electron scattering as described in next chapter on quantum electrodynamics (QED),
because we don’t recover Coulomb potential. What we find is something orders of
magnitude smaller. Instead, we work with � · G gauge

(�0, �G , �H , �I) =
�G

2
(−G sin(:I−lC), cos(:I−lC)

l
,0,−G

2
sin(:I−lC)) (2.116)

(2 light velocity) to find everything correct. What we get is new propagator that de-
scribes amplitude of electron electron scattering which gives us Coulomb potential.

A more general gauge is

(�0, �G , �H , �I) = �G (−cos2 \G sin(:I−lC), sin2 \
cos(:I−lC)

l
,0,−cos2 \

G

2
sin(:I−lC)),

(2.117)
we will find that we use this general gauge for successful renormalization in the next
chapter, when photon wavelength is very small compared to Compton wavelength.

Lets see why in Optical transitions, Rabi frequency goes bad, if we donot use
right gauge. This equation is not very tractable, because it is nonlinear in �, lets
write a linear equation, which is the Dirac equation, which takes the form

8
mq

mC
=

( ∑
9=G,H,I

2(−8 ℏ m

mG 9
− @� 9 )U 9 + V<22 + @�0

)
q. (2.118)

where U 9 = fI ⊗ f9 and V = fG ⊗ 1 are Dirac matrices, where f9 are the Pauli

matrices, fI =

(
1 0
0 −1

)
. q is electron spinor, for a electron wave with momentum : ,

takes the form q =

[
cos \2
sin \

2

]
⊗↑ , where ↑ is spin up, cos\ = ℏ:

<2
=
h
2

, where h = ℏ:
<

,

is electron wave group velocity. Electron Orbitals are of size ∼ �◦, their : ∼ 1010< ,

then h ∼ 106</B and cos\ ∼ 106

3×108 ∼ 10−3. Electron is non-relativistic, cos\ = h
2
∼ 0,

\ ∼ c
2 , q = 1√

2

[
1
1

]
⊗↑.

To fix ideas, take incoming EM wave, along I direction, with electric field
�G sin(:I−lC), the Lorentz gauge is (�0, �G , �H , �I) = �G

l
cos(:I−lC)(0,1,0,0).

Electron wave with momentum @ absorbs the photon with momentum : , and transits
to momentum @ + : . The transition is driven by Dirac matrix UG , with transition
amplitude
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M =

[
cos \2
sin \

2

]
⊗↑(fI ⊗fG︸   ︷︷   ︸

UG

)
[
cos \2
sin \

2

]
⊗↓ = @2�G

h

2
= @�G

h

l
(2.119)

If we have electron orbital q0 then : ′ = "
"+< : of photon momentum goes to

electron-nuclear relative coordinate, while : ′′ = : momentum to CM (center of
mass), where " is nucleus mass. The process drives the transition

q0↑ −→ exp(8: ′I)q0↓,

with amplitude M = @�G
h
l

.
When orbital q1 is different from q0 we go to

q0↑ −→ exp(8: ′I)q0↓,

with amplitude M = @2�G
h
2

whose overlap with q1 is

M1 = @2�G
h

2
8: ′ 〈q1 |I |q0〉︸     ︷︷     ︸

3I

= 8@�G3I
h

2
,

where 2: ′ ∼ l.
But this is not suited for study of optical transitions, because we don’t recover the

Rabi frequency @�G3. What we find is orders of magnitude smaller (down by h
2

).
Instead we work with gauge

(�0, �G , �H , �I) =
−�G

2
(G sin(:I−lC),−cos(:I−lC)

l
,0,

G

2
sin(:I−lC)).

Now we have process driven by G term. For the E process, the amplitude of
q0 → q0 is just 0, as 〈q0 |G |q0〉 = 0 and the amplitude of q0 → q1 is simply

M ′
1 = @�G 〈q1 |G |q0〉︸     ︷︷     ︸

3G

= @�G3G ,

Dipole elements 3I , 3G are approx, Bohr radius ∼ �◦. Due to the factor h
2
∼ 10−3,

M1 ≪M ′
1. Therefore transition between different atomic orbitals are largely driven

by the G term.

2.7 Schröedinger Equation

In classical mechanics, we talk about a particle say an electron with a position G and
velocity E. In quantum mechanics, particle state is represented by complex waves
exp(8:G) or sum of such waves

∑
9 exp(8: 9G). In complex wave exp(8:G), : is the

wavenumber of the particle. The wave evolves in time as exp(8(:G −l(:)C)), l(:)
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is the frequency of the wave and depends on wavenumber : . The dependence l(:)
is called the dispersion relation of the wave. First postulate of quantum mechanics
is that the energy of the wave is � = ℏl(:), where ℏ is a fundamental constant
called Planck’s constant. Its units are angular momentum and in SI units its value is
6.6×10−34.

The momentum of our complex wave l, : is simply ℏ: .

Now from classical mechanics � =
?2

2< . Then we get ℏl =
ℏ2:2

2< or l =
ℏ:2

2< . Thus
my complex wave k(G, C) = exp(8(:G−lC)) satisfies

8ℏ
mk

mC
= (− ℏ2

2<

m2k

mG2
). (2.120)

This equation (2.120) is called Schröedinger equation. It is still true if we have

k(G, C) =
∑
9

U 9 exp(8(: 9G−l(: 9 )C)).

as individual exponential satisfy these equation.
k(G, C) is called a wavefunction of electron, it is superposition of plane waves. This

is a feature of quantum mechanics, we can be in superposition of states. It satisfies
the Schröedinger equation. All we are saying is that if we start with initial state
k(G) = ∑

9 U 9 exp(8: 9G), these ways will evolve by their characteristic energies as
k(G, C) =∑

9 U 9 exp(8(: 9G−l(: 9 )C)) and k(G, C) satisfies the Schröedinger equation.

1 2 3 4 k k+1φ φ φ φ φ φ

Fig. 2.5 Figure shows how + (G) is decomposed as piece-wise constant potential.

Now how does my wavefunction evolve if I have a potential+ . Then from classical

mechanics � −+ =
?2

2< , implying ℏl−+ =
ℏ2:2

2< or my wave satisfies

8ℏ
mk

mC
= (−ℏ m

2

mG2
++)k. (2.121)

and again same is true if we have superposition of plane waves.
Now how does the evolution of k(G) take place when we have+ (G). Then we can

break k(G) into small pieces q8 over which + (G) is constant as +8 . See fig 2.5. Then
each q8 sees a potential +8 . Its evolution will be same if +8 was globally true. Then
we can break q into exponentials and conclude it satisfies the equation

8ℏ
mq8

mC
= (−ℏ m

2

mG2
++8)q8 . (2.122)
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Then adding them all we get

8ℏ
mk

mC
= (−ℏ m

2

mG2
++ (G))k. (2.123)

Thus we have derived a fundamental equation of quantum mechanics. Wavefunc-

tion k(G) has a probabilistic interpretation.
∫ 1
0
|k(G) |23G gives the probability of

finding the particles in the interval [0, 1]

2.7.1 Hydrogen Atom

In polar coordinates A =
√
G2 + H2 and q = tan−1( H

G
).

Then

m

mG
=
mA

mG

m

mA
+ mq
mG

m

mq
= cosq

m

mA
− sinq

A

m

mq

m

mH
=
mA

mH

m

mA
+ mq
mH

m

mq
= sinq

m

mA
+ cosq

A

m

mq
.

m2

mG2
+ m2

mH2
=
m2

mA2
+ 1

A

m

mA
+ 1

A2

m

mq2
.

m2

mI2
+ m2

mG2
+ m2

mH2
=
m2

mI2
+ m2

mA2
+ 1

A

m

mA
+ 1

A2

m

mq2
.

Using ' =
√
I2 + A2 and \ = tan−1( A

I
).

m2

mI2
+ m2

mG2
+ m2

mH2
=

m2

m'2
+ 2

'

m

m'
+ 1

'2

m

m\2
+ cot\

'2

m

m\
+ 1

'2 sin2 \

m

mq2

=
1

'2

m

m'
('2 m

m'
) + 1

'2 sin\

m

m\
(sin\ m

m\
) + 1

'2 sin2 \

m

mq2
.

To Schroedinger Eigenvalue Eq. reals

{ ℏ
2

2<
( 1

'2

m

m'
('2 m

m'
) + 1

'2 sin\

m

m\
(sin\ m

m\
) + 1

'2 sin2 \

m

mq2
) + (� −+ ('))}k = 0.

{( m
m'

('2 m

m'
) + 1

sin\

m

m\
(sin\ m

m\
) + 1

sin2 \

m

mq2
) + 2<'2

ℏ2
(� −+ ('))}k = 0.

We write the solution k = 5 ('). (\, q).
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( 1

sin\

m

m\
(sin\ m

m\
) + 1

sin2 \

m

mq2
+ ; (; +1)︸ ︷︷ ︸

�1

). (\, q) = 0. (2.124)

Writing . (\, q) = Θ(\)48<q, we get

( 1

sin\

m

m\
(sin\ m

m\
) − 1

sin2 \
<2 + ; (; +1)︸ ︷︷ ︸

�1

)Θ(\) = 0.

For G = cos\, the above equation reads

(1− G2)Θ′′−2GΘ′ + (; (; +1) − <2

1− G2
)Θ = 0.

The solution Θ<
;

exits for integer ;,< satisfying 0 ≤ |< | ≤ ;. For < ≥ 0

Θ
<
; (G) =

(−1)<
2; ;!

(1− G2) <
2
3;+<

3G;+<
(G2 −1); .

with

Θ
−<
; (G) = (−1)< (; −<)!

(; +<)!Θ
<
; (G).

Then the equation for ' gives

m

m'
('2 m 5

m'
) = (; (; +1) + 2<'2

ℏ2
(+ (') −�)) 5 .

Let D = ' 5 , then

− ℏ2

2<

m2D

m'2
+ (+ + ℏ2

2<'2
; (; +1))D = �D,

where+ =
−42

4cn0A
. This is one-dimensional Schroedinger equation. Guess a solution

of the form D(A) = ';+14
− '

00 . Then twice differentiating ';+1 cancels the centrifugal

part. Differentiating ';+1 and 4
− '

00 , cancels + , when ℏ2

<
;+1
00

=
42

4cn0
, i.e,

00 =
(; +1)ℏ24cn0

<42
, � =

ℏ2

2<02
0

.

However, we donot have to cancel + immediately. We can add another term

D(A) = ';+14
− '

00 + 21'
;+24

− '
00 .

Then centrifugal part of second term 21 can cancel the part of first term obtained by

differentiating ';+1 and 4
− '

00 . For this 21 has to be chosen correct. Now we cancel +

by differentiating ';+2 and 4
− '

00 .
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Then in general

D(A) = ';+14
− '

00 (1+
3∑
9=1

2 9'
9 ),

with = = ; + 3 +1, the principle quantum number. Then

ℏ2

<

=

00
=

42

4cn0
. 00 ∝ =

and

2 9

2 9−1
=

2(; + 9 −=)0−1
0

9 (2; + 9 +1) .

This gives 00 and finally

� =
ℏ2

2<02
0

, � ∝ 1

=2
.

2.7.2 Angular Momentum

! = A × ?.

!G = H?/ − I?H , !H = I?G − G?I , !I = G?H − H?G .

Using [?G , G] = −8ℏ, etc, we have

!2
= !2

G + !2
H + !2

I = '
2(?2

G + ?2
H + ?2

I) − (G?G + H?H + I?I − 8ℏ)2 +ℏ2.

A quick calculation shows

G?G + H?H + I?I = −8ℏ' m

m'
.

Now substituting for

?2
G + ?2

H + ?2
I = −ℏ2( 1

'2

m

m'
('2 m

m'
) + 1

'2 sin\

m

m\
(sin\ m

m\
) + 1

'2 sin2 \

m

mq2
)(2.125)

!2
= −ℏ2( 1

sin\

m

m\
(sin\ m

m\
) + 1

'2 sin2 \

m

mq2
). (2.126)

Then from Eq. 2.124,
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!2. (\, q) = ℏ
2; (; +1).

and

!I. (\, q) = −8ℏ m
mq
. (\, q) = ℏ<. (\, q).

We denote the eigenfunction as .;<
Observe easily verifiable commutation relations

[!G , !H] = 8ℏ!I , [!H , !I] = 8ℏ!G , [!I , !G] = 8ℏ!H . (2.127)

Define !− = !G − 8!H and !+ = !G + 8!H . !− is called lowering operator and !+

is called raising operator.

[!2, !±] = 0, [!I , !±] = ±ℏ!±. (2.128)

Then note [!2, !±].;< = 0 implies !2!±.;< = ℏ2; (; + 1)!±.;< hence !±.;<
is a linear combination of .;< for different <. Now [!I , !+].;< = !+.;< implying
!I!

+.;< = ℏ(<+1)!+.;< implying !+.;< = 0<.;,<+1. Similarly !−.;< = 1<.;,<−1.
Then observe !+.;; = 0 and !−.;,−; = 0. Furthermore

[!+, !−] = 2ℏ!I . (2.129)

Furthermore we get

!+!− + !−!+ = 2(!2 − !2
I). (2.130)

Then we get

!+!− = !2 − !2
I +ℏ!I (2.131)

!−!+ = !2 − !2
I −ℏ!I . (2.132)

For normalized .;< we get

1;< = ℏ
√
; (; +1) −<(<−1) (2.133)

0;< = ℏ
√
; (; +1) −<(< +1) (2.134)

We talked about orbitals with principle quantum number = and integer angular
momentum number ; and I angular momentum ;, with |< | ≤ ; ≤ =−1. Here ; was
integer. In principle it can be half integer and is ascribed to an intrinsic angular
momentum called spin. We use the quantum number B instead of ;. In particular
B = 1

2 is called spin 1
2 a property of electron. We then have two values of BI = ± 1

2 .
Then an electron as two set of quantum numbers ;,< and B, BI .
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orbital

electron
 

Fig. 2.6 Fig. shows an atomic orbital and an electron with an inner orbital that constitutes its spin
angular momentum

2.8 Fine Structure and Spin orbital coupling

We talked about spin. Lets try to understand the physics of it. You are familiar with
earth spinning on its axis. This gives earth a angular momentum. Now imagine our
earth was charged. Then spinning will give earth a magnetic moment. Imagine a
loop of wire carrying current (circulating charge), then it has a magnetic moment
" = � .�, where � is the current and � area of the loop, from your basic physics. Now
imagine a charge @ going around in a loop of radius A , with angular velocity l. Then
it makes l

2c rotations per sec. The current is then @l

2c and its magnetic moment is

`( =
@lcA2

2c =
@

2< (<EA) where ; = <EA is the angular momentum. Then `( =
@

2<!,
the ratio W =

@

2< is called the gyromagnetic ratio, it relates angular momentum to
magnetic moment. For reasons coming from relativity we infact have W = @

<
.

There is coupling between electron spin and orbital angular momentum. There is
coupling Hamiltonian of the form

�B> = V! · (. (2.135)

Let us see how this coupling arises. When electron is at a certain point on its
orbital it has a velocity E and momentum ?. From perspective of the electron the
nucleus is moving in the opposite direction with same magnitude of velocity. Then
from Biot Savart law the moving nucleus produces a magnetic field on the site of
electron given by

� =
4`0

4c

?× A
<A3

=
4`0

4c

!

<A3
. (2.136)
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The energy of the electron in this field is

� · `( = W� · ( =
42`0

4c<2A3
! · ( = 42

4cn022<2A3
! · (. (2.137)

Thus V = 42

4cn022<2A3 . Due to phenomenon called Thomas precession, V is called by

another factor of 2 and V = 42

8cn022<2A3 .
In presence of this Hamiltonian our orbitals will change. let us compute how the

orbitals change and what are the new energies.

! · ( = !I(I + !G(G + !H(H = !I(I +
!+(− + !−(+

2
. (2.138)

For this define a new operator

�2
= (! + ()2

= !2 + (2 +2! · (. (2.139)

�I = !I + (I , �± = !± + (±. (2.140)

Given ; and B, we start with the state ;I = ; and BI = B. Denote this state by (;, B). This
state is an eigenstate of the operator ! ·( with eigenvalue ;, B and hence it is an eigen-
state of �2 with eigenvalue 9 ( 9 +1) with 9 = ;+B. Now as before we can apply lowering
operator. From last section �− ( 9 , 9I) = 1( 9 , 9I−1) with 1 = ℏ

√
9 ( 9 +1) − 9I ( 9I −1),

so by applications of �− we decrease 9I until it is − 9 . Hence we have constructed 2 9
or 2 9 +1 orbitals depending on if 9 is integer or half integer.

Observe �−(;, B) = (; − 1, B) + (;, B − 1). There is another orthogonal state 41 =

(; −1, B) − (;, B−1) which is eigenfunction of �I with eigenvalue ; + B−1 and hence
must be an eigenfunction of �2. We eigenvalue of �2 cannot be 9 ( 9 +1) as we have
exhausted all these vectors as �+41 = 0. Only possible value of �2 is ( 9 − 1) 9 , we
gain apply lowering operators and go from 9I = 9 −1, . . . ,−( 9 −1).

Now we consider �−2(;, B) = (; − 2, B) + (; − 1, B− 1) + (;, B− 2), which has �I =
; + B−2. We have constructed two eigenvectors �2 = 9 ( 9 +1) and �2 = ( 9 −1) 9 . We
can form a third eigenvector, we can show it has �2 value ( 9 −1)( 9 −2), we can again
apply lowering operators and construct eigenvectors with �2. Instead of writing �2

we say this � which in this case has value 9 −2.
We start with one term (;, B). Then �−(;, B) has two terms, �−2 (;, B) has three

terms. This process continues till smaller of ;, B say B becomes −B. Then lowering
doesn’t increase number of terms. Then starting with 9 = ; + B we go until 9 = ; − B.
Thus all states can be indexed by 9 = ; + B, . . . , ; − B and for a given 9 we have
9I = 9 , . . . ,− 9 . Thus starting with state |;, ;I〉|B, B− I〉 we have formed state

| 9 , 9I〉 =
∑
;I ,BI

2;I ,BI |;, ;I〉|B, BI〉, (2.141)

where as just told, 9 = ; + B, . . . , ; − B and for a given 9 we have 9I = 9 , . . . ,− 9 .
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In the basis | 9 , 9I〉, we have ! · ( is diagonal with eigenvalue 9 ( 9+1)−; (;+1)−B (B+1)
2 .

The coefficients 2;I ,BI are called Clebsch Gordon coefficients. Fig. (2.7) shows how
= = 2, ? orbital gets split due to fine structure.

n=2
l=1 (p orbital) j = 1/2

j=3/2
 

Fig. 2.7 Fig. shows how = = 2, ? orbital gets split due to fine structure.

As we can see in the figure. A energy level = = 1, ; = 1 in presence of ! · (
coupling gets split into two set of orbitals 9 = 3

2 with ( 9I =
3
2 , . . . ,−

3
2 ) and 9 = 1

2 with

( 9I =
1
2 , . . . ,−

1
2 ) with different energies. This is called fine-structure. If we estimate

how big this is it is V = ℏ242

4c22 n0<
2
4A

3 ∼ 1024+ ∼ 103��I. It arises because the angular

momentum of the orbital and the spin of the electron talk to each other. Evaluating
spin orbit coupling,

〈 1

A3
〉 = 1

=3; (; + 1
2 )(; +1)03

(2.142)

�B> = U
4<22 9 ( 9 +1) − ; (; +1) − 3

4

4=3; (; + 1
2 )(; +1)

(2.143)

Electron has a spin, so does the nucleus of the atom. It is called nuclear spin. We
denote nuclear spin with � like we denote electron spin with (. We assume that we
again have an interaction between nuclear spin and electron orbital and spin angular
momentum as

� · (! + () = � · �. (2.144)

What was between ! and ( is between � and � so we can define the total angular
momentum

� = � + �. (2.145)

Given 8 and 9 the coupling gives 5 taking values between 8 + 9 , . . . , |8− 9 |. Thus a 9
orbital gets split into 5 orbitals. This is called hyperfine splitting. The eigenvalues of

� · � takes one values 5 ( 5 +1)− 9 ( 9+1)−8 (8+1)
2 . Thus if we estimate how much this is, it is

V =
ℏ242`0

4c<4<?A3 ∼ 1��I, where <? is proton mass which is 103 heavier than electron
mass.
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F = 1

F = 2

1/2
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3/2
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1/2P
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F = 0
F = 1
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F = 3

B    Cs

 

 

A    Na

1/2
S

2

Fig. 2.8 Fig. A shows hyperfine levels for sodium. Fig. B shows hyperfine levels for Cesium

2.9 Relativistic Correction

In Schröedinger equation we used kinetic energy as ?2

2< . If we use relativistic formula
of

� =

√
(?2)2 + (<22)2 ∼ <22 + ?2

2<
− ?4

8<322
. (2.146)

Then we find that
We have correction to energy

Δ�A4; = − ?4

8<322
. (2.147)

Using the fact ?2

2< = � −+ , on an orbital we can calculate

〈Δ�A4;〉 = − 1

2<22
�2
= −2�=〈+〉 + 〈+2〉. (2.148)

�= = −U
2<22

2=2
; U =

42

4cn0ℏ2
. (2.149)

Using + =
42

4cn0A
,

〈1

A
〉 = 1

=20
, 〈 1

A2
〉 = 1

=3 (; + 1
2 )02

(2.150)

where 0 is Bohr radius. Putting everything together we find
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〈Δ�A4;〉 = −U
4<22

4=4
( 2=

; + 1
2

− 3

2
). (2.151)

Adding Eq. (2.152) and (2.143) we get what is called fine structure

〈Δ� 5 B〉 = −U
4<22

4=4
( 2=

9 + 1
2

− 3

2
). (2.152)

2.10 Lamb Shift

2.11 Positronium

Positronium (Ps) is a system consisting of an electron and its anti-particle, a positron,
bound together into an exotic atom, specifically an onium. The system is unstable: the
two particles annihilate each other to predominantly produce two or three gamma-
rays, depending on the relative spin states. The orbit and energy levels of the two
particles are similar to that of the hydrogen atom (which is a bound state of a proton
and an electron). However, because of the reduced mass, the frequencies of the
spectral lines are less than half of the corresponding hydrogen lines.

Fig. 2.9 Fig. shows energy levels for hydrogen atom and positronium.
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2.12 Problems

1. Frame $ ′ moves with respect to frame $ with velocity D along G axis. If velocity
of a particle in frame $ ′ is E′ = (E′G , E′H , E′I), find its velocity in frame $.

2. The rest mass of a proton is 938 "4E/22. If it moves with velocity .9 2, where 2
is velocity of light, find its energy.

3. In above problem if the proton moves such that its momentum is 1000 "4E/2,
find its energy.

4. Muon at rest, decay in time 2.2 `B42. How much time will it take them to decay
if they are moving at velocity .99 2.

5. Lagrangian of electromagnetic field is

! =
−n0
4

∫
�`a�

`a33G

By taking variation of ! show that we get Maxwell equations m`�`a = 0.





Chapter 3

Optical Scattering

In this chapter, we develop a subtle nuance in our understanding of the optical transi-
tions [33, 34]. The starting point is the electron Hamiltonian, �, in a electromagnetic

wave. � =
∑
9=G,H,I

(? 9−@� 9 )2

2< + �0, where @ is the electron charge, < the electron
mass, ? is the electron momentum and � the vector potential. For a plane wave along I
direction, with electric field �G sin(:I−lC), the Lorentz gauge is (�0, �G , �H , �I) =
�G

l
cos(:I−lC)(0,1,0,0). But this gauge is not suited for calculating optical tran-

sitions, because we donot recover the Rabi frequency @�G3 (3 electric dipole mo-
ment). What we find is something orders of magnitude smaller. Instead, we work
with gauge (�0, �G , �H , �I) = −�G

2 (G sin(:I−lC),− cos(:I−lC)
l

,0, G
2

sin(:I−lC)) (2
light velocity) to find everything correct. We can classify optical transitions into two
types, one that are not mediated by G term in Hamiltonian (A process), and other by
the G term in Hamiltonian (E process). Equipped with this, we study many optical
processes. These include atomic transitions, elastic and inelastic scattering processes
like Rayleigh scattering, Raman scattering, Two photon absorption, stimulated Ra-
man, second harmonic generation, parametric down conversion, photoelectric effect,
optical processes in semiconductors, etc. We show that the E process is stronger than
the A process, when we transit between atomic levels. The A process happens, when
we have virtual levels. In processes like Raman scattering, two photon absorption ,
we have both the A and the E processes. The A process flips the spin, while the E
process doesn’t. The A processes are therefore always circularly polarized. Transi-
tion amplitude of the E process is straightforward and is everyday calculation of the
Rabi frequency using dipole moment. The transition amplitude of the A process is
done through Dirac equation, the relativistic cousin of Schrödinger equation.

3.1 Introduction

Take a classical electron, with coordinates (G, H, I) = (G1, G2, G3) . Its Lagrangian in
the electromagnetic field is

43
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! =
<

2

∑
8

¤G82 + @
∑
8

�8 ¤G8 − @�0, (3.1)

where @ amd < are electron charge and mass. A and + are vector and scalar
potentials.

The Euler Lagrange equations are the familiar Lorentz force law < ¤E = @(� + E×
�), where E is the velocity vector, �8 = − m�8

mC
− m+
mG8

, �8 =
m�:

mG 9
− m� 9

mG:
, the electric and

magnetic fields.
The momentum ?8 =

m!
mG8

and the Hamiltonian of the system � = ?8
m
m ¤G8 − ! is

� =

∑
9=G,H,I

(? 9 − @� 9 )2

2<
+ @�0. (3.2)

3.1.1 Dirac and Schrödinger Equation

The Electron Schrödinger Equation [36] is

8
mk

mC
=

( ∑
9=G,H,I

(−8ℏ m
mG 9

− @� 9 )2

2<
+ @�0

)
k, (3.3)

where k is electron wavefunction. This equation is not very tractable, because it is
nonlinear in A, lets write a linear equation, which is the Dirac equation [63], which
takes the form

8
mq

mC
=

( ∑
9=G,H,I

2(−8 ℏ m

mG 9
− @� 9 )U 9 + V<22 + @�0

)
q. (3.4)

where U 9 = fI ⊗ f9 and V = fG ⊗ 1 are Dirac matrices, where f9 are the Pauli

matrices, fI =

(
1 0
0 −1

)
. q is electron spinor, for a electron wave with momentum : ,

takes the form q =

[
cos \2
sin \

2

]
⊗↑ , where ↑ is spin up, cos\ = ℏ:

<2
=
h
2

, where h = ℏ:
<

,

is electron wave group velocity. Electron Orbitals are of size ∼ �◦, their : ∼ 1010< ,

then h ∼ 106</B and cos\ ∼ 106

3×108 ∼ 10−3. Electron is non-relativistic, cos\ = h
2
∼ 0,

\ ∼ c
2 , q = 1√

2

[
1
1

]
⊗↑.

To fix ideas, take incoming EM wave, along I direction, with electric field
�G sin(:I−lC), the Lorentz gauge is (�0, �G , �H , �I) = �G

l
cos(:I−lC)(0,1,0,0).

Electron wave with momentum @ absorbs the photon with momentum : , and transits
to momentum @ + : . The A process transition is driven by Dirac matrix UG , with
transition amplitude
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M =

[
cos \2
sin \

2

]
⊗↑(fI ⊗fG︸   ︷︷   ︸

UG

)
[
cos \2
sin \

2

]
⊗↓ = @2�G

h

2
= @�G

h

l
(3.5)

If we have electron orbital q0 then : ′ = "
"+< : of photon momentum goes to

electron-nuclear relative coordinate, while : ′′ = : momentum to CM (center of
mass), where " is nucleus mass. The A process drives the transition

q0↑ −→ exp(8: ′I)q0↓,

with amplitude M = @�G
h
l

.
When orbital q1 is different from q0 we go to

q0↑ −→ exp(8: ′I)q0↓,

with amplitude M = @2�G
h
2

whoose overlap with q1 is

M1 = @2�G
h

2
8: ′ 〈q1 |I |q0〉︸     ︷︷     ︸

3I

= 8@�G3I
h

2
,

where 2: ′ ∼ l.
But this is not suited for study of optical transitions, because we donot recover

the Rabi frequency @�G3. What we find is orders of magnitude smaller (down by
h
2

). Instead we work with gauge

(�0, �G , �H , �I) =
−�G

2
(G sin(:I−lC),−cos(:I−lC)

l
,0,

G

2
sin(:I−lC)).

Now we have an E process driven by G term. For the E process, the amplitude of
q0 → q0 is just 0, as 〈q0 |G |q0〉 = 0 amd the amplitude of q0 → q1 is simply

M ′
1 = @�G 〈q1 |G |q0〉︸     ︷︷     ︸

3G

= @�G3G ,

Dipole elements 3I , 3G are approx, Bohr radius ∼ �◦. Due to the factor h
2
∼ 10−3,

M1 ≪M ′
1. Therefore transition between different atomic orbitals are largely driven

by the E process.
A process flips electron spin, E doesn’t. When q1 and q0 have different angular

A process cannot drive the transition, but E process can, with a circularly polarized
light and

M ′
1 = @� 〈q1 |A |q0〉︸     ︷︷     ︸

3

= @�3,

Since A process always flips spin, it is necessarily done with circularly polarized
light.
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3.1.2 Bremsstraulung and E · x gauge

The � · G gauge explains the phenomenon of Bremsstraulung [37], where when
an electron breaks (accelerates) its emit radiation. If only A process was around,
this radiation will be in direction of momentum change of electron. In practice, in
syncrotons this radiation is tangential to circling electron and hence perpendicular
to the radial acceleration which can only be accounted by E · G gauge.

Fig. 3.1 Fig. depicts how in Bremsstraulung radiation is tangential to circling electron and hence
perpendicular to the radial acceleration.

3.1.3 General gauge, qed and coulomb potential

We can have a more general gauge,

(�0, �G , �H , �I) =−�G (UG sin(:I−lC),−(1−U) cos(:I−lC)
l

,0, U
G

2
sin(:I−lC)).

(3.6)
for 0 ≤ U ≤ 1. If we use this gauge, to calculate electron electron scattering by
exchange of photon in qed and calculate coulomb potential, we find U ∼ 1

2 for a
correct potential.

Under a frame transformation (l, :) and (�, �), transform under ususal Lorentz
transformation to give a vector potential in E · G gauge.
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3.2 Atomic transitions

The first place to look at Optical transitions in Atomic transitions [38]. Lets look at
D1 and D2 line of Sodium. D1 line Transition from 3 2( 1

2
(� = 1

2 ) to 3 2% 1
2

(� = 1
2 ).

D1 line Transition from 3 2( 1
2

(� = 1
2 ) to 3 2% 3

2
(� = 3

2 ). Fig. 3.2 depicts J states of

Sodium = = 3 (valence electron).
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Fig. 3.2 Fig. depicts J states of Sodium principal quantum number n=3.
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� states are made of orbital and electron spin states. When we make a transition
Δ�I = 1, either orbital angular momentum increments or spin angular momentum
increments. When orbital angular momentum increments, transition is make by an
E process. When spin angular momentum increments, transition is make by an A
process. Either case circular polarized light is involved.

Sodium nucleus is spin 3
2 , when � angular momentum is coupled to nuclear spin

angular momentum, we get hyperfine � states.
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Fig. 3.3 Fig. depicts F states of Sodium with principal quantum number n=3.
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� states are made of orbital and electron spin states and nuclear spin states.
When we make a transition Δ�I = 1, either orbital angular momentum increments
or electron spin angular momentum increments or nuclear spin angular momentum
increments. When orbital angular momentum increments, transition is make by an
E process. When electron or nuclear spin angular momentum increments, transition
is make by an A process. Either case circular polarized light is involved.

When A process flips nuclear spin, : ′ = <
"+< : of photon momentum goes to

electron-nuclear relative coordinate. The transition amplitude of this process is

M2 = @2�G
h=

2
8: ′ 〈q1 |I |q0〉︸     ︷︷     ︸

3I

= 8@�G3I (
<

"
)2 h

2
,

where h= ∼ <
"
h = 103</B is velocity of nuclear coordinate. This amplitude M2 is

small.
Fig. 3.3 depicts F states of Sodium = = 3 (valence electron).

3.3 Rayleigh and Raman Scattering

Atomic transitions are first order, we are on resonance to energy difference between
energy levels. Now we discuss some second order processes like Rayleigh [39] and
Raman Scattering [40, 41]. Rayleigh is elastic scattering of light, Raman inelastic. In
Rayleigh scattering, light of wavevector : is scattered by atom to light of wavevector
:1 such that |: | = |:1 |, only direction of light changes. In Raman scattering, light of
wavevector : is scattered by atom to light of wavevector :1 such that |: | ≠ |:1 |. The
difference of the photon energy Δl = ℏ2(|: | − |:1 |) , results in atomic transition with
Δ� = ℏl. When Δ� > 0 its Stokes process. When Δ� < 0 its anti-Stokes process.

Calculation of transition amplitude for these processes, involves a second order
calculation manifested in a three level system. This is as shown in Figure 5.9. There
are three levels |1〉, |2〉 and |3〉 with energies �1, �2, �3, with �1 = �3, levels 1 and 3
are degenerate. Ω1 and Ω2 are transition amplitudes between level 1 and 2 and level
2 and 3 respectiviely.

Then gives for |�1 −�2 | ≫ Ω8 , there is transition amplitude of going from |1〉 to
|3〉, given by,

M =
Ω1Ω2

�1 −�2
(3.7)

Fig 5.3A depicts Rayleigh scattering, incoming photon at wavevector : scatters
to wavevector :1. Fig B, depicts a three level 3 level Rayleigh process, where initial
atomic level q absorbs photon : and moves to Φ where CM coordinate gets photon
momentum. :1 is emitted and we return to q

In 3 level system analogy, State |1〉 is electron-nuclear, photon state q, : and state
|2〉 is electron-nuclear state Φ and State |3〉 is electron-nuclear, photon state q, : ′.
|: | = |: ′ |, so that �1 = �3. Ω1 is a A process with value
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Fig. 3.4 Fig. depicts a 3 level system with transition amplitude Ω1 and Ω2 between level 1 and 2
and level 2 and 3 respectiviely.
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Fig. 3.5 Fig. A, depicts Rayleigh scattering, incoming photon at wavevector : scatters to wavevector
:1. Fig B, depicts a three level 3 level Rayleigh process, where initial atomic level q absorbs photon
: and moves to Φ where CM coordinate gets photon momentum. :1 is emitted and we return to q0

Ω1 = @�G
h

l
, (3.8)

where �G is electric field of incoming �" wave.

Ω2 = @�>
h

l
, (3.9)
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where �0 is the electric field of spontaneously emitted photon at :1. How much is
�0.

Spontaneous emission time ΔC, in atomic systems is ΔC ∼ 10′B ns, corresponding
to a Rabi frequency of Ω = 100 MHz, which is 10−26�, in which photon travels
Δ; = 2ΔC ∼ 1< (leaves the atom). The volume of the photon ∼ 1<3. Bandwidth
of the photon Δ� =∼ 2c

Δ;
, how many photons are there in all the directions? Then

wavevector sphere of radius :0 =
2c
_0

(say 300 nm photon, _0 = 300=<). Number of

direction = = 4c:2
0/(Δ�)2 ∼ 1012.

Rabi frequency Ω = @
√
=�03 = 10−26, giving �0 = <+/<. Ofcourse, energy of

the photon ℏl =
n0
2 �

2
0+ with + ∼ 1<3 , we have for l ∼ 1015, �0 ∼ <+/< (all self

consistent).
Coming back to Rayleigh scattering, from Eq. 5.27, 5.10, 5.11, we have

M =
@2�G�0

ℏ

h2

l3
. (3.10)

or Rayleigh Rabi frequency,

Ω'0H;486ℎ =
@2�G�0

ℏ2

h2

l3
. (3.11)

for �G ∼ 103+/<, l = 1015, we get Ω'0H;486ℎ ∼ 10−4 Hz.
Finally Ω1 and Ω2 both A process.

3.3.1 Raman Scattering

Raman scattering is an inelastic scattering process. Photon as wavenumber : is
absorbed by atom and :1 emitted. Energy of absorbed and emitted photon is not
same : ≠ :1. Deficit goes in exciting atomic transition.

Fig 5.4A depicts Raman scattering, incoming photon at wavevector : scatters to
wavevector :1. Atom is excited from initial atomic level q to q1. Fig B, depicts a
three level Raman process, where initial atomic level q absorbs photon : and moves
to Φ where CM coordinate gets photon momentum. :1 is emitted and we return to
new atomic level q1.

In 3 level system analogy, State |1〉 is electron-nuclear, photon state q, : and state
|2〉 is electron-nuclear state Φ and State |3〉 is electron-nuclear, photon state q1, :1.
|: | ≠ |:1 |, but �1 = �3. Ω1 is a A process with value

Ω1 = @�G
h

l
, (3.12)

where �G is electric field of incoming �" wave. Ω2 is a E process (atomic levels
change) with value

Ω2 = @�>3, (3.13)
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Fig. 3.6 Fig. A, depicts Raman scattering, incoming photon at wavevector : scatters to wavevector
:1. Fig B, depicts a three level 3 level Rayleigh process, where initial atomic level q absorbs photon
: and moves to Φ where CM coordinate gets photon momentum. :1 is emitted and we return to q0

where �0 is the electric field of spontaneously emitted photon at :1.
Coming back to Rayleigh scattering, from Eq. 5.27, 5.14, 5.15, we have

M =
@2�G�03

ℏ

h

l2
. (3.14)

or Raman Rabi frequency,

Ω'0<0= =
@2�G�03

ℏ2

h

l2
. (3.15)

for �G ∼ 103+/<, l = 1015, we get Ω'0<0= ∼ 10−5 Hz.
Raman is a A and E process, Ω1 is A and Ω2 is E.Ω2 can be A but the amplitude

is much smaller than.
We have been talking of q and q1 as atomic levels, which is just fine in principle.

In practice, these are vibrational levels of two nuclie making a molecule. Then these
are energy levels of their (two nuclie) relative coordinate.

3.3.2 Resonance Raman

Resonance Raman [42] is Raman scattering, an inelastic scattering, where there
is atomic transition close to incoming photon energy. Photon at wavenumber : is
absorbed by atom and :1 emitted. Energy of absorbed and emitted photon is not
same : ≠ :1.

Fig 3.7A depicts Resonance Raman scattering, incoming photon at wavevector :
scatters to wavevector :1. Atom is excited from initial atomic level q1 to q2. Fig B,
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depicts a three level Raman process, where initial atomic level q1 absorbs photon :
and moves to q2. :1 is emitted and we return to new atomic level q3.
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Fig. 3.7 Fig. A, depicts Resonance Raman, energy difference between q1 and q2 is close to
incoming photon energy. Fig B, depicts a three level 3 level Resonance Raman process, where
initial atomic level q1 absorbs photon : and moves to q2. :1 is emitted and we return to q3

In 3 level system analogy, State |1〉 is atom, photon state q1, : and state |2〉 is
atom state q2 and State |3〉 is atom, photon state q3, :1. |: | ≠ |:1 |, but �1 = �3. Ω1

is a E process (atomic levels change) with value

Ω1 = @�G312, (3.16)

where �G is electric field of incoming �" wave, 312 = 〈q2 |G |q1〉 transition element
. Ω2 is also a E process (atomic levels change) with value

Ω2 = @�>323, (3.17)

where �0 is the electric field of spontaneously emitted photon at :1 and 323 =

〈q3 |G |q2〉.
For l frequency of incoming photon,

Δl =
(�q2 −�q1 )

ℏ
−l,

from Eq. 5.27, 3.16, 3.17, we have

M =
@2�G�0312323

ℏΔl
. (3.18)

or Resonance Raman Rabi frequency,
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Ω'4B>=0=24−'0<0= =
@2�G�0312323

ℏ2Δl
. (3.19)

for �G ∼ 103+/<, 312, 323 ∼ 1�◦, Δl = 1013 (infra-red) we get Ω'4B>=0=24−'0<0= ∼
10−4 Hz.

Resonance Raman is a E and E process, Ω1 is E and Ω2 is E.
Rabi frequencies of Rayleigh and Raman scattering processes are small, because

they are calculated from a single atom. Scattering takes place from large number of
atoms # and then the M → #M, which can be modest.

3.4 Stimulated Raman, Two Photon microscopy and Coherent

Antistokes Raman Spectroscopy (CARS)

3.4.1 Stimulated Raman

Stimulated Raman [46], is like Raman, except we use two lasers : and :1, where
: is absorbed and :1 emitted. Due to :1 laser being there the emission process is
much stronger with Electric field �1 instead of �0. Ofcource strong emission is in
direction of :1.

Fig 3.8A depicts Raman scattering, incoming photon at wavevector : scatters to
wavevector :1. Atom is excited from initial atomic level q to q1. Fig B, depicts a
three level Raman process, where initial atomic level q absorbs photon : and moves
to Φ where CM coordinate gets photon momentum. :1 is emitted by stimulated
emission and we return to new atomic level q1.

In 3 level system analogy, State |1〉 is electron-nuclear, photon state q, : and state
|2〉 is electron-nuclear state Φ and State |3〉 is electron-nuclear, photon state q1, :1.
|: | ≠ |:1 |, but �1 = �3. Ω1 is a A process with value

Ω1 = @�G
h

l
, (3.20)

where �G is electric field of incoming �" wave. Ω2 is a E process (atomic levels
change) with value

Ω2 = @�13, (3.21)

where �1 is the electric field of second laser which stimulates emitted photon at :1.
From Eq. 5.27, 5.14, 5.15, we have

M =
@2�G�13

ℏ

h

l2
. (3.22)

or Stimulated Raman Rabi frequency,

Ω(C8<D;0C43−'0<0= =
@2�G�13

ℏ2

h

l2
. (3.23)
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Fig. 3.8 Fig. A, depicts stimulated Raman scattering, incoming photon at wavevector : scatters to
wavevector :1 by stimulation. Fig B, depicts a three level 3 level Rayleigh process, where initial
atomic level q absorbs photon : and moves to Φ where CM coordinate gets photon momentum.
:1 is emitted and we return to q0

for �G , �1 ∼ 106+/<, l = 1015, we get Ω(C8<D;0C43−'0<0= ∼ 10 MHz.
Raman is a A and E process, Ω1 is A and Ω2 is E.Ω2 can be A but the amplitude

is much smaller then.
A nice application of stimulated Raman these days is quantum information pro-

cessing in Ion trap quantum computer, where q and q1 are the |0〉 and |1〉 qubit states
(hyperfine states) of a quantum computer [47].

3.4.2 Coherent Raman AntiStokes (CARS) Spectroscopy

CARS [45] is like Raman, except two Raman back to back. In Fig. 3.9 starting from
ground state, pump laser : ? is absorbed and stokes :B emitted and we transit to
excited vibrational level, then, : ? is absorbed and anti-stokes :�( emitted, returning
to ground state. : ? , :B form a Raman pair with amplitude M1 and : ? , :�( form
another Raman pair with amplitude M2. Mathematically the process is represented
as three state variables

©­«
G1

G2

G3

ª®¬
=
−8
ℏ

©­«
0 M1 0

M1 0 M2

0 M2 0

ª®¬
©­«
G1

G2

G3

ª®¬
. (3.24)

With M1 ∼ M2 = M, we have transition from (G1, G2, G3) = (1,0,0) to (0,0,1) in
) =

c√
"

, hence a transition amplitude of M√
2
. As before
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Fig. 3.9 Figure shows the Coherent Raman Antistokes process. Starting from ground state, pump
laser :? is absorbed and stokes :B emitted and we transit to excited vibrational level, then, :? is
absorbed and anti-stokes :�( emitted, returning to ground state.

M =
@2�G�03

ℏ

h

l2
?

. (3.25)

But there is something nice, for a given :�( there is a whole set of :B (n in total).
Then the transition amplitude to a state with given :�( is

√
=" . = as before can be

big as 1012 which gives a effective amplitude and Rabi frequency

M��'( =
@2

√
=
2 �G�03

ℏ

h

l2
?

. (3.26)

Ω��'( =
@2

√
=
2 �G�03

ℏ2

h

l2
?

. (3.27)

For �G ∼ 103+/<, l? = 1015, we get Ω��'( ∼ 10 Hz.
As before : ? is A process and :B , :�( are E process. Scattering with one atom

is considered, when probe meets # atoms in a plane perpendicular to probe pro-
pogation, we may think Ω��'( → #Ω��'( , but different :B directions donot add
over atoms and we only get amplitude #M not #M��'( . The wavevectors satisfy
that transferred momentum @ = :B + :�( − 2: ? , satisfy

∑
= : · G8 add coherently

where G8 are atom locations. Since :B is degree of freedom, we get scattering from
different atom planes at a given desired :�( direction. Clearly an advantage over
vanilla Raman microscopy.

Photon is 1 m long has �0 = <+/<, in � = 106+/<, we have = photons with
� =

√
=�0, giving = ∼ 1018. Scattering takes place in 1/10B, photon travels ∼ 107 m

in tis time making a ll in all 1025 photons passing for a scattered photon but with
# atoms rate improves by # , then " = 1025/# photons for a scattered photon. We
know from practice " ∼ 107 , giving # ∼ 1018. With scattering happening over cross
section <<2 and depth _ (500 nm), we have volume 1018 (�◦)3 , we indeed have
1018 atoms.
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3.4.3 Two photon microscopy

 

 
 

Ground  State

  

Excited State

2

  

ω

ω
ω

Fig. 3.10 Figure shows a two photon absorbtion process. There is atomic transition at 2l frequency.
A laser a frequency l is absorbed to a virtual level. Then another photon is absorbed making
transition to excited atomic state. This together constitutes a Raman process. This is followed by
spontaneous emission to ground state.

Figure, 3.10 shows a two photon absorbtion process [43, 44] . There is atomic
transition at 2l frequency. A laser a frequency l is absorbed to a virtual level. Then
another photon is absorbed making transition to excited atomic state. This together
constitutes a Raman process. This is followed by spontaneous emission to ground
state. The amplitude of the Raman process as before is

M1 =
@2�2

G3

ℏ

h

l2
. (3.28)

amplitude of Spontaneous emission in a given direction is simply

M2 = @�03 (3.29)

The net amplitude is smaller of two. For �G = 103+/<, l = 1015, �0 = <+/< and
3 = 1�◦ and h

l
= 10�◦, we have Ω1 =

M1
ℏ

= 100 Hz. Ω2 =
M2
ℏ

= 100 Hz. The two
processes are comparable.

As before Raman process is A and E while spontaneous emission is E. Two
photon microscopy is used to image deeper inside tissue, l is less scattered than 2l,
we can go deeper upto <<.

3.5 Nonlinear Optical Processes

Figure 3.11 A shows a 4 level process. Energy levels 8, with energy �8 . �1 = �4.
Transition frequency Ω1, Ω2 and Ω3 between level 1−2, 2−3 and 3−4. �2 −�1 =

ℏl1, �3 −�2 = ℏl2 and �3 −�4 = ℏl4. l3 = l1 +l2.



58 3 Optical Scattering

1

3

4

2

ω

ω
3

1

2

Ω

Ω
Ω

 

1

2
ω

3

1

2

ω1
Ω

 

1
ω

3

3

A
B

ω∆
2Ω

Fig. 3.11 Figure A shows a 4 level process. Energy levels 8, with energy �8 . �1 = �4. Transition
frequency Ω1, Ω2 and Ω3 between level 1−2, 2−3 and 3−4. �2 −�1 = ℏl1, �3 −�2 = ℏl2 and
�3 −�4 = ℏl4. l3 = l1 +l2

Rabi frequency for the whole process is

Ω14 =
Ω1Ω2Ω3

l1l2
, (3.30)

In nonlinear optics [48], light of frquency l gets converted to 2l, called second
harmonic generation (SHG). One photon of 2l get converted to two one photons of
2l. More generally photons at l1 and l2 get converted to l3 =l1 +l2. Also called
sum frequency generation (SFG).

In Down conversion light of frquency 2l gets converted to l. Also called Dif-
ference Frequency Generation (DFG), one photon of l3 get converted to photons of
l1 and l2 such that l3 = l1 +l2.

3.5.1 Second Harmonic Generation and Down Conversion

Fig. 3.12 A shows second harmonic generation (SHG) and Fig. 3.12 B shows down
conversion. The 4 level system analogy is as shown in 3.11.

Ω1,Ω2,Ω3 are all A processes

Ω1 = Ω2 =
@�Gh

ℏl
(3.31)

Ω3 is spontaneous emission and hence

Ω3 =
@�0h

ℏl
(3.32)
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Fig. 3.12 Fig. A shows second harmonic generation (SHG) and Fig. B shows down conversion.

Then

Ω14 = ( @h
ℏl

)3 �
2
G�0

l2
, (3.33)

For �G = 106+/<, l = 1015, we get Ω14 = 10−3/s.
The transition frequency will be boosted if there is an atomic level close to � = ℏl

above ground state, as in Resonance Raman. Figure 3.11 B shows a 4 level process
for this. Level 2 and 3 are nearly degenerate with energy difference Δl. Level 3 is
now excited atomic level.

Rabi frequency for the whole process is

Ω14 =
Ω1Ω2Ω3

l1Δl
, (3.34)

Ω1 =
@�Gh

ℏl
, (3.35)

Ω2 =
@�G3

ℏ
, (3.36)

Ω3 is spontaneous emission and hence

Ω3 =
@�03

ℏ
, (3.37)

Ω1 is A process, Ω2,Ω3 are E processes. For �G = 106+/<, l = 1015, Δl =

1��I. we get Ω14 = 10/s.
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3.6 Photoelectric effect and Compton Scattering

3.6.1 Photoelectric effect

When light of frequency l is shown on metal surface [49], electrons are ejected.

This is photoelectric effect. The electron energy is �> = −+0 + ℏ2:2
>

2< < 0, where :0 is
electron momentum and −+0 is crystal potential. Momentum of electron changes to

:� and its energy is �� = −+0+
ℏ2:2

�

2< > 0 (electron is ejected). Change of momentum
Δ: = :� − :0 accounts for increase of electron energy by ℏh�Δ: where h� is Fermi
velocity of electron ∼ 105 − 106</B . This energy difference is given by photon
carrying ℏl ∼ 3−54+ of energy giving Δ: ∼ 1010/<.
This momentum doesn’t come from photon which will then carry ℏ2Δ: energy,
which is very large (keV), it comes from phonons in metal, whose energy is ℏhΔ: ,
where h ∼ 103</B is velocity of sound in metal. Phonon energy is them <4+ which
is negligible.

3.6.2 Compton Scattering

We talked about inelestic scattering process, Raman scattering, where light of
wavenumber : gets scattered to : ′ and the atom transits to different atomic state.
Another interesting inelastic scattering of light is due to free electrons [50] in solid,
called Compton Scattering.
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Fig. 3.13 Fig. shows Compton csattering. Light with momentum :1 hits electron with momentum
?1, with light scattering to :2 and electron to ?2.
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Fig. 6.9 shows Light with momentum :1 hits electron with momentum ?1, with
light scattering to :2 and electron to ?2 such that momentum and energy are con-
served, i.e., :1 + ?1 = :2 + ?2 and �?1 +�:1 = �?2 +�:2 , which gives

_2 −_1 =
ℏ

<02
(1− cos\) (3.38)

where _2 =
ℏ

<02
∼ .01�◦ is Compton wavelength (<0 mass of electron). To see a

change in wavelength comparable to compton wavelength , we should have short
wavelength light (high energy, 10-100 keV, X-rays).

3.6.3 Laser cooling

v

2S
1/2

2P1/2

2 P3/2
A B

C
Fig. 3.14 Figure A shows how an atom is hit with light with momentum ℏ: and slows down.
Figure B shows atom will absorb light if frequency ℏl matches the difference of energy between
the inetrnal energy levels. Figure C shows these energy levels for sodium. These are the electronic
states with = = 3.
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Many experiments in physics require slow atoms [38]. At room temperatures, we
have atoms moving at say 300 m/s. We like to slow them down to say 10 m/s. Slow
atoms are used to make Bose Einstein condensates (velocity as low as cm/s). How
do we slow atoms. We can do it by hitting them with ligh of the right frequency.
Atoms have internal energy levels. When the frequency of the laser light matches
this, the light is absorbed (optical transition). But light carries momentum ℏ: and
therefore on absorbtion atom gets a kick which slows it down. The absorbed photon is
spontaneously emitted but in a random direction. When we average over many such
absorbtion and emission, the kick is always in the same direction while the recoil
due to spontaneous emission is random and averages to zero and in the end atom
slows down. If frequency of the laser light is l an atom moving towards the light
source will see the frequency shifted to l(1+ E

2
). Then if detune the laser frequency

to be slightly less than the internal energy level, due to this doppler shift the atom
will see just the right frequency and will absorb it. Atoms moving slowly will have
negligible dopper shift and will not absorb light. Hence we will only cool fast atoms
and not slow ones. This way we will bring all to same velocity. This is the basic
idea of laser cooling. It has been successful in cooling atoms to very low velocities
where they form a Bose Einstein condensate. Figure C shows these energy levels for
sodium. These are the elctronic states with principal quantum number = = 3. The
transition shown is called the �2 line.

Laser cooling is an E process.

3.7 Semiconductor transitions, ccd cameras, photovoltaics, Light

emitting diode (LED)

Until now we considered atomic transitions q to q′ where these are atomic levels. In
semiconductors [51], we go between electronic bands.

Electron statesk: =
∑
9 exp(8: ( 90))q 9 is a electron wave (0, lattice constant) with

wavevector : is q band also called Valence band. Similarly k ′
:
=

∑
9 exp(8: ( 90))q′9

is a electron wave with wavevector : is q′ band also called conduction band.
Energy of k: is �: = n0 −2C cos :0 where n0 is orbital energy of q. Energy of k ′

:

is � ′
:
= n1 −2C cos :0 where n1 is orbital energy of q′.

Photon with momentum @ and emergy ℏl = ℏ2@ transfers k: C>k ′
:+@ (@ is small

else photon has large energy) with photon energy ℏl = n1 − n0.
The transition between valence and conduction band involves atomic level change

hence E and M for the process is for 3 = 〈q′ |G |q〉

M = @�G3 (3.39)

When there is spontaneous emission from conduction band to valence band

M = @�>3 (3.40)
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Examples of semi-conductor transitions include Light emitting diodes (LED),
Lasers , Photovoltaics, ccd cameras.

3.8 Radiation heating from sun and infrared sources.

Solids are hot because of lattice vibrations, phonons. Light from sun can generate
phonons. Energy of the phonons is 1013Hz. Infrared photons carry this energy. Since
atomic levels change it is E process.

The phonon has energy ℏh: ∼ 10<4+ , giving : ∼ 1010/<, giving a momentum
ℏ: to phonon. This much momentum light doesn’t have. The momentum is balanced
by center of mass (CM) of the whole solid recoiling with momentum −: and energy
ℏ2:2

2" (" mass of whole solid), which is negligible because of large " . How do CM
and phonon momentum talk ? They do it by conduction electrons. All in all this
becomes a 4 level process as encountered before in 3.11.

Inverse of this process is heating a solid to generate infrared light as in a Globar
source for Infrared spectroscopy or infrared imaging as in night vision cameras.

3.9 Scattering in Quantum Information and Imaging

3.9.1 Slow Light

In Resonance Raman setting, if we have have stimulated Raman, done with a probe
beam, then photons from pump will scatter into probe enhancing the effective per-
mittivity of probe, and slowing it down [77]. The atoms will of-course transfer
from ground to excited-ground state. The difference in the frequency of the pump
and probe pulse is the energy difference of two ground atomic levels. If atoms are
moving around there is Doppler shift in frequencies and resonance condition is not
exactly met, so we have to work with cold atoms to minimize Doppler or use a pump
laser which is broad-banded using a laser cavity with low quality factor.

3.9.2 Møelmer-Sørenson two qubit Gate

Fig. depicts two ions coupled with a vibrational mode. The internal state of the ions
encodes a logical bit. By putting a laser at the frequencyl0 +l1 , such that we excite
both internal mode (atom A) and vibration mode by absorbing a photon and then
emitting it we return the atom B onto its ground state performing a swap operation.
This is the famous Mølemer-Sørenson gate in Ion trap quantum computing [78].
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Fig. 3.15 Fig. depicts Stimulated Raman in setting of Resonance Raman, where pump light scatters
in probe and slows it down.
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Fig. 3.16 Fig. depicts two ions coupled with a vibrational mode. The internal state of the ions
encodes a logical bit. By putting a laser at the frequency l0 +l1 , such that we excite both internal
mode (atom A) and vibration mode, by absorbing a photon and then emitting it we return the atom
B onto its ground state performing a swap operation.

3.9.3 Optical Pumping a Laser and Solid State Maser

In 3.17, Fig. A depicts optical pumping from s orbital ground state 6 to s orbital
excited state 4 via a A process and then decay back via a meta-stable p orbital state 5 .
Decays are E processes. Fig. B depicts optical pumping from p orbital ground state
6 to p orbital excited state 4 via a A process and then decay back via a meta-stable
s orbital state 5 . Decays are E processes and we return with spin flipped. This way
we can spin polarize the system and the two spin states in ground manifold can be
used to make a MASER as in a NV center [79]. The energy difference between two
spin states can be tuned with a magnetic field. giving a variable frequency MASER.

3.9.4 Super Resolution Imaging

Fig. 3.18, depicts Stimulated Raman in setting of Resonance Raman where pump
light scatters in the probe. Scattering is very directional and more when probe is
high intensity. By modulating the pump we can form a very high resolution image
of the scattered light [80].



66 3 Optical Scattering

Fig. 3.17 Fig. A depicts optical pumping from s orbital ground state 6 to s orbital excited state 4
via a A process and then decay back via a meta-stable p orbital state 5 . Decays are E processes.
Fig. B depicts optical pumping from p orbital ground state 6 to p orbital excited state 4 via a A
process and then decay back via a meta-stable s orbital state 5 . Decays are E processes and we
return with spin flipped. This way we can spin polarize the system and the two spin states in ground
manifold can be used to make a MASER as in a NV center

3.9.5 Non-demolition measurements and Faraday Rotation

Fig. 3.19 shows a two level atom (6 ground, 4 excited state) with excited state having
+1 angular momentum. If we scatter light off this atom in the ground state, atom will
transit to intermediate excited state by absorbing a right polarized photon and return
back emitting the photon. The linearly polarized photon which is sum of right and
left polarization !+' encounters a phase on the right polarized photon and becomes

! + exp(8q1)', which results in net rotation of linearly polarized axis. q1 ∝ Ω2

l−l0
,

where l0 is energy difference between 6 and 4, l light frequency and Ω is Rabi
frequency (∼ @�3).

If we scatter light off this atom in the excited state it will transit to intermediate
ground state by absorbing a left polarized photon and return back emitting the photon.
The photon which is sum of right and left polarization ! + ' encounters a phase on
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Fig. 3.18 Fig. depicts Stimulated Raman in setting of Resonance Raman where pump light scatters
in probe.
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the Left polarized photon and becomes exp(8q2)! + ', which results in net rotation

of linearly polarized axis in opposite direction q2 ∝ Ω2

l+l0
.

If atom is in superposition then the two phases almost cancel and we donot get a
phase shift. This way we can measure the atom state in a non-demolition way [83].

The two levels can be up and down states of the spin with energy difference arising
from the energy ` · � where � is effective field of other polarized spins. Faraday

rotation [81] is the shift in phase of the linearly polarized axis. While Faraday rotation
is an A process, no-demolition measurement is typically E process.

Fig. 3.19 Fig. shows light scattering of a two level atom

3.9.6 Magnetic Resonance a Classical A process

Electron spin states ↑ and ↓ are separated in energy � = ` · �> where ` = @ℏ

<
. The rf

photon induces the transition from state

(
cos\
sin\

)
↑→

(
sin\ +q
cos\ +q

)
, which transition

amplitude (Rabi frequency) @ �l sin q
2

= ℏ
@

<
� = ℏW� where @

<
= W is gyromagnetic

ration [?].
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3.10 Scattering and Light Pulses

3.10.1 Femtosecond pulses and pump probe spectroscopy

With G1, G3 as nuclear coordinates and G2 as electron cordinates, let -1 =
∑
8 G8/3 and

-2 = G2 − G1+G3
2 and -3 = G1 − G3, then the ground state electo-vibration level takes

the form
∑
Φ0(-2)q60 (-3) which pulsed goes to

Φ1(-2)q60 =

∑
Φ1(-2)q48 (3.41)

q6 and q4 are ground and excited state vibration wavefunctions The superposition∑
8 q
4
8 evolves on picosecond time scale then we need a short pulse on fermtosecond

time scale to make the transition.
Fig. 3.20 shows how pump excited vibrational packet to excited sttate where is

evolves and then we using probe bring it back to ground state stimulating photon
emission. Due to spontaneous emission some of excited wavepackets may be lost
at time of probe, so we can measure the spontaneous decay rate by measuring this
packet loss.

To get such short pulses we need a mode-locked laser which uses a Electro-optic
modulator, where vibration of base frequency Δ 5 are created and by ramn process,
when light is passed through it, we get 50 →

∑
: 50+ :Δ 5 , where 2! = cΔ 5 , where !

is cavity length. The superposition of all frequecy gives a high power femto-second
pulse.

3.10.1.1 Optical Combs

The principle of Mode locked laser can produce 50 → ∑
: 50 + :Δ 5 , as shown in

3.22. We can choose an 5< = 50 +<Δ 5 with a right size cavity and use it for our
application.

3.10.2 Ultra-short high powered laser pulses

Fig. 3.22 shows how a short optical pulse from a mode locked laser is dispersed and
then amplified and finally coalesced to give a very high power intense laser pulse for
surgery applications

The optical amplifier is as shown in 3.15, which is a stimulated Resonance-Raman
set up.
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Fig. 3.20 Fig. shows how pump excited vibrational packet to excited sttate where is evolves and
then we using probe bring it back to ground state stimulating photon emission
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Fig. 3.21 Fig. shows optical frequency comb

Fig. 3.22 Fig. shows how a short optical pulse from a mode locked laser is dispersed and then
amplified and finally coalesced to give a very high power intense laser pulse for surgery applications

3.10.3 Atto-second pulses

In above we can produce very intense Laser pulses but they are still femtosecond.
Can we get Atto-second pulses, yes, if we intelligently use the high intensity which
will create X-ray transitions and then the subsequently spontaneous emission and
short pulse.
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Fig. 3.23 Fig. shows how a femto-second short optical pulse with very high intensity induces a
X-ray transition and hence a atto-second-pulse spontaneous emission.

3.10.4 Light pressure and tweezers

There are ofcourse second order shifts in a off-resonant light field which in case of
a molecule is between ground and excited molecular orbital which will lower the
energy in a intense light field and keep a particle trapped there as shown in 3.24

3.11 Conclusion

In this chapter, we studied optical transitions. The starting point is the elec-

tron Hamiltonian, �, in a electromagnetic wave. � =
∑
9=G,H,I

(? 9−@� 9 )2

2< , where
@ is electron charge, < electron mass, ? is electron momentum and � the vec-
tor potential. We showed this is not complete. The complete Hamiltonian is

� =
∑
9=G,H,I

(−8ℏm9−@� 9 )2

2< + @� · A , where � is the electric field of electromagnetic
wave. In this paper we derived this Hamiltonian. We classified optical transitions
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Fig. 3.24 Fig. shows phenomenon of optical tweezer

into two types, one that are mediated by � (A process) and other by � (E process).
Equipped with this, we studied many optical processes. These include atomic tran-
sitions, elastic and inelastic scattering processes like Rayleigh scattering, Raman
scattering, Two photon absorption, stimulated Raman, second harmonic generation,
parametric down conversion, photoelectric effect, optical processes in semiconduc-
tors. We show the E process is stronger than the A process when we transit between
atomic levels. The A process happens when we have virtual levels. In processes
like Raman scattering, two photon absorption , we have both the A and the E pro-
cesses. The A process flips the spin while the E process doesn’t. The A processes
are therefore always circularly polarized. Transition amplitude of the E process is
straightforward and is everyday calculation of Rabi frequency. The transition ampli-
tude of the A process was done through Dirac equation, the relativistic cousin of
Schrödinger equation. To sum it all, virtual transitions A, real atomic level transition
E.

Problems

1. Calculate the Rayleigh Rabi frequency if �G = 102+/< and l = 1015/B.

2. Calculate the Rayleigh Rabi frequency if �G = 102+/< and l = 1015/B and there
is excited level at l0 = .9×1015 with 3 = 1�◦.

3. Calculate the Raman scattering amplitude if �G = 102+/<, 3 = 1�◦ and l =

1015/B.



74 3 Optical Scattering

4. Calculate the Resonance Raman scattering amplitude if �G = 102+/<, 312 = 323 =

1�◦ and l = 1015/B, l0 = 1.1×1015/B.

5. Calculate the stimulated Raman Rabi frequency if �G = �1 = 105+/< and l =

1015/B.



Chapter 4

Aspects of electron scattering, the elastic, and
the inelastic.

A electron of mass<, when electrically scatters of nucleus, of mass " , transfers mo-
mentum @ to the nucleus. The energy lost by electron is more than the energy gained
by the nucleus. The resulting energy goes in exciting the atom to a higher energy state
as in Frank Hertz experiment and sodium, neon, mercury vapor lamps, or ionization
of atom as in bubble and cloud chamber experiments, or just production of X-rays
as in Bremsstraulung. In this paper, we study these phenomenon. These experiments
are inelastic scattering experiments. We remark, why neutrinos donot scatter and
can penetrate earth, why muons travel further than electrons in materials and why a
material like lead plate can slow down electrons and positrons efficiently. We look at
the elastic scattering of electrons as in electron diffraction and electron microscopes.
We look at scattering of electrons in the condensed matter, these phenomenon range
from scattering of electrons of periodic potential, to give Bloch waves, scattering
of electrons of phonons and impurities to give resistance, scattering of electrons of
lattice to give cooper pairs and superconductivity. We study electron scattering from
exchange potential as in Fermi liquid theory and resulting )2 resistance at low tem-
peratures. Electron scattering of exchange potential resulting in chemical reactions.
We turn our attention to electron-proton scattering both elastic and inelastic, as in
deep inelastic scattering experiments and understand the independence of inelastic
cross-section of with respect to transferred momentum. We see, why we can just say
that there are three quarks in proton from elastic cross-section. Our main contribution
in this article is we are detailed at places, we find literature terse.

4.1 Frank Hertz Experiment

In 1914, James Franck and Gustav Hertz [52, 53] performed a beautiful experiment.
They accelerated electrons in a cathode ray tube filled with mercury. They observed
that at certain value of the accelerating voltage, the current in the tube dropped. This
demonstrated the existence of excited states in the mercury atoms, with quantized
energies, and helped to confirm the quantum theory. The values of accelerating

75



76 4 Aspects of electron scattering, the elastic, and the inelastic.

voltage, where the current dropped gave a measure of the energy necessary to force
an electron to an excited state.

Let G1, G2 be coordinates of atomic electron and nucleus, and -1 =
<G1+"G2
<+" and

-2 = G1 − G2, center of mass and relative, coordinate. Let :1, :2 be momentum of
G1, G2 coordinates and  1, 2 momentum -1, -2 coordinates. Then

∑
:8G8 =

∑
 8-8

gives  1 = :1 + :2 and  2 = `
(
:1
<
− :2
"

)
, where 1

`
=

1
<
+ 1
"

is the reduced mass.

When @ momentum transfers from incident electron to the atomic electron, it can
change the atomic wavefunction

exp(8@G1) = exp(8@′-1) exp(8@′′-2),

where @′ = @ and @′′ = "
"+<@ ∼ @.

exp(8@′′-2) = cos(@′′(G1 − G2)) + 8 sin(@′′(G1 − G2)).

34 = 〈q1 | sin(@′′(G1 − G2)) |q0〉

is the dipole moment of the transition, from ground to excited state of the atom.
When incident atom stops and

�1 −�0 =
ℏ2@2

2<
,

we see the atomic transition from �0 to �1.
More generally, @ = ?1 − ?2 (?1, ?2 initial and final momentum of incident elec-

tron) and

�1 −�0 =
ℏ2

2<
(?2

1 − ?2
2), (4.1)

Transition amplitude for transfer of momentum

M =
42

+n0@2
(4.2)

where + = ;3 is volume of incident electron, where ; ∼ 10−8, thermal debroglie
wavelength.

Total transition amplitude is

M ′
=M34 (4.3)

When @ momentum transfers from incident electron to the atomic nucleus, it can
change the atomic wavefunction

exp(8@G2) = exp(8@′-1) exp(8@′′-2),

where @′ = @ and @′′ = <
"+<@.
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+

electron
nucleus

Fig. 4.1 Fig. A depicts Frank Hertz experiment and incident electron makes a atomic transition.

3= = 〈q1 | sin(@′′(G1 − G2)) |q0〉

is the dipole moment of the transition, from ground to excited state of the atom,
which is negligible due to small @′′. Ofcourse, transferred momentum went to center
of mass (CM) of atomic system.

Frank Hertz phenomenon is ubiquitous in vapor lamps like sodium, neon, mercury
vapor lamps, where free electrons are accelerated and bombard atoms exciting them,
which subsequently emit light we see.

4.2 Bremsstraulung

Transfer of momentum from electron to atom creates energy deficit, (atom is much
heavier than electron). In Frank Hertz this imbalance is paid by exciting the atom.
In Bremsstraulung [54], this is paid by free electron radiating. When energy of free
electron is in KV range, we produce X-rays with energy in this range. Bremsstraulung
stands for breaking radiation, electron decelerates and emits.

When @ momentum transfers from incident electron to the atomic electron, it can
change the atomic wavefunction

exp(8@G1) = exp(8@′-1) exp(8@′′-2),
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where @′ = @ and @′′ = "
"+<@ ∼ @.

exp(8@′′-2) = cos(@′′(G1 − G2)) + 8 sin(@′′(G1 − G2)).

3> = 〈q0 | cos(@′′(G1 − G2)) |q0〉

is the elastic moment of self transition, from ground to ground state of the atom
(atom doesn’t move). When incident atom stops and

�1 −�0 =
ℏ2@2

2<
,

we see the transition.
Transition amplitude for transfer of momentum

Ω1 =
42

+n0@2
(4.4)

where + = ;3 is volume of incident electron, where ; ∼ 10−8, thermal debroglie
wavelength.

But there is another amplitude, the radiation by free electron, whose amplitude is
Transition amplitude for transfer of momentum

Ω2 = @�>; (4.5)

where + = ;3 is volume of incident electron, where ; ∼ 10−8, thermal debroglie
wavelength. and �> is electric field of emitted photon,

Then this being a second order process, the net amplitude is

Ω =
Ω1Ω2

�1 −�0
(4.6)

where �1 −�0 is as in Eq. (5.6).
A small digression in second order process, shown in Figure 5.9. There are three

levels |1〉, |2〉 and |3〉 with energies �1, �2, �3, with �1 = �3, levels 1 and 3 are
degenerate. Ω1 and Ω2 are transition amplitudes between level 1 and 2 and level 2
and 3 respectively.

Then gives for |�1 −�2 | ≫ Ω8 , there is transition amplitude of going from |1〉 to
|3〉, given by,

M =
Ω1Ω2

�1 −�2
(4.7)

What is �> , in 5.25. If ! is length of photon, then n0
�

2
>
!3 = ℏl = �1 −�0, but it

takes ℏΩ−1 time for emission in which photon travels a distance ! = 2ℏΩ−1. From
this we can get �>.
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Fig. 4.2 Fig. depicts a 3 level system with transition amplitude Ω1 and Ω2 between level 1 and 2
and level 2 and 3 respectively.

Fig. 5.12 shows Bremsstraulung spectra, with characteristic emission frequencies.
These characteristic frequencies arise when free electron doesn’t emit rather ionizes
the atom. When electrons go back, they emit characteristic emission frequencies.

4.3 Muons, neutrinos, cloud and bubble chambers and the lead

plate

Electron is light, nucleus heavy, transferred momentum @ takes more energy from
electron than it gives to nucleus, the deficit, can ionize the atoms as we see in how
energetic charged particles in cloud and bubble [55, 56] chambers, in high energy
physics experiments leave tracks of ionized atoms when they move through the
medium. All this is just Frank Hertz.

Ionization is one way to make up for lost energy during momentum transfer other
is radiation as in Bremsstraulung. Electrons and muons when move through solid
materials loose energy like this and slow down. Muons travel further than electrons
for same initial energy. Why is this, the muon is 200 times heavier. During transfer
of momentum to material, electron loses more energy than muon and hence slows
down early.

For a material to efficient slower, its nucleus should be very heavy, then energy
loss is more, during momentum transfer. This is why the famous experiment of Carl
Anderson on discovery of positron [57], uses a lead plate to slow down positrons.

Finally, neutrinos donot slow down at all, they keep going. This is because, they
donot have charge they interact through weak interactions. The transition amplitude
for momentum transfer @ is
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Fig. 4.3 Fig. depicts Bremsstraulung spectra, with characteristic emission frequencies.

Ω
′
=
UF (ℏ2)3

+"2
,

(4.8)

where + is the volume of incident neutrino, "l the mass of , boson (very heavy
90 GeV) and UF the structure constant for weak interactions (around 1/30). Very
large ", makes this negligible, hence neutrinos donot interact.
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4.4 Elastic Scattering of Electrons

We talked about inelastic scattering electrons. But electrons can elastically scatter
from nuclei, change direction, maintaining their kinetic energy.

4.4.1 Electron and Neutron diffraction

Electron diffraction experiments were carried out by Davisson and Germer in 1927
[58]. Experiments showed wave nature of the electron. The electrons fired at an angle
to the crystal rebounded at that angle (as classical ball) more so for certain choice of
angles. Fig. 5.7A depicts how electrons and neutrons rebound of crystal at certain
choice of \.

θ

θ

θ

θ

k

k

k

k1

A B
Fig. 4.4 Fig. A depicts how electrons and neutrons rebound of crystal at certain choice of \ . Fig.
B depicts inelastic scattering of neutrons to measure phonon spectra.
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Coulomb potential of nucleus

* (G) =
∑
@

1

+n0@2
exp(8@ · G) (4.9)

where 1/+ = (Δ@)3 (Δ@ is the step size of @ discretization).
The electron wave 4G?(8: · G) scatters of it to exp(8: ′ · G), where : ′ = : + @.

Summing amplitude of various sites we get

exp(8: · G) → exp(8: · G)
∑
G0

exp(8@ · (G− G0)) = exp(8: ′ · G)
∑
G0

exp(−8@ · G0)

For coherent addition of the amplitude M =
∑
G0

exp(−8@ · G0), we have

2: sin\ 3 = 2c −→ 23 sin\ = _. (4.10)

where 3 lattice spacing and _ = 2c
:

, wavelength of light.
For solid crystal, 3 ∼ �◦, giving _ ∼ �◦ or : ∼ 1010/<, which is 104+ of energy.

Electron accelerated with this much energy bombard the crystal. We get returns at
angle \ satisfying Lau condition Eq. 5.20.

Diffraction can also be done with neutrons [60], which are 1000 times heavier
and hence for the same wavelength 1000 times less energetic, i.e., 10’s of meV.

4.5 Electron Microscopes

Fig. 5.8 depicts how light or electron when bounced of a solid spreads away, if
wavelength _ >> ; and how it comes back straight if _ << ;, where ; is object length.
This is diffraction limit.

To see smaller and smaller objects we need to use smaller wavelengths. Electrons
are naturally small, with wavelength

_ =
ℎ

<E
=

ℎ
√

2<�
, (4.11)

where E and � are velocity and energy of electrons. At electron energies 200 keV,
we have _ ∼ pico-meter.

In scanning electron microscope, electrons elastically scatter and collecting the
scattered electrons we can form an image [59].
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Fig. 4.5 Fig. depicts how light or electron when bounced of a solid spreads away, if wavelength
_ >> ; and how it comes back straight if _ << ;, where ; is object length.

4.5.1 Inelastic scattering of neutrons: Phonon spectroscopy

In elastic scattering, neutrons change direction and transfer momentum to nucleus
(lattice, which is very big). The energy gained by lattice is negligible (" is huge).
But we can excite vibration modes of lattice when we transfer momentum. When
mode with momentum : ′ is excited, it has energy � (: ′), then in Fig. 5.7B, we have

: ′ = :1 − : (4.12)

� (: ′) =
ℎ2:2

1

2<0
− ℎ

2:2

2<0
(4.13)

This way we can obtain : ′, � (: ′) plot , the phonon-dispersion relation. This is
inelastic scattering of neutrons, [61].
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4.6 Electron Proton Scattering

Beautiful electron proton scattering experiments were carried out by Robert Hofs-
tadter in 1950’s [62]. These were Electron scattering experiments can be elastic or
inelastic (where we excite internal modes of nucleus).

4.6.1 Elastic scattering

lets first discuss elastic scattering [63] where nucleus internal modes are not excited,
so that its mass stays same. This is at electron energies ≪ "22, (in MeV). Fig. 9.1
depicts how electron scatters of nucleus at certain choice of \. Let �0 and �1 be
incident energy of electron and < mass of electron, " mass of nucleus which is at
rest, then conserving energy momentum gives

θ

Fig. 4.6 Fig. depicts how electron scatters of nucleus at certain choice of \ .

1

�1
− 1

�0
=

1− cos\

"22
, (4.14)

when electron energies are relativistic with �0 =
ℎ2
_0

and �1 =
ℎ2
_1

, with _8 de-broglie
wavelength’s, we have

_1 −_0 =
ℎ(1− cos\)

"2
, (4.15)

Proton is three quarks as an approximation equal masses, theta G1, G2, G3 be their
coordinates and let -1 =

G1+G2+G3
3 , -2 = G1−G2 and -3 =

G1+G2
2 −G3 be Center of Mass

and two relative coordinates.
Using

∑
8 :8G8 =

∑
8  8-8 , we have 1 = :1+:2+:3, 2 =

:1−:2
2 and 3 =

:1+:2−2:3
3 .

When electron transfer momentum @ to :1 we have proton wavefunction q0

change by
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q′0 = exp(8@G1)q0 = exp(8@-1) exp(8 @
2
-2) exp(8 @

3
-3)q0

The amplitude for this momentum transfer is M0 ∝ 441

@2 n0+
, where + is electron

column and 41 quark charge. Overlap of new wavefunction with old one is simply

Ω = 〈q′0 |q0〉 =
∫

cos( @
2
-2)q2

03-2

∫
cos( @

3
-3)q2

03-3 ∼
1

@2

Cross section of scattering ∝ Ω2 ∝ @−4, that’s it, this is what we find in the
experiments, the elastic cross section dies as 1

@4 which means there are three quarks

! else it will die as 1
@2= for = quarks, that’s it.

4.6.2 Deep Inelastic Scattering

u

u
d

e

p

f
f

Fig. 4.7 Fig. depicts deep inelastic scattering of electron and proton.

We talked about elastic scattering of electrons and protons. But at high energies
we can have in-elastic scattering [64], where by we can excite the internal modes
off the proton, such that its internal energy or mass rises from " to , . Since @
needed to create new mass is big comparable A−1

0 (radius of proton), cross section
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will be every small, and will die more with increasing @. But we donot need to talk to
proton directly. We can first exchange momentum and create a quark-antiquark 5 5̄

pair (meson) as shown in 9.2, this is creating energy , but we cnnot just do it in thin
air, because we cannot balance energy , we do this by further exchanging momentum
with the proton and burning this energy in the heavy mass of proton. Scattering
amplitude of 5 5̄ has no @ dependence, we are just scattering a free particle, so
inelastic cross-section is independent of @ for a gives G, where

G =
@2

@2 +,2 −"2

q2

cross−section

 

x = .2

x = .1
   

Fig. 4.8 Fig. depicts inelastic cross section as a function of @2 for given G.

4.7 Electron scattering in solid state

We look at scattering of electrons in condensed matter, these range from scattering of
electrons of periodic potential, to give Bloch waves [66, 65], scattering of electrons
of phonons and impurities to give resistance, scattering of lattice to give cooper
pairs and superconductivity. We study electron scattering from exchange potential
as in Fermi liquid theory and resulting )2 resistance at low temperatures. Electron
scattering of exchange potential resulting in chemical reactions.



4.7 Electron scattering in solid state 87

A

B 

Fig. 4.9 Fig. A depicts periodic Coulomb potential. Fig B depicts periodic Coulomb potential with
impurity

4.7.1 Scattering of periodic potential:Bloch waves

In a solid lattice, we have periodic arrangement of nuclei, producing a periodic
potential (for simplicity of type)

+ (G) =+0 cos2 ( cG
0
) = +0

4

(
2+ exp(−8 2cG

0
) + exp(8 2cG

0
)
)

as shown in 4.9. Free electron wave then exp(8:G) then scatters to exp(8(: ± 2c
0
G) ).

Then the eigenfunction of the period potential has the form

k= (:) =
#∑

9=−#
1=, 9 exp(: + 2c 9

0
)G = exp(8:G)q= (:),
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where q= (:) is periodic function of period, the lattice constant 0, where 1= =

(1=,−# , 1=,−(#1) , . . . , 1=,0, . . . , 1=,#−1, 1=,# ) and

� =



. . . . . . . . . . . . . . .

0
ℏ2 (:+ 2c

0
)2

2< ++0
+0
2 . . . 0

0 +0
2

ℏ2:2

2< ++0
+0
2 0

0 0 +0
2

ℏ2 (:− 2c
0
)2

2< ++0
+0
2

0 . . . . . . . . .
. . .



, (4.16)

we have

�1= = n= (:)1= (4.17)

, where n= (:) is energy of : wave, in the =Cℎ energy band, where : ∈ (− c
0
, c
0
). Fig.

4.10 depicts energy bands in a periodic potential. In nutshell, eigenfunctions in a
periodic potential are of the form exp(8:G)q= (:).

k

ε

ε

ε
ε 1

2

3

4

/a/a

energy

ππ

       

 

Fig. 4.10 Fig. depicts energy bands in a periodic potential.

4.7.2 Superconductivity

There is very interesting phenomenon that takes place in solid state physics [65,
66, 67, 68] when certain metals are cooled below critical temperature of order of



4.7 Electron scattering in solid state 89

few kelvin. The resistance of these metals completely disappears, and they become
superconducting. This phenomenon, whereby many materials exhibit complete loss
of electrical resistance, when cooled below a characteristic critical temperature
[69, 70] is called superconductivity. It was discovered in mercury by Dutch physicist
Onnes [71] in 1911. For decades, a fundamental understanding of this phenomenon
eluded the many scientists who were working in the field. Then, in the 1950s and
1960s, a remarkably complete and satisfactory theoretical picture of the classic
superconductors emerged in terms of the Bardeen Cooper Schrieffer (BCS) theory
[72].

Electrons want to scatter of phonons but in superconductivity they are bonded
by phonon mediated interaction. Scattering would mean breaking this bond costing
energy. Lets recapitulate phonon mediated pairing of electrons as in BCS theory.
The electron phonon coupling Hamiltonian

� = �4 +�4−?ℎ +�?ℎ , (4.18)

where�4 is electron Hamiltonian,�4−?ℎ is the electron-phonon coupling Hamil-
tonian

�4−?ℎ =
2

√
=3

(
1 exp(8:G) + 1+ exp(−8:G)

)
, (4.19)

�?ℎ = ℏl1+1, (4.20)

2 ∼ 1 eV and =3 is number of lattice points (atoms) , 1, 1+ are annihilation and
creation operators for the phonon, : is phonon wave-vector, l is phonon energy.
l = h: where h = 3000</B velocity of sound in the solid.

Lets us derive 2, assuming a periodic potential of the form

+ =+0 cos2( cG
0
) cos2 ( cH

0
) cos2 ( cI

0
), (4.21)

where 0 is lattice parameter around 3�◦.+0 is around 100+ so that coulomb potential
and+ have same average value. Consider a phonon wave travelling in the G direction
as �cos(:G−lC), the energy of the phonon wave is �?ℎ =

1
2<l

2�2=3, where < is
mass of atom and =3 is number of lattice points. Equating this to energy of a phonon

mode 1
2 :) we get � =

√
:)

<l2=3 . For one quanta of phonon excitation, with energy

ℏl3 , we have � =

√
ℏ

<l=3 . Phonon perturbs lattice points, and hence the periodic

potential. The perturbation, at - = (G, H, I) is

Δ+ (-) = m+

mG
| (-−-0) �cos(:G0 −lC),

= +0 sin( 2c(G− G0)
0

) cos2 ( c(H− H0)
0

) cos2( c(I− I0)
0

) �cos(: (G0 − G) + \),

= 51(- − -0) cos(\) + 52 (- − -0) sin(\),
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where -0 and G0 is the coordinate and x-coordinate of atom closest to - . \ = :G−lC.
51 and 52 are periodic in - with lattice period 0 and can be expanded into a Fourier
series with spatial frequency 2c

0
. Taking the zero Fourier coefficient (so that resulting

wave is in first Brillouin zone) by averagingΔ+ (G) over unit cell (keeping \ constant)
gives,

4Δ+ (-) = 1
√
=3

4+0

8h

√
:)

<︸      ︷︷      ︸
2

cos(:- −lC). (4.22)

For 4, electron charge, ) = 100 and < = 10−26 6 (10 proton masses), we have
2 ∼ 1 e V. One quanta of phonon excitation, with energy ℏl3 , (l3 is the Debye
frequency of 1013 rad/s) corresponds to 100 temperature and has 2 ∼ 1 e V.
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Fig. 4.11 Fig. A depicts the Fermi sphere, and how electron pair :1,−:1 at Fermi sphere, scatters
to :2,−:2, at the Fermi sphere. Fig. B shows how this is mediated by exchange of a phonon in a
Feynman diagram. Fig. C shows a three level system, that captures the various transitions involved
in this process.

Let us take two electrons, both at the Fermi surface, one with momentum :1

and other −:1. Lets see how they interact with phonons. Electron :1 pulls/plucks
on the lattice due to Coulomb attraction and in the process emits a phonon, and
thereby recoils to new momentum :2. The resulting lattice vibration is sensed by
electron −:1, which absorbs this phonon and is thrown back to momentum −:2.
The total momentum is conserved in the process. This is depicted in Fig. 5.9A. The
corresponding Feynman diagram for this process is shown in Fig. 5.9B. The above
process, where two electrons interact with exchange of phonon, can be represented
as a three level atomic system. Level 1 is the initial state of the electrons :1,−:1 and
level 3 is the final state of the electrons :2,−:2 and the level 2 is the intermediate state
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:2,−:1. There is transition with strength Ω =
2√
=3

between level 1 and 2, involving

emission of a phonon and a transition with strengthΩ between level 2 and 3, involving
absorption of a phonon. Let �1, �2, �3 be energy of the three levels. Since pairs are
at Fermi surface, �1 ∼ �3. Second order effective transition from level 1−3 is

3 =
Ω2

�1 −�2
= − 22

=3ℏl3
. (4.23)

The binding energy of the superposition k =
∑ |:8 ,−:8〉︸   ︷︷   ︸

q8

, from electron pairs in

annulus of width ℏl3 at Fermi surface is then

Δ
′
= − 22

=3ℏl3

ℏl3=
3

n 5
= − 2

2

n 5
, (4.24)

where n 5 is the Fermi energy. From above, Δ ∼ 100 meV. Energy �8 of |:8 ,−:8〉 are
not same, and vary in annulus of width ℏl3 . Hence the binding energy, taking this
into account as shown by Cooper [72] is

Δ = ℏl3 exp(−
n 5 ℏl3

22︸  ︷︷  ︸
1
2′

). (4.25)

From above, Δ ∼ 10 <4+ . In BCS theory, we have multiple electron wavefunction

Ψ =

∏
8

(sin\8 + cos\8q8) , (4.26)

q8 is in annulus of width l3 at Fermi surface, with probability of state q8 being
occupied is cos2 \8 . Optimal \8 can be calculated and the ground state energy reduces
energy by − l3

4 per electron, in an annulus of width l3 at Fermi surface. If a Cooper
pair is broken , the cost of elementary excitation is ∼ Δ. Scattering of electrons by
phonons will break a Cooper pair, leading to energy increase of ∼Δ, which cannot be
paid by energy of a low temperature phonon, hence no scattering, leading to absence
of resistance.

In high )2 superconductors [73] we have d orbital electron waves (D-waves) ,
with wave dispersion n0 −2C cos(:0), where n0 is the orbital energy, : wavevector, 0
lattice parameter and C hopping parameter (transfer integral). C is small, as 3 orbitals
are localized, leading to small fermi energies n 5 . Lower n 5 means larger 2′ and
higher )2 . On the other hand, a metal like Lithium, has high C and hence high n 5 and
lower 2′ and lower )2 .

Another interesting aspect of BCS theory is Josephson Junction Tunnelling [74].
When a voltage + is applied between two superconductors, separated by a weak
link (insulator), a oscillating current ∝ cos( 24+ C

ℏ
) develops. This oscillation can be

explained by a phase that develops between the superconductors and tunnelling of a
Cooper pair. But, how will the electron pair with momentum k and -k simultaneously
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tunnel. One is moving towards the tunnel junction while other away from it. They
cannot tunnel simultaneously.
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Fig. 4.12 Fig. A depicts how on a tunnel junction between two superconductors, the two electrons
in a Cooper pair travel in opposite direction , they cannot simultaneously cross the barrier. Fig.
B depicts, : is moving towards the barrier, −: away, but they scatter of the lattice. : changes to
−: but by that time it has crossed the barrier. For the other electron −: changes to : and now is
travelling towards barrier and crosses it.

Shown in Fig. 4.12A is how on a tunnel junction between two superconductors,
the two electrons in a Cooper pair travel in opposite direction , they cannot simul-
taneously cross the barrier. How do we explain simultaneous crossing. The answer
is actually very subtle, : is moving towards the barrier, −: away, but they scatter of
the lattice. : changes to −: but by that time it has crossed the barrier. For the other
electron −: changes to : and now is travelling towards barrier and crosses it. This is
shown in Fig. 4.12B.

4.7.3 Resistance and resonant absorption of phonons

Fig. 4.13 shows how it is when we accelerate electrons with an electric field say in−G
direction. The whole Fermi sphere displaces to the right by a small amount. There
is net momentum in the G direction and this constitutes the current. How does the
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A B  

Fig. 4.13 Fig. shows how application of electric field accelerates electrons, shifts the Fermi sphere
and how electrons back scatter by absorbing phonons.

ω
d

Fig. 4.14 Fig. shows how an electron scatters when it absorbs a phonon of energy ℏl3 and its
kinetic energy slighly increases.

current stop. The electrons on the right shown as black dots in Fig. 4.13 are scattered
to the left as shown. This scattering is due to absorption of phonons and annuls the
forward x-momentum of electrons. How much is this scattering rate. If we absorb a
phonon, the electron energy rises by ℏl3 and the electron scatters to states as shown
in dotted sphere as shown in Fig. 4.14.

There are =3 electron states in the Fermi sphere, and =2 on the annulus , then the

scattering rate by Fermi Golden Rule, is Γ =
Ω2=2

Δ�
where Ω =

2√
=3

, Δ� =
n 5
=

is the

energy width of electron state (packet).

Γ =
22

n 5
(4.27)

Taking 2 = 14+ and n 5 = 104+ , we get Γ ∼ 1014/B. This is in agreement with typical
relaxation times of 10−14 −10−15 sec.
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4.7.4 Temperature dependence of resistivity and Bloch’s Z5 law

In understanding temperature dependence of resistivity, we consider two limits. High
temperature limit, when all phonon modes are occupied. Then number of phonons
=: in a mode satisfies =:ℏl: = :�) with Ω =

2√
=3

as in Eq. 4.22, Ω ∝ √
=: . Then

observe Ω2 ∝ :�) and we have Γ ∝ ) . Linear variation with ) .
There is another regime, the low temperature regime in which only phonons with

small wavevectors which satisfy ℏl = :�) are active. This is as shown by vector
$� in fig. 4.15.

A

θ

 

0

 

Fig. 4.15 Fig. shows at low temperatures, only the phonons with small wavevectors as $� are
active.

The length of wavevector $� that is active ∝ ) and hence the the surface area
on the Fermi sphere that will be active due to phonon scattering is ∝ )2 and hence
� ∝ )2. Since Ω2 ∝ ) , we get Γ = Ω2� ∝ )3. However scattering by an angle \ as
shown in fig. 4.15, impedes the current by a factor 1− cos\ which for small angle
theta is ∝ \2 but from fig. 4.15, \2 ∼)2 or the resisitvity varies as ∝)5. This is called
the Bloch’s )5 law.

4.7.5 Scattering of impurity

Solid may have impurities, as in dopants in a semi-conductors. Then then potential
is not strictly periodic as shown in Fig. 4.9. This can be thought of as coulomb
potential of the impurity on top of a periodic potential. This impurity potential will
back-scatter electrons as shown in 4.16, forward going : 5 back-scattered to backward
going :8 leading to resistance.
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Fig. 4.16 Fig. A depicts how electron momentum : 5 backscatters due to Coulomb potential.

4.8 Scattering of exchange potential

We talked of electron scattering of Coulomb potential, two electrons wavefunctions
q1 and q2 have coulomba energy

* = 42
∫ |q1 (A1) |2 |q2 (A2) |2

4cn0 |A1 − A2 |
33A13

3A2, (4.28)

and exchange energy

*4G = 4
2
∫

q∗2(A1)q∗1(A2)q2(A2)q1(A1)
4cn0 |A1 − A2 |

33A13
3A2, (4.29)

For electron waves with momentum :1 and :2 this exchange energy is

*4G = 4
2 1

+2

∫
exp(−8(:1 − :2) · (A1 − A2))

4cn0 |A1 − A2 |
33A13

3A2, (4.30)

In CM and relative coordinate ' =
A1+A2

2 and A = A1 − A2, we have for  = :1 − :2,

*4G = 4
2 1

+

∫
exp(−8 · A)

4cn0A
33A, (4.31)

with + = ;3 and | | = =
;

we have

*4G =
1

=2

42

4cn0;
(4.32)

Larger the  , smaller the exchange energy.
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4.9 Fermi liquid theory

The electron waves in the solid occupy : states within the Fermi-sphere of radius : 5
energy n 5 . At very low temperatures, all states below energy n 5 are filled and above
n 5 empty as shown in fig. 4.17A. But due to exchange energy between electrons
we have a picture more like fig. 4.17B. We seprate the electrons in : space so that
exchange energy is minimized. This puts more electrons outside n 5 .

Now when we apply electric field in G direction, Fermi sphere moves to the
right and creates crowded : space on the right as shown in fig. 4.18. The exchange
energy can be minimized by scattering electrons to the left as shown in the fig.
4.18. This is electron electron scattering. This is principle source of resistance at
low temperatures. The scattering amplitude ∝ 1

+
the volume of electron wave, but

1
+

= Δ:!Δ:
2
)

, (Δ:! is in direction and Δ:) perpendicular to : of packet. But we

have
ℏ2Δ:2

)

2< ∼ :) and ℏ:
<
ℏΔ:! ∼ :) , giving 1

+
∝ )2, hence resistance increases ∝ )2

at low temperatures, where Fermi liquid theory is main source of resistance [75].

A B

ε
f

n ( )

εε
f

n ( )

ε

ε ε

Fig. 4.17 Fig. A depicts density of states as function of energy for non-fermi liquid (without
exchange interactions). Fig. A depicts density of states as function of energy for fermi liquid (with
exchange interactions).

4.9.1 Exchange interactions and chemical reaction dynamics

Day to day collisions are exchange interactions of electrons. Collisions in chemical
reactions are no exceptions [76]. Fig. 4.19 depicts molecules AB and CD moving
along H direction with momentum −?, ? scatter due to exchange potential and form
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Fig. 4.18 Fig. A depicts displaced fermi sphere, due to exchange potential scattering, excess
electrons on right backscatter.

new molecules AC and BD which moves sideways with momentum −:, : . The
kinetic energy difference accounts for energy difference in bonds.

Momentum is exchanged by exchange interactions. The initial electronic config-
uration is

q0 =
1

2
(q�(A1)q� (A2) +q�(A2)q� (A1)) (q� (A3)q� (A4) +q� (A4)q� (A3)). (4.33)

Final electronic configuration is

q′0 =
1

2
(q�(A1)q� (A3) +q�(A3)q� (A1)) (q� (A2)q� (A4) +q� (A4)q� (A2)). (4.34)

Overlap is just 1
4 .

4.10 Conclusion

In this paper, we balance the energy momentum budget in electron-nuclear collisions.
Nucleus is much heavier than electron. The transferred momentum takes more energy
out of electron than it gives to nucleus, this lost energy can be used for atomic
excitation as in Frank Hertz effect, vapor lamps, for ionization of atoms as in cloud
and Bubble chambers or as in X-ray production by Bremmstrulung. This extra
energy can go into exciting internal modes of a proton as in deep inelastic scattering.
We looked at elastic scattering of electrons as in electron diffraction and electron
microscopes. We looked at scattering of electrons in condensed matter, these range
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Fig. 4.19 Fig. depicts molecules AB and CD moving along H direction with momentum −?, ?
scatter due to exchange potential and form new molecules AC and BD which moves sideways with
momentum −:, :. The kinetic energy difference accounts for energy difference in bonds.

from scattering of electrons of periodic potential, to give Bloch waves, scattering
of phonons and impurities to give resistance, scattering of lattice to give cooper
pairs and superconductivity. We study electron scattering from exchange potential
as in Fermi liquid theory and resulting )2 resistance at low temperatures. Electron
scattering of exchange potential resulting in chemical reactions. We stress again that
our main contribution in this paper was to provide details at places where literature
is succinct.

Problems

1. In Frank Hertz experiment electrons incident on Mercury atoms with kinetic
energy 10 eV will come out with what energy, if the mercury is gets excited with
energy difference between excited and ground state is 4.94+ .

2. What is the outgoing energy of incident electrons with energy 50:4+ that scatters
of an atom and radiates 1�◦ wavelength light as Bremmstraulung.

3. For a lattice with spacing 0 = 3 A◦ find the minimum energy such that we get
electron diffraction at angle \ = 30◦.
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4. Find the minimum energy of neutrons to get a neutron diffraction at an angle
\ = 30◦.

5. If crystal is though of as a square well with potential* = −5 eV. What is the angle
and wavelength of refracted electrons when they are incident at an angle 30◦ with
the normal with energy 10 eV.





Chapter 5

Lattices as struck by light, electrons and
molecules

What happens when we shine light or fire electrons on a solid material ? Few things
can happen. If material is colored, it will just absorb light of right frequency and
spontaneously emit it in all the directions. It will of-course back scatter light, which
will be missing the color, it absorbed and we will see the complimentary color. If
material is metallic, with free electrons, it will elastically scatter light back, and we
will get reflection of light. Plastic, wood, walls, plants, humans will all scatter light
and scattering amplitude will depend on how close we are to optical resonance; rf,
microwaves will easily go through and light will be stopped. There is of-course some
light scattered back. This kind of scattering is not of the free electrons, it is more like
Rayleigh scattering, where light elastically scatters of an atom. Free electrons can
also scatter in-elastically energetic waves like X-rays and that is Compton scattering.
If the light has frequency of the bandgap of solid, then it will promote electron
from valence to conduction band as in CCD sensors and cameras or photodetectors.
Of-course, for materials like glass, the bandgap is very large, so elastic scattering is
small and it is transparent. Infrared light of-course talks to phonons and is absorbed
heating the solid. Phonons can also be excited with optical light by a Raman process,
which results in inelastic scattering of light. Light can also eject electrons from
a metal by phenomenon of photoelectric effect. So the light basically sees three
things inside a solid material, free electrons, bonded electrons and bonded atoms
and scatters of them. At high light intensity, light photon (frequency 2l) can be
absorbed and subsequently emitted as two photons (frequency l), a phenomenon
called down conversion, or two photons (frequency l) can be absorbed and a photon
of frequency 2l be emitted, a phenomenon termed, higher harmonic generation.
These are nonlinear optical processes.

Lets look at how it is when we fire electrons at solid material. Electrons can elas-
tically scatter of the crystal giving rise to diffraction, also seen in neutron and x-rays.
Energetic electrons can of-course ionize-excite atoms by Frank-Hertz phenomenon
and subsequently emit light also termed scintillation or electrons can exchange mo-
mentum with atoms losing energy which they give out as radiation (say X-rays) called
Bremmstraulung. Scintillation and ionization forms the basis of many high energy
physics detectors and for equipment like cloud and bubble chambers or photographic

101
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emulsions. Energetic Mev rays, U rays (Helium atoms), V rays (electrons) and W rays
can penetrate matter, ionize it lose energy and then stop. Heavier, the ray more mo-
mentum it will lose for given ionization energy and hence U rays are less penetrating
than V which is less than W. Neutrinos of course hardly interact and pass through
the earth. Surprisingly muons travel farther than electrons, as they lose less energy
per unit of transferred momentum. The energy of transferred momentum is just died
by heavy metal like lead making them efficient stopping materials. In this paper we
provide a quantitative analysis of these phenomenon. Our main contribution in this
article is we are detailed at places, we find literature terse.

5.1 Introduction

We have to start with an atom and diatomic molecule. Atom can be struck with
photon or electron, which can excite it to higher energy state. The excitation can be
direct or be indirect which we call a Raman process. So there are four cases.

Diatomic molecule vibrates, when struck with light or electron it can be vibra-
tionally excited. The excitation can be direct as by infrared light or a Raman process
where a higher electronic state is excited and then we go back to higher vibration
state but ground electronic state. Again there are four cases. What happens in atom
or molecule happens in a crystal. We study the crystal cases in conjunction with
atom and molecule to delineate the analogy.

Light can elastically or in-elastically scatter of atom and so off crystal. We delve
in these cases one by one.

5.2 Light Atom Interactions, the E · x gauge

5.2.1 Lagrangian and Hamiltonian

Take a classical electron, with coordinates (G, H, I) = (G1, G2, G3) . Its Lagrangian in
the electromagnetic field is

! =
<

2

∑
8

¤G82 + @
∑
8

�8 ¤G8 − @�0, (5.1)

where @ and< are electron charge and mass.A and+ are vector and scalar potentials.
The Euler Lagrange equations are the familiar Lorentz force law < ¤E = @(� + E×

�), where E is the velocity vector, �8 = − m�8

mC
− m+
mG8

, �8 =
m�:

mG 9
− m� 9

mG:
, the electric and

magnetic fields.
The momentum ?8 =

m!
mG8

and the Hamiltonian of the system � = ?8
m
m ¤G8 − ! is
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� =

∑
9=G,H,I

(? 9 − @� 9 )2

2<
+ @�0. (5.2)

5.2.2 Dirac and Schrödinger Equation

The Electron Schrödinger Equation [36] is

8
mk

mC
=

( ∑
9=G,H,I

(−8ℏ m
mG 9

− @� 9 )2

2<
+ @�0

)
k, (5.3)

where k is electron wave-function. This equation is not very tractable, because it is
nonlinear in A, lets write a linear equation, which is the Dirac equation [63], which
takes the form

8
mq

mC
=

( ∑
9=G,H,I

2(−8 ℏ m

mG 9
− @� 9 )U 9 + V<22 + @�0

)
q. (5.4)

where U 9 = fI ⊗ f9 and V = fG ⊗ 1 are Dirac matrices, where f9 are the Pauli

matrices, fI =

(
1 0
0 −1

)
. q is electron spinor, for a electron wave with momentum : ,

takes the form q =

[
cos \2
sin \

2

]
⊗↑ , where ↑ is spin up, cos\ = ℏ:

<2
=
h
2

, where h = ℏ:
<

,

is electron wave group velocity. Electron Orbitals are of size ∼ �◦, their : ∼ 1010< ,

then h ∼ 106</B and cos\ ∼ 106

3×108 ∼ 10−3. Electron is non-relativistic, cos\ = h
2
∼ 0,

\ ∼ c
2 , q = 1√

2

[
1
1

]
⊗↑.

To fix ideas, take incoming EM wave, along I direction, with electric field
�G sin(:I−lC), the Lorentz gauge is (�0, �G , �H , �I) = �G

l
cos(:I−lC)(0,1,0,0).

Electron wave with momentum @ absorbs the photon with momentum : , and transits
to momentum @ + : . The A process transition is driven by Dirac matrix UG , with
transition amplitude

M =

[
cos \2
sin \

2

]
⊗↑(fI ⊗fG︸   ︷︷   ︸

UG

)
[
cos \2
sin \

2

]
⊗↓ = @2�G

h

2
= @�G

h

l
(5.5)

If we have electron orbital q0 then : ′ = "
"+< : of photon momentum goes to

electron-nuclear relative coordinate, while : ′′ = : momentum to CM (center of
mass), where " is nucleus mass. The A process drives the transition

q0↑ −→ exp(8: ′I)q0↓,

with amplitude M = @�G
h
l

.
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When orbital q1 is different from q0 we go to

q0↑ −→ exp(8: ′I)q0↓,

with amplitude M = @2�G
h
2

whose overlap with q1 is

M1 = @2�G
h

2
8: ′ 〈q1 |I |q0〉︸     ︷︷     ︸

3I

= 8@�G3I
h

2
,

where 2: ′ ∼ l.
But this is not suited for study of optical transitions, because we do-not recover

the Rabi frequency @�G3. What we find is orders of magnitude smaller (down by
h
2

). Instead we work with gauge

(�0, �G , �H , �I) =
−�G

2
(G sin(:I−lC),−cos(:I−lC)

l
,0,

G

2
sin(:I−lC)).

Now we have an E process driven by G term. For the E process, the amplitude of
q0 → q0 is just 0, as 〈q0 |G |q0〉 = 0 and the amplitude of q0 → q1 is simply

M ′
1 = @�G 〈q1 |G |q0〉︸     ︷︷     ︸

3G

= @�G3G ,

Dipole elements 3I , 3G are approx, Bohr radius ∼ �◦. Due to the factor h
2
∼ 10−3,

M1 ≪M ′
1. Therefore transition between different atomic orbitals are largely driven

by the E process.
A process flips electron spin, E doesn’t. When q1 and q0 have different angular

momentumA process cannot drive the transition, but E process can, with a circularly
polarized light and

M ′
1 = @� 〈q1 |A |q0〉︸     ︷︷     ︸

3

= @�3,

Since A process always flips spin, it is necessarily done with circularly polarized
light.

5.3 The Crystal Case and Photo-detector

In atom, we have electron as orbitals, q0 and q1 and we can transit between the two
with light wave with wave-vector : . In Crystal, these orbitals are banded. We have
q0 →

∑
; G;q

;
0 =Φ0(?), where G; = exp( 9 ?;0), where ? is wave-vector and 0 spacing

between atoms and ; the atom index. q;0 transits to q;1 with amplitude exp( 9 :G0)M ′,
then all in all Φ0(?) transits to Φ1(?+ :) when Δ� = �1−�0 = ℏ2: . Φ0 is in valence
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band and Φ1 in conduction band and we get a nice photo-detector where a photon
promotes an electron to conduction band, where it gives a current. Δ� ∼ 4+ in a
semiconductor crystal.

5.4 Frank Hertz Experiment

In 1914, James Franck and Gustav Hertz [52, 53] performed a beautiful experiment.
They accelerated electrons in a cathode ray tube filled with mercury. They observed
that at certain value of the accelerating voltage, the current in the tube dropped. This
demonstrated the existence of excited states in the mercury atoms, with quantized
energies, and helped to confirm the quantum theory. The values of accelerating
voltage, where the current dropped gave a measure of the energy necessary to force
an electron to an excited state.

Let G1, G2 be coordinates of atomic electron and nucleus, and -1 =
<G1+"G2
<+" and

-2 = G1 − G2, center of mass and relative, coordinate. Let :1, :2 be momentum of
G1, G2 coordinates and  1, 2 momentum -1, -2 coordinates. Then

∑
:8G8 =

∑
 8-8

gives  1 = :1 + :2 and  2 = `
(
:1
<
− :2
"

)
, where 1

`
=

1
<
+ 1
"

is the reduced mass.

When @ momentum transfers from incident electron to the atomic electron, it can
change the atomic wave-function

exp(8@G1) = exp(8@′-1) exp(8@′′-2),

where @′ = @ and @′′ = "
"+<@ ∼ @.

exp(8@′′-2) = cos(@′′(G1 − G2)) + 8 sin(@′′(G1 − G2)).

34 = 〈q1 | sin(@′′(G1 − G2)) |q0〉

is the dipole moment of the transition, from ground to excited state of the atom.
When incident atom stops and

�1 −�0 =
ℏ2@2

2<
,

we see the atomic transition from �0 to �1.
More generally, @ = ?1 − ?2 (?1, ?2 initial and final momentum of incident elec-

tron) and

�1 −�0 =
ℏ2

2<
(?2

1 − ?
2
2), (5.6)

Transition amplitude for transfer of momentum
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M =
42

+n0@2
(5.7)

where + = ;3 is volume of incident electron, where ; ∼ 10−8, thermal debroglie
wavelength.

Total transition amplitude is

M ′
=M34 (5.8)

+

electron
nucleus

Fig. 5.1 Fig. A depicts Frank Hertz experiment and incident electron makes a atomic transition.

When @ momentum transfers from incident electron to the atomic nucleus, it can
change the atomic wavefunction

exp(8@G2) = exp(8@′-1) exp(8@′′-2),

where @′ = @ and @′′ = <
"+<@.

3= = 〈q1 | sin(@′′(G1 − G2)) |q0〉

is the dipole moment of the transition, from ground to excited state of the atom, which
is negligible due to small @′′. Of-course, transferred momentum went to center of
mass (CM) of atomic system.

Frank Hertz phenomenon is ubiquitous in vapor lamps like sodium, neon, mercury
vapor lamps, where free electrons are accelerated and bombard atoms exciting them,
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which subsequently emit light we see. It is the basis of phenomenon of Cathodo-
luminescence in which electrons impacting on a luminescent material such as a
phosphor, cause the emission of photons which may have wavelengths in the visible
spectrum. A familiar example is the generation of light by an electron beam scanning
the phosphor-coated inner surface of the screen of a television that uses a cathode
ray tube.

5.5 Crystal Case: Scintillators

Scintillator crystals convert electron beams and ionizing radiation X-rays, W rays
into photons that can be detected by photo-detectors. With electron beam, we just do
Frank hertz on a crystal and we are done. We have shown in for atom, for a collection
of atoms we have already shown the idea. Electron hole pairs are created whose
energy is 4+ range and this subtracts from energy of the electron beam. With light
its more subtle, because we have to slow change lights wavelength which is done by
a Raman effect,

5.6 Scintillators with ionizing radiation: Raman effect

Electron momentum changes as it scatters an exchange momentum , but with an
incoming photon, how does the photon momentum change, it does by a Raman
effect. The photon is absorbed and re-emitted with slightly lower wavenumber and
the energy loss goes in exciting the atom. This is called in-elastic scattering of
electron. We first quickly discuss elastic and in-elastic scattering of photon. Elastic
scattering is called Rayleigh scattering and in-elastic Raman.

5.6.1 Rayleigh and Raman Scattering

Atomic transitions are first order, we are on resonance to energy difference between
energy levels. Now we discuss some second order processes like Rayleigh [39] and
Raman Scattering [40, 41]. Rayleigh is elastic scattering of light, Raman inelastic. In
Rayleigh scattering, light of wavevector : is scattered by atom to light of wavevector
:1 such that |: | = |:1 |, only direction of light changes. In Raman scattering, light of
wavevector : is scattered by atom to light of wavevector :1 such that |: | ≠ |:1 |. The
difference of the photon energy Δl = ℏ2(|: | − |:1 |) , results in atomic transition with
Δ� = ℏl. When Δ� > 0 its Stokes process. When Δ� < 0 its anti-Stokes process.

Calculation of transition amplitude for these processes, involves a second order
calculation manifested in a three level system. This is as shown in Figure 5.9. There
are three levels |1〉, |2〉 and |3〉 with energies �1, �2, �3, with �1 = �3, levels 1 and 3
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are degenerate. Ω1 and Ω2 are transition amplitudes between level 1 and 2 and level
2 and 3 respectively.

3

2

1

Ω Ω1 2

E E

E

1

2

1

Fig. 5.2 Fig. depicts a 3 level system with transition amplitude Ω1 and Ω2 between level 1 and 2
and level 2 and 3 respectively.

Then gives for |�1 −�2 | ≫ Ω8 , there is transition amplitude of going from |1〉 to
|3〉, given by,

M =
Ω1Ω2

�1 −�2
(5.9)

Fig 5.3A depicts Rayleigh scattering, incoming photon at wave-vector : scatters
to wave-vector :1. Fig B, depicts a three level 3 level Rayleigh process, where initial
atomic level q absorbs photon : and moves to Φ where CM coordinate gets photon
momentum. :1 is emitted and we return to q

In 3 level system analogy, State |1〉 is electron-nuclear, photon state q, : and state
|2〉 is electron-nuclear state Φ and State |3〉 is electron-nuclear, photon state q, : ′.
|: | = |: ′ |, so that �1 = �3. Ω1 is a A process with value

Ω1 = @�G
h

l
, (5.10)

where �G is electric field of incoming �" wave.

Ω2 = @�>
h

l
, (5.11)

where �0 is the electric field of spontaneously emitted photon at :1. How much is
�0.

Spontaneous emission time ΔC, in atomic systems is ΔC ∼ 10′B ns, corresponding
to a Rabi frequency of Ω = 100 MHz, which is 10−26�, in which photon travels
Δ; = 2ΔC ∼ 1< (leaves the atom). The volume of the photon ∼ 1<3. Bandwidth
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Fig. 5.3 Fig. A, depicts Rayleigh scattering, incoming photon at wave-vector : scatters to wave-
vector :1. Fig B, depicts a three level 3 level Rayleigh process, where initial atomic level q absorbs
photon : and moves to Φ where CM coordinate gets photon momentum. :1 is emitted and we
return to q0

of the photon Δ� =∼ 2c
Δ;

, how many photons are there in all the directions? Then

wave-vector sphere of radius :0 =
2c
_0

(say 300 nm photon, _0 = 300=<). Number of

direction = = 4c:2
0/(Δ�)2 ∼ 1012.

Rabi frequency Ω = @
√
=�03 = 10−26, giving �0 = <+/<. Ofcourse, energy of

the photon ℏl =
n0
2 �

2
0+ with + ∼ 1<3 , we have for l ∼ 1015, �0 ∼ <+/< (all self

consistent).
Coming back to Rayleigh scattering, from Eq. 5.27, 5.10, 5.11, we have

M =
@2�G�0

ℏ

h2

l3
. (5.12)

or Rayleigh Rabi frequency,

Ω'0H;486ℎ =
@2�G�0

ℏ2

h2

l3
. (5.13)

for �G ∼ 103+/<, l = 1015, we get Ω'0H;486ℎ ∼ 10−4 Hz.
Finally Ω1 and Ω2 both A process.
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5.6.2 Raman Scattering

Raman scattering is an inelastic scattering process. Photon as wave-number : is
absorbed by atom and :1 emitted. Energy of absorbed and emitted photon is not
same : ≠ :1. Deficit goes in exciting atomic transition.

Fig 5.4A depicts Raman scattering, incoming photon at wave-vector : scatters to
wave-vector :1. Atom is excited from initial atomic level q to q1. Fig B, depicts a
three level Raman process, where initial atomic level q absorbs photon : and moves
to Φ where CM coordinate gets photon momentum. :1 is emitted and we return to
new atomic level q1.

k

B

φ k1  
φ

φ1

k1k

 

A

Φ

 

φ1

Fig. 5.4 Fig. A, depicts Raman scattering, incoming photon at wave-vector : scatters to wavevector
:1. Fig B, depicts a three level 3 level Rayleigh process, where initial atomic level q absorbs photon
: and moves to Φ where CM coordinate gets photon momentum. :1 is emitted and we return to q0

In 3 level system analogy, State |1〉 is electron-nuclear, photon state q, : and state
|2〉 is electron-nuclear state Φ and State |3〉 is electron-nuclear, photon state q1, :1.
|: | ≠ |:1 |, but �1 = �3. Ω1 is a A process with value

Ω1 = @�G
h

l
, (5.14)

where �G is electric field of incoming �" wave. Ω2 is a E process (atomic levels
change) with value

Ω2 = @�>3, (5.15)

where �0 is the electric field of spontaneously emitted photon at :1.
Coming back to Rayleigh scattering, from Eq. 5.27, 5.14, 5.15, we have

M =
@2�G�03

ℏ

h

l2
. (5.16)
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or Raman Rabi frequency,

Ω'0<0= =
@2�G�03

ℏ2

h

l2
. (5.17)

for �G ∼ 103+/<, l = 1015, we get Ω'0<0= ∼ 10−5 Hz.
Raman is a A and E process, Ω1 is A and Ω2 is E.Ω2 can be A but the amplitude

is much smaller than.
We have been talking of q and q1 as atomic levels, which is just fine in principle.

In practice, these are vibrational levels of two nuclei making a molecule. Then these
are energy levels of their (two nuclei) relative coordinate.

5.7 World of Colors

We are surrounded by beautiful colors. Really beautiful. Our clothes have beautiful
colors on them. Plants are green, blood is red. What is the source of this color.
Clothes have dyes containing pigments, like paints have pigments. These pigments
are primarily inorganic in the sense, they have a transition metal element in them.
Transition metal elements are the one found in the center of the periodic table
that have electrons in their d-orbitals. These include, for example, Cobalt (Co) ,
Cadmium (Cd), Chromium (Cr), Manganese (Mn) etc. For example, Cobalt (atomic
number 27), has electronic configuration 1B22B22?63B23?63374B2. The d-orbitals
are five fold degenerate. These orbitals are 3I2 , 3G2−H2 , 3GH , 3HI , 3GI . However in a
transition metal compound, binding with other atoms called ligands, this degeneracy
gets broken. We have orbitals 3I2 , 3G2−H2 called 46 manifold at higher energy than
the orbitals 3GH , 3HI , 3GI called C26 manifold as shown below

z2 x2− y2

xy xz yz

∆

 

 

  

e
g

t 2g

Fig. 5.5 Fig. shows splitting of energy of d-orbitals in 46 manifold and C26 manifold.

The energy difference Δ = ℏl0 is sub-eV and corresponds to visible wavelength.
When we shine light the right color is absorbed, rest scattered back, which we see.
We see complimentary colors.



112 5 Lattices as struck by light, electrons and molecules

5.7.1 Scattering and Blue Sky

Why is sky Blue? Blue light is more detuned optical resonance in atmospheric
molecules, and hence scatters less and reaches us (from sun above us) , red light gets
back scattered as less detuned. At evening time we mainly see scattered light (sun
on the side) hence red light.

5.8 Metallic reflection, elastic scattering of light

Light bounces back off polished mirrors, metals. We can think of this as elastic
scattering (Rayleigh) of light from Free electron. If light travels in I direction with
electric field along G then the electron momentum changes along G by @ and there
is transition element G sin(@G), electron of-course transits back emitting light back-
wards and this is the reflection from a mirror.

5.9 Compton effect

As wavelength of light decreases, and reaches Compton wavelength ℎ
<02

, (<0 electron
mass), the light can ineleastically scatter of a free electron and change wavelength.
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Fig. 5.6 Fig. shows Compton scattering. Light with momentum :1 hits electron with momentum
?1, with light scattering to :2 and electron to ?2.

Fig. 6.9 shows Light with momentum :1 hits electron with momentum ?1, with
light scattering to :2 and electron to ?2 such that momentum and energy are con-
served, i.e., :1 + ?1 = :2 + ?2 and �?1 +�:1 = �?2 +�:2 , which gives
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_2 −_1 =
ℏ

<02
(1− cos\) (5.18)

where _2 =
ℏ

<02
∼ .01�◦ is Compton wavelength (<0 mass of electron). To see a

change in wavelength comparable to Compton wavelength , we should have short
wavelength light (high energy, 10-100 Kev, X-rays).

5.10 Photelectric effect

When light of frequency l is shown on metal surface [49], electrons are ejected.

This is photoelectric effect. The electron energy is �> = −+0 + ℏ2:2
>

2< < 0, where :0 is
electron momentum and −+0 is crystal potential. Momentum of electron changes to

:� and its energy is �� = −+0+
ℏ2:2

�

2< > 0 (electron is ejected). Change of momentum
Δ: = :� − :0 accounts for increase of electron energy by ℏh�Δ: where h� is Fermi
velocity of electron ∼ 105 − 106</B . This energy difference is given by photon
carrying ℏl ∼ 3−54+ of energy giving Δ: ∼ 1010/<.
This momentum doesn’t come from photon which will then carry ℏ2Δ: energy,
which is very large (keV), it comes from phonons in metal, whose energy is ℏhΔ: ,
where h ∼ 103</B is velocity of sound in metal. Phonon energy is them <4+ which
is negligible. If light travels in I direction with electric field along G then the electron
momentum changes along G by 2@ and there is tansition element G sin(2@G), electron
ofcourse transits back by @ giving −@ to phonon and conserving energy momentum.

5.11 Elastic Scattering of Electrons

We talked about inelastic scattering electrons. But electrons can elastically scatter
from nuclei, change direction, maintaining their kinetic energy.

5.11.1 Electron and Neutron diffraction

Electron diffraction experiments were carried out by Davisson and Germer in 1927
[58]. Experiments showed wave nature of the electron. The electrons fired at an angle
to the crystal rebounded at that angle (as classical ball) more so for certain choice of
angles. Fig. 5.7A depicts how electrons and neutrons rebound of crystal at certain
choice of \.

Coulomb potential of nucleus
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Fig. 5.7 Fig. A depicts how electrons and neutrons rebound of crystal at certain choice of \ . Fig.
B depicts inelastic scattering of neutrons to measure phonon spectra.

* (G) =
∑
@

1

+n0@2
exp(8@ · G) (5.19)

where 1/+ = (Δ@)3 (Δ@ is the step size of @ discretization).
The electron wave 4G?(8: · G) scatters of it to exp(8: ′ · G), where : ′ = : + @.

Summing amplitude of various sites we get

exp(8: · G) → exp(8: · G)
∑
G0

exp(8@ · (G− G0)) = exp(8: ′ · G)
∑
G0

exp(−8@ · G0)

For coherent addition of the amplitude M =
∑
G0

exp(−8@ · G0), we have

2: sin\ 3 = 2c −→ 23 sin\ = _. (5.20)
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where 3 lattice spacing and _ = 2c
:

, wavelength of light.
For solid crystal, 3 ∼ �◦, giving _ ∼ �◦ or : ∼ 1010/<, which is 104+ of energy.

Electron accelerated with this much energy bombard the crystal. We get returns at
angle \ satisfying Lau condition Eq. 5.20.

Diffraction can also be done with neutrons [60], which are 1000 times heavier
and hence for the same wavelength 1000 times less energetic, i.e., 10’s of meV.

5.12 Electron Microscopes
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Fig. 5.8 Fig. depicts how light or electron when bounced of a solid spreads away, if wavelength
_ >> ; and how it comes back straight if _ << ;, where ; is object length.

Fig. 5.8 depicts how light or electron when bounced of a solid spreads away, if
wavelength _ >> ; and how it comes back straight if _ << ;, where ; is object length.
This is diffraction limit.
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To see smaller and smaller objects we need to use smaller wavelengths. Electrons
are naturally small, with wavelength

_ =
ℎ

<E
=

ℎ
√

2<�
, (5.21)

where E and � are velocity and energy of electrons. At electron energies 200 keV,
we have _ ∼ pico-meter.

In scanning electron microscope, electrons elastically scatter and collecting the
scattered electrons we can form an image [59].

5.12.1 Inelastic scattering of neutrons: Phonon spectroscopy

In elastic scattering, neutrons change direction and transfer momentum to nucleus
(lattice, which is very big). The energy gained by lattice is negligible (" is huge).
But we can excite vibration modes of lattice when we transfer momentum. When
mode with momentum : ′ is excited, it has energy � (: ′), then in Fig. 5.7B, we have

: ′ = :1 − : (5.22)

� (: ′) =
ℎ2:2

1

2<0
− ℎ

2:2

2<0
(5.23)

This way we can obtain : ′, � (: ′) plot , the phonon-dispersion relation. This is
inelastic scattering of neutrons, [61].

5.13 Bremsstraulung

Transfer of momentum from electron to atom creates energy deficit, (atom is much
heavier than electron). In Frank Hertz this imbalance is paid by exciting the atom.
In Bremsstraulung [54], this is paid by free electron radiating. When energy of free
electron is in KV range, we produce X-rays with energy in this range. Bremsstraulung
stands for breaking radiation, electron decelerates and emits.

When @ momentum transfers from incident electron to the atomic electron, it can
change the atomic wavefunction

exp(8@G1) = exp(8@′-1) exp(8@′′-2),

where @′ = @ and @′′ = "
"+<@ ∼ @.

exp(8@′′-2) = cos(@′′(G1 − G2)) + 8 sin(@′′(G1 − G2)).
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3> = 〈q0 | cos(@′′(G1 − G2)) |q0〉

is the elastic moment of self transition, from ground to ground state of the atom
(atom doesn’t move). When incident atom stops and

�1 −�0 =
ℏ2@2

2<
,

we see the transition.
Transition amplitude for transfer of momentum

Ω1 =
42

+n0@2
(5.24)

where + = ;3 is volume of incident electron, where ; ∼ 10−8, thermal debroglie
wavelength.

But there is another amplitude, the radiation by free electron, whose amplitude is
Transition amplitude for transfer of momentum

Ω2 = @�>; (5.25)

where + = ;3 is volume of incident electron, where ; ∼ 10−8, thermal debroglie
wavelength. and �> is electric field of emitted photon,

Then this being a second order process, the net amplitude is

Ω =
Ω1Ω2

�1 −�0
(5.26)

where �1 −�0 is as in Eq. (5.6).
A small digression in second order process, shown in Figure 5.9. There are three

levels |1〉, |2〉 and |3〉 with energies �1, �2, �3, with �1 = �3, levels 1 and 3 are
degenerate. Ω1 and Ω2 are transition amplitudes between level 1 and 2 and level 2
and 3 respectively.

Then gives for |�1 −�2 | ≫ Ω8 , there is transition amplitude of going from |1〉 to
|3〉, given by,

M =
Ω1Ω2

�1 −�2
(5.27)

What is �> , in 5.25. If ! is length of photon, then n0
�

2
>
!3 = ℏl = �1 −�0, but it

takes ℏΩ−1 time for emission in which photon travels a distance ! = 2ℏΩ−1. From
this we can get �>.

Fig. 5.12 shows Bremsstraulung spectra, with characteristic emission frequencies.
These characteristic frequencies arise when free electron doesn’t emit rather ionizes
the atom. When electrons go back, they emit characteristic emission frequencies.

We talked about Bremsstraulung from the atom, lattice just being a big atom.



118 5 Lattices as struck by light, electrons and molecules

3

2

1

Ω Ω1 2

E E

E

1

2

1

Fig. 5.9 Fig. depicts a 3 level system with transition amplitude Ω1 and Ω2 between level 1 and 2
and level 2 and 3 respectively.

5.14 Vibronic excitations of molecules and lattices

5.14.1 Vibronic excitation of molecules with light: direct and indirect

Consider a diatomic molecule with G1, G2 as nuclear coordinates and G3 as electronic
co-ordinate. Let :8 be their wave-vectors. Define CM and relative coordinates -1 =∑
G8

3 , -2 = G3 − G1+G2
2 and -3 = G1 − G2, with relative wavevectots  8 . Transition

 2, 3 →  2. 
′
3 gives vibration energy levels, it comes about as a second order

term in the transition  2, 3 →  ′
2 

′′
3 →  2, 

′
3. Linear combinations of  3 gives

vibrational orbitals Φ3 and difference in energy Φ3 and Φ′
3 is in infra-red frequency

and infrared light will induce this transition. This is called direct transition.
Transition

Φ2Φ3 →Φ
′
2Φ

′
3 →Φ2Φ

′′
3

are induced by absorbtion and emission of optical photonthe vibration state transits
from Φ3 →Φ′′

3 by a Raman Process. This is called indirect transition.

5.14.2 Vibronic excitation of phonons with light: direct or indirect,

electron or photon

Vibronic states of crystals are special called phonons, the coordinates of atoms G8
are very localized and can be treated as classical variables. The collective excitation
phonon is a wave, �cos(:G −lC) = �cos(:;0 −lC), with � amplitude and G = ;0
the ;Cℎ coordinate. How does phonon talk to photon.



5.14 Vibronic excitations of molecules and lattices 119

50 100

Intensity

Intensity

 

 

 

 

X−ray energy/keV

X−ray energy/keV

Bremmstraulung

Characyeristic X−rays

 

Fig. 5.10 Fig. depicts Bremsstraulung spectra, with characteristic emission frequencies.

Solids are hot because of lattice vibrations, phonons. Light from sun can generate
phonons. Energy of the phonons is 1013Hz. Infrared photons carry this energy. The
phonon has energy ℏh: ∼ 10<4+ , giving : ∼ 1010/<, giving a momentum ℏ: to
phonon. This much momentum light doesn’t have. The momentum is balanced by
center of mass (CM) of the whole solid recoiling with momentum −: and energy
ℏ2:2

2" (" mass of whole solid), which is negligible because of large " . How do CM
and phonon momentum talk ? There are two ways,

Exchange Photon or Exchange electron. In first case the CM and phonon coor-
dinates exchange momnetum by a photon which is expensive as it has high energy.
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A more efficient mechanism is exchange of momentum using a conduction electron
which has lower energy, and hence this is a more efficient. Therefore conductors are
easy to heat from Sun radiation than insulators.

Ofcourse this is with infrared, but we can heat a solid with optical wavelength, we
just follow the above except absorb and emit in CM of lattice paying for the energy
deficit, a Raman like process.

Everything done with light can be done with an electron, it can loose energy to
lattice vibrations.

5.15 More waves: Surface Plasmons

Electron density can also modulate spatially, creating a wave called plasmon. The
restoring force is ofcourse coulonb repulsion between electrons and attrction by
lattice. A force of 104+ over a angstom distance fives sping constant : ∼ 102 and
mass of electron < ∼ 10−30, giving natural frequency l0 ∼ 1015−16 and h ∼ 105−6,
and we can use a optical phonon of the right frequency to create these waves.

The mechanism is the same, we can absorb the momentum of incoming phootn
on the lattice, the energy deficit is paid by exchanging a virtual photon with lattice
that creates a surface plasmon whose mometum is negated by the lattice momentum
except the energy of the plasmon is same as photon energy. Ofcourse, the plasmon
can just be created with an electron, we just have to exchange momentum between
electron and lattice.

5.16 More waves: Magnons

Ferrmomagnetic materials have all spins on lattice site salligned, but we can have
excitations where we create a Magnetization wave

"I (G) = �cos(:G−lC).

The exchange coupling between neighboring spins is∼<4+ ∼ 102−3��I (<82A>F0E4 5 A4@D4=2H) ∼
l0

The h ∼ l00 ∼ 100, the magnon velocity.

5.17 Air molecules heating the lattice: exchange forces

How does lattic get phonons in first place. The air molecules continuously beat on
it. Like an electron, the atomic collision will create a phonon. What is important is
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Fig. 5.11 Fig. depicts lattice being bombarded by air molecules.

atom is neutral so it cannot really influence another atom when they collide, except
exchange forces between electrons.

Veovity of air molecule is ∼ :) which at room temp is ∼ <4+ same as phonon
energy, and the molecule eneru can be written as ℏo: where o ∼ h( 5 >A ?ℎ>=>=) ∼
103, hence collisions can directly transfer energy and momentum to lattice.
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5.18 Coherent electrons and phonons: loaded lattice

Electron waves in hot lattice are localized and have bandwidth. This happens
due to molecular collisions. The fast molecule collides with lattice and creates
exchange photon, which can excite electron :0 → : ′0. We therefore have the
transitions |��(), :0〉 → |(!$,, :1〉 and therefore we create a superposition
|(!$, ,:0 〉+ |��() ,:1 〉√

2
, thus we have created a superposition of

q =
|:0〉 + |:1〉√

2
,

in general |:0〉 broadened to 1√
#

∑
# |:8〉 , which means we have electron braodened

in : space and localized in real space. We say lattice is temperature loaded and
classical.

5.19 Light from the stars: Exchange Collisions

Light from stars come in all frequencies, radi, microwaves, infrared, visible, ul-
traviolet, xray. Everytime there is a atomic collision, which exchanges momentum
between atoms with an exchange photon the atoms are in excited state and fall back
emitting radiation. Temperature of collision determines how excited the atom is and
its subsequent emitted wavelength.

Our main contribution in this article is we are detailed at places, we find literature
succinct.

Problems

1. In compton scattering, X-ray at wavelength of 1�◦, scatters by 30◦ to a new
wavelength, which is ?

2. In electron proton scattering, electroms at energy of 10 MeV scatters by 30◦ to a
new energy, which is ?

3. In photoelectric eefect if a metal has work function of 34+ , what is the maximum
wavelength photon that will eject electrons at 106 m/s.

4. In phonon spectroscopy using neutrons, the temperature of neutron drops by 10 
after scattering, what is the frequency of the phonon excited.
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Fig. 5.12 Fig. depicts atomic collision in stars.

5. What is the binding energy of a Cooper pair, for typical lattice paramters in the
book.





Chapter 6

Scattering in Quantum Electrodynamics

6.1 Introduction

We first develop an analogy between the three level atomic system so calledΛ system
and scattering processes in quantum electrodynamics (QED) [8, 9, 10, 13]. In a Λ

system as shown in Fig. 6.1 we have two ground state levels |1〉 and |3〉 at energy
�1 and excited level |2〉 at energy �2. The transition from |1〉 to |2〉 has strength Ω1

and transition from |2〉 to |3〉 has strength Ω2. In the interaction frame of natural
Hamiltonian of the system, we get a second order term connecting level |1〉 to |3〉 with
strength Ω1Ω2

(�1−�2) . This term creates an effective coupling between ground state levels
and drives transition from |1〉 to |3〉. Scattering processes in QED can be modelled
like this. Feynman amplitudes are calculation of second order term M =

Ω1Ω2
(�1−�2) .

3

2

1

Ω Ω1 2

E E

E

1

2

1

Fig. 6.1 Above Fig. shows a three level Λ system, with two ground state levels |1〉 and |3〉 and an
excited level |2〉.

125
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The state of the three level system evolves according to the Schröedinger equation

¤k =
−8
ℏ


�1 Ω∗

1 0
Ω1 �2 Ω∗

2
0 Ω2 �1


k. (6.1)

We proceed into the interaction frame of the natural Hamiltonian (system energies)
by transformation

q = exp( 8
ℏ


�1 0 0
0 �2 0
0 0 �1


)k. (6.2)

This gives for Δ� = �2 −�1,

¤q =
−8
ℏ


0 exp(− 8

ℏ
Δ� C)Ω∗

1 0
exp( 8

ℏ
Δ� C)Ω1 0 exp( 8

ℏ
Δ� C)Ω∗

2
0 exp(− 8

ℏ
Δ� C)Ω2 0

︸                                                                  ︷︷                                                                  ︸
� (C)

q. (6.3)

� (C) is periodic with period ΔC = 2c
Δ�

. After ΔC, the system evolution is

q(ΔC) = (� +
∫

ΔC

0
� (f)3f +

∫
ΔC

0

∫ f1

0
� (f1)� (f2)3f23f1 + . . . )q(0). (6.4)

The first integral averages to zero, while the second integral

∫
ΔC

0

∫ f1

0
� (f1)� (f2)3f23f1 =

1

2

∫
ΔC

0

∫ f1

0
[� (f1), � (f2)]3f23f1. (6.5)

Evaluating it explicitly, we get for our system that second order integral is

−8ΔC
ℏ



0
Ω∗

1Ω
∗
2

�1−�2

0 0 0
Ω1Ω2

�1 −�2︸   ︷︷   ︸
M

0 0


. (6.6)

Thus we have created an effective Hamiltonian


0

Ω∗
1Ω

∗
2

�1−�2

0 0 0
Ω1Ω2
�1−�2

0 0


, (6.7)

which couples level |1〉 and |3〉 and drives transition between them at rate M =
Ω1Ω2

(�1−�2) .
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6.2 Coulomb Potential and Møller Scattering

Fig. 6.2 Fig. depicts møller scattering. Two electrons with momentum ? and −?, scatter by
exchange of photon to ? +@ and −(? +@) .

The heart of interactions in high energy physics is the beautiful electron electron
scattering of Møller. The coulomb interaction between electrons. Fig. 6.2 shows
two electrons with momentum ? and −? scatter by exchange of photon say in I
direction to ? + @ and −(? + @). The scattering amplitude is well known, given as
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Feynman propagator M =
(4ℏ2)2

n0+

D̄ (?+@)W`D (?) D̄ (−(?+@))W`D (−?)
@2 , [9, 10, 63], where

+ is the volume of the scattering electrons, 4 elementary charge and n0 permitivity
of vacuum. But this needs to be taken with grain of salt. Since we exchange photon
momentum in I direction, we have two photon polarization G, H and hence the true
scattering amplitude should be M1 =

(4ℏ2)2

n0+

D̄(? + @)WGD(?) D̄(−(? + @))WGD(−?) + D̄(? + @)WHD(?) D̄(−(? + @))WHD(−?)
@2

.

But when electrons are non-relativistic, M1 ∼ 0. This is disturbing, how will we ever

get the coulomb potential, where M ∼ (4ℏ2)2

n0+ @2 . Where is the problem ? The problem

is with the EM gauge used in Dirac equation.
For a plane wave along I direction, with electric field �G sin(:I−lC), the Lorentz

gauge is (�0, �G , �H , �I) = �G

l
cos(:I−lC)(0,1,0,0). But this gauge is not suited

for calculating optical transitions, because we don’t recover the Rabi frequency @�G3
(3 electric dipole moment). What we find is something orders of magnitude smaller.
Nor is it suitable for calculating electron electron scattering because we don’t recover
Coulomb potential. What we find is something orders of magnitude smaller. Instead,
we work with � · G gauge

(�0, �G , �H , �I) =
−�G

2
(G sin(:I−lC),−cos(:I−lC)

l
,0,

G

2
sin(:I−lC))

(2 light velocity) to find everything correct. What we get is a new Feynman propa-
gator. Lets build up to it.

In Møller scattering, electrons with momentum ?1 and @1 exchange photon with
momentum : and scatter to new momentum states ?2 and @2. Observe the virtual
particle four momentum is : . The Feynman diagram for the process is in 6.3. There
are two three level systems associated with this process. Let % = ?1 + @1.

In figure 6.3A, we have the first three level system where the electron with
momentum ?1 is annihilated , a electron of momentum ?2 is created and a photon
of momentum @ = ?1 − ?2 is created. Subsequently, the electron with momentum @1

is annihilated , a electron of momentum @2 is created and photon of momentum : is
annihilated. The amplitude for this process is

Ω1 =
�√
2�@

D̄(?2)Wan∗a (@)D(?1), (6.8)

Ω2 =
�√
2�@

D̄(@2)Wana (@)D(@1), (6.9)

�1 −�2 = �?1 −�?2 −�@ = @0 −�@ , (6.10)

M1 =
Ω1Ω2

(�1 −�2)
. (6.11)
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Fig. 6.3 Fig. shows the Feynman diagram for the Møller scattering, and its corresponding three
level system. The electron with momentum ?1 emits (absorbs) a photon and scatters to momentum
?2, the photon is absorbed (emitted) by electron with momentum @1 which scatters to momentum
@2.

Similarly we have another three level system, fig 6.3B in which @1 emits photon
with momentum −: and ?1 absorbs it. This gives

Ω1 =
�√
2�@

D̄(@2)Wana (@)D(@1), (6.12)

Ω2 =
�√
2�@

D̄(?2)Wan∗a (@)D(?1), (6.13)

�1 −�2 = �@1 −�@2 −�@ = −(@0 +�@), (6.14)

M2 =
Ω1Ω2

(�1 −�2)
, (6.15)

where we used conservation of energy �?2 −�?1 = �@1 −�@2 . When we add the two
amplitudes, we get for @ = ?1 − ?2 and @2 = @`@

`, the total amplitude is
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Ω1Ω2

@2
= �2 D̄(@2)Wana (@)D(@1) D̄(?2)Wan∗a (@)D(?1)

@2
(6.16)

We can now sum over photon polarization n say along G and H axis to get

M =MG +MH =
(ℏ2)2

n0+

D̄(@2)WGD(@1) D̄(?2)WGD(?1) + D̄(@2)WHD(@1)D̄(?2)WHD(?1)
@2

(6.17)

6.3 Scattering with K · x term, the negative sign of amplitude

Now consider Moller scattering with G term
When electron changes momentum by @ (say I direction), in Lorentz gauge,

photon of momentum −@ is emitted. In E · G gauge, the emitted photon can be more
general with momentum −@ + : , where : = =Δ (Δ = 2c, ; length of electron packet)
in G or H direction, then the amplitude M of scattering a momentum exchange @ is

M0 = �D
†
4(?4)D3 (?2) D†2 (?3)D1(?1) (6.18)

Adding two directions gives

� = 2
(4ℏ2)2

n+

1

4

∑
=

1

=2

1

|@ |2
∼ (4ℏ2)2

n+ |@ |2
, (6.19)

We of course have (from �I) the term

MI = �D
†
4(?4)WID3(?2) D†2(?3)WID1 (?1) (6.20)

The total amplitude including contribution from �G , �H in gauge

M =
1

4|@ |2
{D†4(?4)W`D3 (?2) D†2 (?3)W`D1(?1) − (3M0 +5MI)}. (6.21)

The first term is the usual Feynman propagator, scaled by 1
4 , but second term is

new and gives big contribution to Coulomb potential.
That’s it, we have a new propagator. In its full glory it reads

M =
(4ℏ2)2

4n0+@2
{D†4(?4)W`D3 (?2) D†2(?3)W`D1(?1) −

(
3M0 +5M@

)
}. (6.22)

What is remarkable we have been able to get −M0, which is difficult to explain in
Feynman Propagator. However the propagator is not Lorentz invariant, we say our
electron-phonon coupling is scaled such that the true Propagator is
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Fig. 6.4 Fig. depicts møller scattering. Two electrons with momentum ?1 and ?2 scatter by
exchange of photon to ?3 and ?4.

M =
(4ℏ2)2

( �1+�2
2 )2n0+@2

{u†
4(?4)W`u3 (?2) u

†
2 (?3)W`u1 (?1)}. (6.23)

Now this Propagator is relativistically invariant, when we boost from CM frame to
other frame (OF) , then M�" =

M$�

W
. And defining the relativistic discount factor

[ =
√
�1�2�3�4

( �1+�2
2 )2

, we can write the propagator as M = [M� where M� is Feynmann

Propagator,
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M� =
(4ℏ2)2

n0+@2
{D†4(?4)W`D3 (?2) D†2 (?3)W`D1(?1)}. (6.24)

It is this discount factor that plays a important role in our treatment of QED. We
will always calculate M� and then apply the discount factor [. In CM, [ = 1 amd
M�" =M� . In CM,

M@ =
42

n0+

1

|@ |2
(6.25)

This gives a scattering potential

+ =

∑
@

M@ exp(−8@(A1 − A2)) =
42

(2c)3n0

∫
33@

exp(−8: (A1 − A2))
|@ |2

. (6.26)

For A = A1 − A2, we have,

∫
33@

exp(−8@(A1 − A2))
|@ |2

= 2c

∫
3 |@ |

∫ c

0
exp(−8 |@ | |A | cos\) sin\3\

=
4c

|A |

∫ ∞

0

sin |@ | |A |
|@ | 3 |@ | = 2c2

|A |

+ =

∑
:

M@ exp(−8@(A1 − A2)) =
42

4cn0 |A |
(6.27)

The familiar Coulomb potential.

6.4 Bhaba scattering

In quantum electrodynamics, Bhabha scattering is the electron-positron scattering
process:

4+4− → 4+4− (6.28)

Bhabha scattering is named after the Indian physicist Homi J. Bhabha. The Bhabha
scattering rate is used as a luminosity monitor in electron-positron colliders.

How do we understand scattering of an electron and positron.
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Fig. 6.5 Fig. depicts Bhaba scattering. A is annhilation and D scattering. B and C are three level
processes with A and E, F with D

6.4.1 Annihilation

See 6.6. An photon of momentum ? + : comes and strikes filled sea of negative
energy electrons and ejects a negative energy electron of state : and momentum −:
and creates a electron of momentum ? and leaves behind missing momentum −: and
missing charge −4 or positron (hole) with momentum : and charge 4 . The process is
like photoelectric effect where a valence electron is ejected to a free electron. If we
read this processs reverse then we have electron-positron pair of momentum ? and
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Fig. 6.6 Above Fig. shows how a photon ejects a negative energy electron and creates a electron
and positron (hole) pair.

: annihilate to form a photon of momentum ? + : . Denoting electron and positron
helicity by B, B′ and C, C ′ etc., the transition amplitude for this process is

Ω1 =
�√

2�?+:
ĒC (:)n∗`W`DB (?) (6.29)

The photon resulting from annihilation can now do ejection to create electron-
positron or electron-hole pair with momentum ?′ and : ′ respectively with transition
amplitude

Ω2 =
�√

2�?+:
D̄B′ (?′)n`W`EC′ (: ′) (6.30)

All this is depicted as a three level process in fig. 6.5B. The associated feynaman
diagram is in fig. 6.5A. The energy level difference between the ground and excited
states

Δ�0 = �1 −�2 = �? +�: −�?+: . (6.31)

where �? , �: and �?+: are electron, positron and photon energies.
There is another three level process in fig. 6.5C associated with Feynman diagram

in fig. is 6.5A. In this process, the negative energy electron just emits a photon with
momentum −(?′ + : ′) = −(? + :) and a electron and positron with momentum ?′

and : ′. The amplitude of this process isΩ2 above. The emitted photon then combines
with incoming electron and fills the incoming hole (vacancy) with amplitude same
as Ω1. The energy level difference between the ground and excited states

Δ� ′
0 = �1 −�2 = −(�? +�: +�?+: ). (6.32)

where �? , �: and �?+: are electron, positron and photon energies. Then the ampli-
tude M1 of the Feynman diagram in fig. 6.5A is sum of three level process in fig.
6.5B and three level process in fig. 6.5C. Then
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M0 = Ω1Ω2

(
1

�? +�: −�?+:
− 1

�? +�: +�?+:

)
(6.33)

= Ω1Ω2
2�?+@

(�? +�: )2 −�2
?+:

(6.34)

Now as in previous section on Moeller scattering, we have,

M� = �2 ĒC (:)W`DB (?) D̄B′ (?′)W`EC′ (: ′)
(? + :)2

. (6.35)

6.4.2 Scattering

There is another picture of positron suitable for scattering which is just electron
evolving backward, which makes positive energy states as E(:) instead of D(:).

There is one more Feynman diagram in fig. 6.5D that contributes to this scattering
process. There are also two three level processes fig. 6.5E and fig. 6.5F that contribute
to this diagram. In fig. 6.5E a electron ? scatters to ?′ giving a photon of momentum
@ = ?− ?′. This happens with amplitude

Ω3 =
�√
2�@

D̄B′ (?′)n∗aWaDB (?) (6.36)

and this photon then scatters positron. This happens with amplitude

Ω4 =
�√
2�@

� ĒC′ (: ′)naWaEC (:) (6.37)

The difference in energies of ground and excited state is

Δ�1 = �1 −�2 = �? −�?′ −�?−?′ . (6.38)

Positron can emit first and electron can absorb a negative momentum photon.
This happens with amplitude

Ω3 =
�√
2�@

ĒC′ (: ′)n∗aWaEC (:) (6.39)

This happens with amplitude

Ω4 =
�√
2�@

D̄B′ (?′)naWaDB (?) (6.40)

Δ�1 = �1 −�2 = �: −�:′ −�:−:′ . (6.41)
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Then the amplitude M2 of the Feynman diagram in fig. 6.5D is sum of three level
process in fig. 6.5E and three level process in fig. 6.5F. Then

MB = Ω3Ω4

(
1

�? −�?′ −�?−?′
+ 1

�: −�:′ −�:−:′

)
(6.42)

= Ω3Ω4

(
1

�? −�?′ −�?−?′
− 1

�? −�?′ +�?−?′

)
(6.43)

= Ω3Ω4
2�?−?′

(�? −�?′)2 −�2
?−?′

(6.44)

If we denote four momentum @ = ?− ?′, and @2 = @`@
`. Now as in previous section

on Moeller scattering,

M� = −�2 D̄B′ (?′)WaDB (?) ĒC′ (: ′)WaEC (:)
(?− ?′)2

. (6.45)

The total amplitude then is

M� =�2

(
− D̄B

′ (?′)WaDB (?) ĒC′ (: ′)WaEC (:)
(?− ?′)2

+
ĒC (:)W`DB (?) D̄B′ (?′)W`EC′ (: ′)

(? + :)2

)
=�2N .

(6.46)
Of-course, M = [M� , the discount factor.

6.4.3 Cross-section

Fig. (6.7)A shows the schematic of electron positron each of volume+ = ;3 colliding
head on. We can ask what should be the smallest density or the cross-section area
� = ;2 for the two to scatter at an angle \ with probability 1, when they collide. This
is called differential cross-section. We have calculated M the scattering amplitude,
in center of mass frame. Let M(?8) denote this as function of outgoing momenta
?8 . Then by Fermi Golden rule the probability of scattering % is given by

3%

3C
=

∑
8 |M(?8) |2
ℏΔ�

(6.47)

where Δ� is the energy width of the tessellation of the momentum space volume
as shown in Fig. (6.7)C. Note |M(?8) |2 carries with it a factor �4 which has in it
(ℏ2)4

+ 2 . Let 1
+

=
33:
(2c)3 or (ℏ2)3

+
=

33 ?

(2c)3 . With � =
√
?2 +<2 we get Δ� =

?Δ?

�
. Then

converting sum in 6.47 to integral we get

3%

3C
=

442

n2
0 ;

3 (2c)3

|? |2Δ?
∫
|N (?) |23Ω
Δ�

(6.48)
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Fig. 6.7 Fig. shows the electron-positron colliding, and scattering to a different angle.

Then it takes ΔC = ;
2

for the packets to cross each other and it this time we want

3%

3C

;

2
= 1 (6.49)

or we get using Δ�

f = ;2 =
44

n2
0 (2c)3

�2
∫

|N (?) |23Ω (6.50)

or

3f

3Ω
=

44�2

n2
0 (2c)3

|N (?) |2 (6.51)

This is called differential cross-section.
Now we calculate differential cross section by evaluating

|N |2 = |N0 +NB |2 (6.52)

Infact we evaluate unpolarized cross-section which is to say we average over all
possible helicities to get

∑
B,B′,C ,C′

|N |2 =

∑
B,B′,C ,C′

|N0 +NB |2

=

∑
B,B′,C ,C′

|N0 |2 +
∑

B,B′,C ,C′
|NB |2 +

∑
B,B′,C ,C′

N0N∗
B +N∗

0NB
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6.4.4 Relativistic limit

Lets evaluate the unpolarized cross-section

1

4

∑
B,B′,C ,C′

|NB |2. (6.53)

Recall

NB = − D̄B
′ (?′)WaDB (?) ĒC (:)WaEC′ (: ′)

(?− ?′)2
(6.54)

Let electron and positron approach each other along I and −I direction respec-
tively . Under relativistic limit helicity 1 electron and positron are

D(?) =
[
1
0

]
⊗

[
1
0

]
; E(:) =

[
0
1

]
⊗

[
0
1

]
;

D(?′) =
[
1
0

]
⊗

[
cos \2
sin \

2

]
; E(: ′) =

[
0
1

]
⊗

[
−sin \

2
cos \2

]
;

Under relativistic limit helicity −1 electron and positron are

D(?) =
[
0
1

]
⊗

[
0
1

]
; E(:) =

[
1
0

]
⊗

[
1
0

]
;

D(?′) =
[
0
1

]
⊗

[
−sin \

2
cos \2

]
; E(: ′) =

[
1
0

]
⊗

[
cos \2
sin \

2

]
;

Now observe in 6.54, we get zero if we switch either electron and positron helicity.
Furthermore under relativistic limit we get

(?− ?′)2 ∼ −2?.?′ ∼ −2�2 (1− cos\). (6.55)

Then substituting all helicities in Eq. 6.53, we get

1

4

∑
B,B′,C ,C′

|NB |2 =
1

8�4
.

Now lets evaluate

1

4

∑
B,B′,C ,C′

|N0 |2. (6.56)

Recall

N0 =
ĒC (:)W`DB (?) D̄B′ (?′)W`EC′ (: ′)

(? + :)2
(6.57)
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Now observe under relativistic limit, in 6.57, we get zero if incoming or outgoing
pair has same helicity. Then substituting all helicities in Eq. 6.56, we get

1

4

∑
B,B′,C ,C′

|N0 |2 =
(1− cos\)2

4�4
.

Finally evaluating

1

4

∑
B,B′,C ,C′

N0N∗
B +N∗

0NB = − (1− cos\)
4�4

. (6.58)

where we have only two terms, incoming or outgoing pair has same helicity and
helicity cannot switch from incoming to outgoing. Adding everything we get

1

4

∑
B,B′,C ,C′

|N |2 = (1− cos\)2 + cos2 \

8�4
. (6.59)

For B = �2, we get

B
3f

3Ω
=
44

n2
0

(1− cos\)2 + cos2 \

32 c2
(6.60)

We can write the cross-section as 3f
3Ω

= ;2 5 (\), where ; = Uℏ2
�

. This is a very
useful form. The expression

; =
Uℏ2

�

is very aesthetically appealing. At � = �4+ , we have cross section ;2 ∼ 10−8 barn,
where 1 barn is 10−28 m2.

6.5 Muon scattering

The electron-positron can annihilate to form muon-anti-muon. We can work out the
cross section as 3f

3Ω
= ;2 5 (\), where

; =
Uℏ2

�

√
1−

(<`22)2

�2
.

There is no scattering term in this collision. At � = �4+ , we have cross section
;2 ∼ 10−8 barn.
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6.6 Compton scattering

Compton scattering is the inelastic scattering of a photon with an electrically charged
particle, first discovered in 1923 by Arthur Compton [14]. This scattering process
is of particular historical importance as classical electromagnetism is insufficient to
describe the process; a successful description requires us to take into account the
particle-like properties of light. Furthermore, the Compton scattering of an electron
and a photon is a process that can be described to a high level of precision by QED.

In Compton scattering an electron and photon with momentum ? and : re-
spectively scatter into momentum ?′ and : ′ respectively. We want to calculate the
amplitude for this scattering.

First note with ? ∼ 0, at rest, and : say along G, (see Fig. 6.10), we have the

energy of the scattered electron � =
?′2

2< = ℏ2 (:−:′ cos \)2+:′2 sin2 \

2< , where \ is angle of

scattered photon with the G axis. But � = ℏ2(: − : ′) and we get for _ = 2c
:

, we have

_′−_ = ℎ(1− cos\)
<2

There are two Feynman diagrams that show mechanism of Compton scattering.
They are shown in Fig. 6.8. We can associate each of these with two three level
diagrams as shown in Fig. 6.9.

Consider Feynman diagram A in Fig. 6.8, where a electron of momentum ? and
photon of momentum : are annihilated to give an electron of momentum @ = ? + :
which is then annihilated to create electron and photon with momentum ?′ and : ′.
This correspond to three level system Fig. 6.9 A. The scattering amplitude for this
system is as follows

Ω1 =
�

√
2�:

D̄B (? + :)Wana (:)D(?), (6.61)

Ω2 =
�

√
2�:′

D̄(?′)W`n∗` (: ′)DB (? + :), (6.62)

�1 −�2 = @0 −�@ = �? +�: −�?+: , (6.63)

MB
10 =

Ω1Ω2

�1 −�2
. (6.64)

where �? =
√
(|? |2)2 +m2 and �: = |: |2. Summing over electron polarization we

get

M10 =
�2

2
√
�:�:′

D̄(?′)WDn∗` (: ′)
∑
B DB (? + :)D̄B (? + :)
�@ (@0 −�@)

Wana (:)D(?).(6.65)

There is an associated three level diagram with this as shown in 6.9 B, where we
first create electron and photon with momentum ?′ and : ′ respectively alongside a



6.6 Compton scattering 141

p

k

p’

k’

p+k

p

k’

p’

k

p-k’

A

B

Fig. 6.8 Fig. A shows Fig. B show the two mechanisms for Compton scattering.

positron with momentum @ = −(?′+ : ′) = −(?+ :) and then annihilate electron and
photon with momentum ? and : alongside a positron with momentum −(? + :).

The scattering amplitude for this system is as follows

Ω1 =
�

√
2�:′

D̄(?′)W`n∗` (: ′)DB (? + :), (6.66)

Ω2 =
�

√
2�:

D̄B (? + :)Wana (:)D(?), (6.67)

�1 −�2 = −(@0 +�@) = −�?+: − (�? +�: ), (6.68)

MB
11 =

Ω1Ω2

�1 −�2
. (6.69)
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Fig. 6.9 Fig. shows three level systems that go with Feynman diagrams in Fig. (6.8).

Summing over electron polarization we get

M11 = − �2

2
√
�:�:′

D̄(?′)W`n∗` (: ′)
∑
B DB (? + :)D̄B (? + :)

@0 +�@
Wana (:)D(?).(6.70)

Adding the two amplitudes M1 =M10 +M11 , we get

M1 =
�2

√
�:�:′

D̄(?′)W`n∗` (: ′)
∑
B DB (? + :)D̄B (? + :)Wana (:)D(?)

@2 −<2
0

,

=
�2

2
√
�:�:′

D̄(?′)W`n∗` (: ′)(/@ +<0)Wana (:)D(?)
@2 −<2

0

. (6.71)

We made use of identity
∑
B DB (@)D̄B (@) = /@+<0

2�@
, where /@ = @ 9W 9 (2 is implicit). We

assume we are in a high energy center of mass frame. Which implies �? ∼ �: and
we can write

Now consider Feynman diagram B in Fig. 6.8, where a electron of momentum ? is
annihilated and photon of momentum : ′ is created to give an electron of momentum
@ = ?− : ′ which is then annihilated along-with the photon of momentum : to create
electron with momentum ?′. This correspond to three level system Fig. 6.9 C. The
scattering amplitude for this system is as follows
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Ω1 =
�

√
2�:′

D̄B (?− : ′)W`n∗` (: ′)D(?), (6.72)

Ω2 =
�

√
2�:

D̄(?′)Wana (:)DB (?− : ′), (6.73)

�1 −�2 = @0 −�@ = �? −�?−:′ −�:′ , (6.74)

MB
20 =

Ω1Ω2

�1 −�2
. (6.75)

Summing over electron polarization we get

M20 =
�2

2
√
�:�:′

D̄(?′)Wana (:)
∑
B DB (?− : ′)D̄B (?− : ′)

@0 −�@
W`n∗` (: ′)D(?).(6.76)

There is an associated three level diagram with this as shown in 6.9 D, where
we first create electron and annihilate photon with momentum ?′ and : respectively
alongside creating a positron with momentum −(? − : ′) = −(?′− :) and then an-
nihilate electron and create photon with momentum ? and : ′ alongside annihilate
positron with momentum −(?− : ′).

The scattering amplitude for this system is as follows

Ω1 =
�

√
2�:′

D̄(?′)Wana (:)DB (?′− :), (6.77)

Ω2 =
�

√
2�:

D̄B (?− : ′)W`n∗` (: ′)D(?), (6.78)

�1 −�2 = −(@0 +�@) = −�?−:′ −�? +�:′ , (6.79)

MB
21 =

Ω1Ω2

�1 −�2
. (6.80)

Summing over electron polarization we get

M21 = − �2

2
√
�:�:′

D̄(?′)Wana (:)
∑
B DB (?− : ′)D̄B (?− : ′)

@0 +�@
W`n∗` (: ′)D(?).(6.81)

Adding the two amplitudes M2 =M20 +M21 , we get

M2 =
�2

√
�:�:′

D̄(?′)Wana (:)
∑
B DB (?− : ′)D̄B (?− : ′)

@2 −<2
0

W`n∗` (: ′)D(?),

=
�2

2
√
�:�:′

D̄(?′)Wana (:)(/@ +<0)W`n∗` (: ′)D(?)
@2 −<2

0

. (6.82)

M� =M1 +M2 (6.83)
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Of-course, M = [M� , the discount factor.

6.6.1 Cross-section

We have to calculate |M|2 to find cross-section. Before we do this we can just say
that we work in regime (as in original Compton’s experiment) where photon energy
(10’s KeV, wavelength �◦ ) is smaller than rest energy of the electron (Mev, Compton
wavelength, .01 �◦), we have the cross-section of the form 3f

3Ω
= ;2 5 (\), where

; =
Uℏ2

�
.

Calculating 5 (\) is just an exercise where you just have to roll your sleeves. At
� = 10:4+ , we have cross-section ∼ 100 barn.
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Fig. 6.10 Above Fig. A shows Compton scattering in lab frame. Fig. B shows Compton scattering
in center of mass frame.

6.7 Vacuum Polarization

Quantum electrodynamics (QED) is one of the most successful theories of modern
physics era [9, 10, 63, 13]. In QED, electrons interact by electromagnetic coupling to
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vacuum. Electron emits photon which is absorbed by the second electron leading to
momentum exchange between electrons which we call electric force. The emission
and absorption changes the energy of the two electrons by what we call the electric
potential energy. In calculating this energy, which is a second order calculation, we
make use of the energy of photon �: = ℏ2: where : is its momentum. But this
emitted photon can further interact with the vacuum by creating electron positron
pairs, which annihilate to give the photon back. This again has its own energy which
modifies the energy of the photon �: to � ′

:
. we can calculate this modification or

correction and we find this will change the electromagnetic potential between two
electrons. We may think of this as simply changing n0 the vacuum permitivity and
this is called vacuum polarization, very much like light propagating in a medium
polarizes it and changes n0 and slows down. On another note, an electron can emit
and absorb a photon and the process modifies the rest energy of the electron <22 to
<′22 a process we call mass correction.

But there is a problem in QED. When we calculate these corrections, we find
them divergent. There is a huge body of work in field of QED, that tries to tame
these infinities, a process we call renormalization [13]. But, where is the problem ?
The problem is when we calculate the modification of photon energy we collide it
with a sea electron, but the collision is not in center of mass frame , to get the right
amplitude we have to use the correct discount factor [ and then we find our answers
are finite.

Electron 1 emits photon with momentum : and energy �: = ℏ2: , which is ab-
sorbed by electron 2. But this emitted photon can further interact with the vacuum by
creating electron positron pairs, which annihilate to give the photon back. This again
has its own energy which modifies the energy of the photon �: to � ′

:
. we can calcu-

late this modification or correction and we find this will change the electromagnetic
potential between two electrons.

Fig. 6.11 Fig. depicts vacuum polarization. Emitted photon, generates electron-positron pair which
recombine to give the photon back.
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Creation of electron positron pair is tantamount to Compton scattering, the photon
: collides with negative energy, sea, electron with momentum ? and energy −�?
and creates a positive energy electron with momentum ?′ = ? + : and positron with
momentum −?. The name of the game is to sum the amplitude of the process for
large values of ?.

  

    

k
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k+p
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p 2

q
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Fig. 6.12 Fig. A shows Feynman diagram for vacuum polarization.

M =
(4ℏ2)2

n0+

�?′ +�?
�:

(
Ē(−?) W`D(?′)D̄(?′)W` E(−?)

) 1

(�?′ +�?)2 −�2
:

(6.84)

Simplify by : ∼ 0 and ? ∼ ?′, then two possibilities happen, one when spin of
electron and positron are alligned, then in Eq. (6.84), M ∼ 0 , second possiility when

they are antialligned, then for large ?, we have one as

(
1
0

)
⊗ ↑ and other

(
0
1

)
⊗ ↓ and

again in Eq. (6.84), M ∼ 0. We can show spinor part of Eq. (6.84) goes as ∼ 1
|? |2 .

Now taking other factors into acount and the discount factor, [ ∼ 1
|? | we have

M ∼ 1

�4
?

=
1

|? |4
,

Summing over |? | we get the Harmonic sum
∫

1
|? |2 3?, which nicely converges.

6.8 Electron self energy

In last section, we talked about vacuum polarization, where a photon splits into
an electron-positron pair and recombines. In this section, we discuss another QED
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process, the electron self energy. Hereby, an electron of momentum ? emits a photon
and then reabsorbs it. This is shown in Fig. 6.13A. This process can be represented
by two level diagrams as in Fig. 6.13B. In the first one, we have an electron with
momentum ? emit an photon with momentum : and subsequently reabsorb it. In
second one, we have creation of a positron, electron and photon with momentum
−?, ?− : and : respectively and their subsequent annihilation.

p p−k p

k

A B

p

k, p−k

p

 

 

1

2

1

2

Ω Ω

p−k, k, −p

Fig. 6.13 Fig. A shows corrections to electron energy, where an electron emits and absorbs an
photon. Fig. B shows two level diagrams for this process.

Electron emits photon, changes momentum ?′ = ? − : and reabsorbs photon to
get to its initial state. The name of the game is to sum the amplitude of the process
for large values of : .

M =
(ℏ2)2

n0+

�?′ +�:
�:

D̄(?)W`D(?′) D(?′)W` D(?)
(�: +� ′

?)2 −�2
?

(6.85)

Simplify, choosing ? ∼ 0 and ?′ ∼ −: , since ? non-relativistic its spin can be chosen
aligned with ?′ and then for large : the spinor part of 6.85 ∼ 1

|: | and with discount

[ ∼ 1
|: | , and the whole M ∼ 1

|: |4 , Summing over |: | we get the Harmonic sum∫
1

|: |2 3: , which nicely converges.

The self energy process may be thought of as a collision between electron and
negative energy photon in opposite direction, justifying use of [.

6.9 Vertex Corrections

Consider the Feynman diagram in Fig. 6.14A. It shows moller scattering of incoming
electron with momentum ?1 and a heavy particle with momentum A1. Incoming
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electron emits a photon with momentum : that recombines with outgoing electron
with momentum ?2. Fig. B shows a equivalent five level system. The incoming
particles with momentum ?1, A1 are at level 1. Emission of a photon with momentum
: transits to level 2. Level 2,3,4 represent the Moller scattering of electron and
particle with momentum ?1 − : and A1 to momentum ?2 − : and A2 and finally the
emitted photon : is reabsorbed and we get to level 5 with outgoing particles with
momentum ?2, A2.

p
1 − k

p
1 − k

p −k
2

p −k
2p

1

p
2

q

k
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q
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r
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Fig. 6.14 Fig. A shows moller scattering of incoming electron with momentum ?1 and a heavy
particle with momentum ?2. Incoming electron emits a photon with momentum : that recombines
with outgoing electron with momentum ?2 − :. Fig. B shows a equivalent five level system. The
incoming particles with momentum ?1, A1 are at level 1, Emission of a photon with momentum :

transits to level 2. Level 2, 3, 4 represent the Moller scattering and finally the emitted photon : is
reabsorbed and we get to level 5.

Lets calculate the scattering amplitude of ?1, A1 to ?2, A2 and in the process
calculate the new transition amplitude of scattering from ?1 to ?2. This modification
of amplitude of scattering from ?1 to ?2 as compared to one studied in section 6.2
is called the Vertex correction.

Observe under non-relativistic limit

�12 = �1 −�2 = �?1 − (�?1−: +�: ) ∼ �?2 − (�?2−: +�: ) = �45 (6.86)

Then the transition amplitude from level 1 to level 5 is a third order term and simply
(see the end of the section)



6.9 Vertex Corrections 149

M� =
Ω1Ω2Ω3

�2
12

, (6.87)

where Ω8 are as in Fig. 6.14B.

M =
Ω1Ω2Ω3

(�?1−: +�: )2 −�2
?1

�?1−: +�: +�?1

�?1−: +�: −�?1

, (6.88)

where

Ω1 =
�

√
2�:

D̄(?1 − :)Wan∗a (:)D(?1), (6.89)

Ω2 ∝ �2
D̄(A2)W`n` (@)D(A1) D̄(?2 − :)W`n∗` (@)D(?1 − :)

@2
, (6.90)

Ω3 =
�

√
2�:

D̄(?2)Wan (:)D(?2 − :). (6.91)

For large : , we have using discount [ ∼ 1
|: | , we get M =M�[ ∼ 1

|: |4 , and hence

Summing over |: | we get the Harmonic sum
∫

1
|: |2 3: , which nicely converges.

We end the section by sketching the proof for Eq. 6.87. The state of the four level
system (level 1,2,4,5 in Fig. 6.14B) evolves according to the Schröedinger equation

¤k =
−8
ℏ



�1 Ω∗
1 0 0

Ω1 �2 Ω∗
2 0

0 Ω2 �2 Ω∗
3

0 0 Ω3 �1


k. (6.92)

We proceed into the interaction frame of the natural Hamiltonian (system energies)
by transformation

q = exp( 8 C
ℏ



�1 0 0 0
0 �2 0 0
0 0 �2 0
0 0 0 �1


)k. (6.93)

This gives for �12 = �2 −�1,

¤q =
−8
ℏ



0 exp(− 8
ℏ
�12 C)Ω∗

1 0 0
exp( 8

ℏ
�12 C)Ω1 0 Ω∗

2 0
0 Ω2 0 exp( 8

ℏ
�12 C)Ω∗

3
0 0 exp( −8

ℏ
�12 C)Ω3 0

︸                                                                                          ︷︷                                                                                          ︸
� (C)

q.

(6.94)
� (C) is periodic with period ΔC = 2c

�12
. After ΔC, the system evolution is q(ΔC) =
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(�+
∫

ΔC

0
� (f)3f+

∫
ΔC

0

∫ f1

0
� (f1)� (f2)3f23f1+

∫
ΔC

0

∫ f1

0

∫ f2

0
� (f1)� (f2)� (f3)3f33f23f1 . . . )q(0).

(6.95)
The first integral averages to zero, while the second integral doesn’t give transition

between 1 and 4. The third order does with a contribution

∫
ΔC

0
Ω1 exp( 8

ℏ
�12f1)

∫ f1

0
Ω2

∫ f2

0
Ω3 exp( −8

ℏ
�12 f3)3f33f23f1 = 2ΔC

Ω1Ω2Ω3

�2
12

.

6.10 Lamb shift

This vertex correction accounts for slight energy shift ∼ 1 GHz between 2S 1
2

and

2P 1
2

energy levels of Hydrogen atom. It was discovered by Willis Lamb in 1951.

6.11 Anomolous magnetic moment of electron

p

k

A B

p

k, p−k

 

 

1

2

1

2

Ω

p−k

Ω

Ω1

q−k q

q−k, k

q

Fig. 6.15 Fig. A shows ? electron transiting to ?− : by emitting photon, then transiting to @− :
by making a Rabi transition and returning bacl to @ electron by absorbiting emitted photon. Fig. B
shows level diagram for this process where Ω and Ω1 are vacuum and rabi transitions respectively.

Fig. 6.15 shows the origin to anamolous magnetic moment. Electron with mo-
mentum ? makes a emission of photon with momentum k and transits to ?− : where
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it spin flips due to Rabi photon and becomes @− : and then it reabsorbs the emitted
photon to return to state @ with flipped spin. The spin flip frequency is the Rabi
frequency Ω1 which is modified to to photon emission process and we can say the
gyromagnetic ration W→ W′ , where W = 6 4

2< , or we can say 6 changes. To find the
change in Ω1, we have to write the efective transition frequency which is

Ω4 5 5 =
ΩΩ1Ω

�2
:

,

but Ω ∼ 1√
�:

and we have the discount [ ∼ 1
�:

which gives Ω4 5 5 =
1
�4
:

∝ 1
|: |4 .

Summing over |: | we get the Harmonic sum
∫

1
|: |2 3: , which nicely converges.

6.12 Problems

1. Matrices �, � anticommute, if ��+�� = 0. Show that Dirac matricesU1, U2, U3, V

all anticommute.

2. A electron velocity is (EG , EH , EI) = E(sin\,0,cos\). If E = .92 , find the two
electron spinors with positive energy.

3. In the above problem find the two electron spinors with negative energy.

4. A electron with energy � travelling along I direction, collides with an positron
with energy � travelling along −I direction. If � ≫ <42

2, (<4 is rest mass of
electron) find the differential cross section 3f

3Ω
.

5. A photon with wavelength _ moving along I direction collides with an electron
at rest and starts traveling with velocity 2(sin\,0,cos\) , find the new wave-
length _′ of the photon.





Chapter 7

Scattering in Weak Interactions

7.1 Massive Fields

EM photon is not the only photon. EM vacuum is not the only vacuum. We have
other photons that mediate so called weak interactions as these photons are heavy
and we call them W-Z bosons. In this chapter we develop the theory of W-Z bosons
and interactions they mediate.

We equip massive � with a dynamics by defining Lagrangian as density

! = n0

(
−1

4
�`a�

`a + 1

2
(m2

ℏ
)2�`�

`

)
. (7.1)

We just write

! = −1

4
�`a�

`a + 1

2
<2�`�

` . (7.2)

where recall

�`a = m`�a − ma�` (7.3)

The energy density of this field is

� = −�0`�
0` + 1

4
�`a�

`a − 1

2
<2�`�

` . (7.4)

Variation of ! gives

m`�
`a +<2�a = 0 (7.5)

m`m
`�a − ma (m`�`) +<2�a = 0 (7.6)

Observe

m`a�
`a

= 0 (7.7)

153
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which gives

m`�
`
= 0 (7.8)

m`m
`�a +<2�a = 0 (7.9)

or (
m2

22mC2
−∇2 +<2

)
�a = 0 (7.10)

Solution is n exp( 9 (:G−lC)), where

:0 =
l

2
=

√
:2 +<2 (7.11)

m`�
`
= 0 → :`n

`
= 0 (7.12)

Consider field in I direction. There are three independent polarization directions

Y1 = (0,1,0,0) (7.13)

Y2 = (0,0,1,0) (7.14)

Y3 =
1

<
(:,0,0, :0) (7.15)

For example, consider a massive photon

�Y1,2 cos(: · I−lC), (7.16)

propagating in I direction with l
2
=
√
:2 +<2. From 7.4, the energy of this photon

is n0�
2l2

222 + . Therefore for n0�
2l2

222 + = ℏl , we have the photon

� = 2

√
2ℏ

+n0l
Y1,2 cos(: · I−lC) = 2

√
ℏ

2n0l+
Y1,2 ( exp 8(: · I−lC)+exp −8(: · I−lC) ).

(7.17)
Consider the massive photon

�Y3 cos(: · I−lC), (7.18)

propagating in I direction. The energy of this photon is n0�
2<2

2 + . Therefore for
n0�

2<2

2 + = ℏl , we have the photon

� =

√
2ℏl

+n0<2
Y3 cos(: · I−lC) ∼ 2

√
ℏ

2+n0l
Y3 cos(: · I−lC). (7.19)
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where last approximation true when : << <.

7.2 Charged Weak Interaction

e
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e−

 

e

eν−
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ν
e
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W
+

W
+

W

W

A B

C D

Fig. 7.1 Fig. shows vertices for charged weak interactions

There are two charged massive bosons that mediate charged weak interaction.
The Boson ,+ with momentum : takes in a electron of momentum ? and emits a
neutrino of momentum ?+ : as shown in Fig. 7.1A. The amplitude for the transition
is

Ω =
�

√
2<

D̄2(? + :)W̄ana (:)D1 (?), (7.20)

where � =
ℏ26F√
+

. Here 6F is weak coupling constant and analogous to 4√
n0

in QED,

and

W̄a = Wa
(
1 0
0 0

)
= Wa

1−W5

2
(7.21)

where W5 = 8W0W1W2W3. This ensures only left k! of the spinor k =

[
k!
k'

]
takes part

in weak interaction. This is called a V-A vertex of weak interaction and arises from
parity violation in weak interaction as explained subsequently.



156 7 Scattering in Weak Interactions

In Fig. 7.1C, the Boson ,+ with momentum : emits a positron of momentum
−? and emits a neutrino of momentum ? + : as shown in Fig. 7.1A. The amplitude
for the transition is

Ω =
�

√
2<

D̄2(? + :)W̄ana (:)E1 (?). (7.22)

In Fig. 7.1B we consider Boson,− instead of,+. The Boson,− with momentum
: takes in a neutrino of momentum ? and emits a neutrino of momentum ? + : as
shown in Fig. 7.1A. The amplitude for the transition is

Ω =
�

√
2<

D̄2(? + :)W̄ana (:)D1 (?). (7.23)

7.3 Inverse Muon Decay

Consider the following process mediated by weak force.

4 + a` → a4 + ` (7.24)

Electron and muon neutrino with momentum ?1 and ?2 collide to produce electron
neutrino and muon at momentum ?3 and ?4. Let : and @ denote the on-shell and
off-shell momenta of mediator W boson.

ν
e

p
1

p

p

p
4

ν µ

e µ

W
−

2

3

 

Fig. 7.2 Fig. shows inverse muon decay 4+ a` → ` + a4

With
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Ω1 =
�

√
2<

D̄(?3)W̄an∗a (:)D(?1) (7.25)

Ω2 =
�

√
2<

D̄(?4)W̄`n` (:)D(?2). (7.26)

The amplitude for the process

M = Ω1Ω2

(
1

�4 (?1) +�a4 (?3) −�, − (@) −
1

�, + (−@) +�` (?4) −�`a (?2)

)

= Ω1Ω2

(
1

�4 (?1) +�a4 (?3) −�, − (@) −
1

�, + (−@) +�4 (?1) −�a4 (?3)

)

= Ω1Ω2

(
2�, − (@)
@2 −<2

,

)

∼ �2

@2 −<2
,

D̄(?4)W̄`n` (:)D(?2) D̄(?3)W̄an∗a (:)D(?1)

Now we have to sum over the polarization n . Lorentz invariance arguments given in
QED dictate that amplitude M be

M ∼ �2

<2
,

D̄(?4)W̄`D(?2) D̄(?3)W̄`D(?1) (7.27)

=
�2

4<2
,

D̄(?4)W` (1−W5)D(?2) D̄(?3)W` (1−W5)D(?1). (7.28)

where we use approximation @2 ≪ <2
,

,
Not worrying too much about the spinor part we can just write the cross section in

CM frame, where we neglect electron mass, we find, �1 = �2 = � and �3 ∼ �4 = �

and �2
4 −�2

3 = <2
`.

; =
UFℏ2�

<2
,

or more precise taking muon mass into account

; =
ℏ2�

<2
,

(1−
<2
`

�2
).

For collisions at Gev, we get cross section ∼ 10−14 barn. For those onterested in
spinor part,
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∑
B

|M|2 = ( �2

16<2
,

)2 1

�1�2�3�4
)A ( /?3W

` (1−W5)( /?1+<4)Wa (1−W5))×)A (( /?4+<`)W` (1−W5) /?2Wa (1−W5)).

(7.29)
With lot of algebra,

∑
B

|M|2 = ( �
2

<2
,

)2 (?1 · ?2) (?3 · ?4)
�1�2�3�4

(7.30)

In The CM frame where we neglect electron mass, we find, �1 = �2 = � and

�3 ∼ �4 = � and �2
4 −�2

3 =<
2
`. � ∼

√
|p|2 +<2

`/2, where ? is the Muon momentum.

∑
B

|M|2 = ( 2�2

<2
,

)2 (1−
<2
`

2�2
) (7.31)

3f

3Ω
=

(
2UF
<2
,

ℏ2 � (1−
<2
`

2�2
)
)2

(7.32)

7.4 Muon Decay
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Fig. 7.3 Fig. depicts a muon decay `→ a` +4+ ā4

Fig. 7.4A shows the decay of a muon where the amplitude of the Feynman diagram
is In Fig. 7.4B

Ω1 =
�

√
2<,

D̄(?3)W̄an∗a (:)D(?1) (7.33)

Ω2 =
�

√
2<,

D̄(?4)W̄`n` (:)E(?2). (7.34)
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M = Ω1Ω2

(
1

�` (?1) −�, − (@) −�a` (?3)
− 1

�, + (−@) +� ā4 (?2) +�4 (?4)

)

= Ω1Ω2

(
1

�` (?1) −�, − (@) −�a` (?3)
− 1

�, + (−:) +�` (?1) −�a` (?3)

)

=
�2

4<2
,

D̄(?4)W` (1−W5)E(?2) D̄(?3)W` (1−W5)D(?1).

where last equality follows after polarization sum.
With : as momentum of a4 and electron momentum as : + ;

2 as in Fig. (7.4),

l

k/2

p4

p
2

l

θ

Fig. 7.4 Fig. shows momentum conservation in muon decay

Writing

(ℏ2)6

+2
=
:2Δ:

(2c)3

;2Δ;

(2c)3
3Ω13Ω2 (7.35)

Integrating above over Ω1 and Ω2 we get 1
8c4 (:;)2

Δ:Δ;︸       ︷︷       ︸
Σ

3\. Let A =
√
:2 + ;2 and

;
:
= tan\1

Σ(\1) = A5 cos2 \1 sin2 \1ΔAΔ\1 (7.36)

<` = � = �2 +�3 +�4 = : +
√
:2

4
+ ;2 + :; cos\ +

√
:2

4
+ ;2 − :; cos\ = A 5 (\, \1).

(7.37)
Decay rate Γ =
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c

∫ ∑
B |M|2

Δ�
= � U2

F

<5
`

<4
,

. (7.38)

� =
2

c

∫ c

0

∫ c
2

0

cos2 \1 sin2 \1

5 6(\, \1)
3\13\.

With � ∼ .01, U2
F ∼ 10−3 and <F ∼ 100 GeV and <` ∼ 100 MeV, we have decay

time ∼ `s.
If we care spinor contribution,

∑
B

|M|2 = ( �2

16<2
,

)2 1

�1�2�3�4
)A ( /?3W

` (1−W5)( /?1+<`)Wa (1−W5))×)A (( /?4+<4)W` (1−W5) /?2Wa (1−W5)).

(7.39)
With lot of algebra,

∑
B

|M|2 = ( �
2

<2
,

)2 (?1 · ?2) (?3 · ?4)
�1�2�3�4

(7.40)

?1 · ?2 = �1�2 (7.41)

?3 · ?4 = �3�4 (1+
; cos\ + :

2√
:2

4 + ;2 + :; cos\
) (7.42)

(?1 · ?2) (?3 · ?4)
�1�2�3�4

= (1+
tan\1 cos\ + 1

2√
1
4 + tan2 \1 + tan\1 cos\

) = 6(\, \1). (7.43)

Decay rate Γ =

c

∫ ∑
B |M|2

Δ�
= � U2

F

<5
`

<4
,

. (7.44)

� =
2

c

∫ c

0

∫ c
2

0

cos2 \1 sin2 \16(\, \1)
5 6(\, \1)

3\13\

7.5 Pion Decay

Consider charged Pion decay as shown in Fig. (7.5).

c− → c0 + 4 + ā4 (7.45)
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It is same a muon decay except now instead of emitting a muon neutrino we emit
a neutral pion. However the amplitude of the process is same as in Eq. (7.40)

p
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p

p

p
4

W
−

 

3

e

ν
e

2

π

π

−

0

Fig. 7.5 Fig. shows pion decay c− → c0 +4+ ā4

∑
B

|M|2 = ( �
2

<2
,

)2(B?8=>A) (7.46)

Writing

(ℏ2)6

+2
=
:2Δ:

(2c)3

;2Δ;

(2c)3
3Ω13Ω2 (7.47)

Σ(\1) = A5 cos2 \1 sin2 \1ΔAΔ\1 (7.48)

<c− = � = �2+�3+�4 =<c0 +
√
:2

4
+ ;2 + :; cos\+

√
:2

4
+ ;2 − :; cos\ =<c0 +A 5 (\, \1).

(7.49)
Decay rate Γ =

c

∫ ∑
B |M|2

Δ�
= � U2

F

(<c− −<c0 )5

<4
,

. (7.50)

� =
2

c

∫ c

0

∫ c
2

0

cos2 \1 sin2 \1

5 6(\, \1)
3\13\
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� ∼ .01, U2
F ∼ 10−3 and <F ∼ 100 GeV and <c− ∼ 139 MeV, <c0 ∼ 135 MeV, we

have decay time ∼s.
If we care the spinor part,

∑
B

|M|2 = ( �
2

<2
,

)2 (?1 · ?2) (?3 · ?4)
�1�2�3�4

(7.51)

?1 · ?2 = �1�2 (7.52)

?3 · ?4 = �3�4 (1+ :
; cos\ + :

2√
<2
4 + :2

4 + ;2 + :; cos\
√
<2
c0
+ :2

) (7.53)

∼ �3�4 (1+
:

<c0

; cos\ + :
2√

:2

4 + ;2 + :; cos\
) (7.54)

(?1 · ?2) (?3 · ?4)
�1�2�3�4

= (1+ A cos\1

<c0

tan\1 cos\ + 1
2√

1
4 + tan2 \1 + tan\1 cos\

) = (1+ A

<c0

6(\, \1)).

(7.55)

c

∫ ∑
B |M|2

Δ�
= � U2

F

(<c− −<c0 )5

<4
,

. (7.56)

� =
2

c

∫ c

0

∫ c
2

0
cos2 \1 sin2 \1

1+
<c−
<c0

−1

5
6(\, \1)

5 5(\, \1)
3\13\

7.6 More Pion Decay

c− → 4 + ā4 (7.57)

3 + D̄ , −
−−−→ 4 + ā4 (7.58)

c− is a bound state of d quark and D antiquark. The bound state can be written as
sum of states like

q = exp(8: · ( A1 + A2

2
)) exp(8; · ( A1 − A2

2
)) = exp(8?1A1) exp(−8?3A2)

with different ; ′B as shown in 7.8A corresponding to different \1. Then ?1 = :/2+ ;
and −?3 = :/2− ;. as in 7.8B. For pion at rest : = 0. The energy of the pion then is
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<c = � =

√
<2
D + ?2

1+
√
<2
3
+ ?2

3 =

√
<2
D +

:2

4
+ ;2 + :; cos\1+

√
<2
3
+ :

2

4
+ ;2 − :; cos\1 ∼ 2;

(7.59)
when : = 0.

Let us calculate the decay rate for one configuration \1 = 0. The total decay rate
then is the average over \1 which by symmetry is just as for \1 = 0.
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Fig. 7.6 Fig. shows the pion decay c− → 4+ ā4

M ∼ �2

<2
,

(B?8=>A) (7.60)

<c = � = �3 +�4 =

√
<2
4 +

:2

4
+ ;2 + :; cos\ +

√
:2

4
+ ;2 − :; cos\ ∼ 2;. (7.61)

Δ� = 2Δ; (7.62)

(ℏ2)3

+3
=
;2Δ;

(2c)3
3Ω1 (7.63)

Decay rate Γ =
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c

∫ ∑
B |M|2

Δ�
=
c

2

U2
F<

2
c

<4
,

(ℏ2)3

+0
(7.64)

(7.65)

With +0 corresponding to pion radius of 1 fm. We find (ℏ2)3

+0
∼ 200("4E)3, and

decay time ∼ 10−8s.
If we care spinors,

M ∼ �2

<2
,

D̄(?4)W̄`D(?2) Ē(?3)W̄`D(?1) (7.66)

=
�2

4<2
,

D̄(?4)W` (1−W5)D(?2) Ē(?3)W` (1−W5)D(?1). (7.67)

∑
B

|M|2 = ( �2

16<2
,

)2 1

�1�2�3�4
)A ( /?3W

` (1−W5)( /?1+<4)Wa (1−W5))×)A (( /?4+<`)W` (1−W5) /?2Wa (1−W5)).

(7.68)
With lot of algebra,

∑
B

|M|2 = ( �
2

<2
,

)2 (?1 · ?2) (?3 · ?4)
�1�2�3�4

(7.69)

= ( �
2

<2
,

)2(1− cos2 \) (7.70)

= ( �
2

<2
,

)2 sin2 \ (7.71)

c

∫ ∑
B |M|2

Δ�
=
c

2

U2
F<

2
c

<4
,

(ℏ2)3

+0

∫
sin2 \3\. (7.72)

= ( c
2
)2 (ℏ2)3

+0

U2
F<

2
c

<4
,

(7.73)

7.7 Neutral Weak Interactions

7.7.1 Elastic Neutrino-electron scattering
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a` + 4
/−→ a` + 4 (7.74)

This is mediated by a / Boson, as no charge exchange takes place in interaction,
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Fig. 7.7 Fig. shows the neutral weak scattering a4 + `→ a4 + `

M ∼ �2

<2
/

(B?8=>A) (7.75)

We can just write the cross section as ; = UFℏ2�

<2
/

, which at �4+ energy is 10

femto-barn.
If we care spinor, the / vertex is bit more complicated as we will see subsequently,

we can say, it is combination of left spinor and right spinor,

M ∼ �2

4<2
/

D̄(?4)W` (2+ − 2�W5)D(?2) D̄(?3)W` (1−W5)D(?1). (7.76)
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∑
B

|M|2 = ( �2

16<2
/

)2 1

�1�2�3�4
)A (( /?3 +<4)W` (2+ − 2�W5)( /?1 +<4)Wa (2+ − 2�W5))

× )A ( /?4W` (1−W5) /?2Wa (1−W5)).

With lot of algebra, and � as CM energy

∑
B

|M|2 = ( �
2

2<2
/

)2
((2�+ 2+ )2(?1 · ?2) (?3 · ?4) + ((2�− 2+ )2(?1 · ?4) (?3 · ?3) +<2

4 (22
�
− 22

+
)(?1 · ?3)

�1�2�3�4

= ( �
2

<2
/

)2((2�+ 2+ )2 + ((2�− 2+ )2 cos4 \

2
)

3f

3\
= 4c(UFℏ2�

<2
/

)2((2�+ 2+ )2 + ((2�− 2+ )2 cos4 \

2
)

7.7.2 Electron Positron scattering
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Fig. 7.8 Fig. shows weak electron-positron scattering.

Boson mediated interaction has amplitude,
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M =
�2

4(@2 −<2
/
)
(B?8=>A). (7.77)

We can just write the cross section as

; =
UFℏ2�

"2
I

,

which is as shown before, 10 femto-barn at energy 1 GeV.
If we care all spinors,

M =
�2

4(@2 −<2
/
)
D̄(?4)W` (2 5+ − 2 5

�
W5)E(?3) Ē(?2)W` (24+ − 24�W

5)D(?1).(7.78)

∑
B

|M|2 = ( �2

16(@2 −<2
/
)
)2 1

�1�2�3�4
)A ( /?4W

` (2 5
+
− 2 5

�
W5) /?1W

a (2 5
+
− 2 5

�
W5))

× )A ( /?2W` (24+ − 24�W
5) /?1Wa (24+ − 24�W

5)).

∑
B

|M|2 =
1

2
( �2

2(@2 −<2
/
)
)2 1

�1�2�3�4
{ ( (24�)

2 + (24+ )2 )( (2 5
�
)2 + (2 5

+
)2) [(?1 · ?2) (?3 · ?4) + (?1 · ?4) (?2 · ?3)]

+ 424+ 2
4
�2

5

+
2
5

�
[(?1 · ?2) (?3 · ?4) − (?1 · ?4) (?3 · ?3)] }

In CM frame it reduces to

∑
B

|M|2 = ( �2

2((2�)2 −<2
/
)
)2 1

�1�2�3�4
{ ( (24�)

2 + (24+ )2 )( (2 5
�
)2 + (2 5

+
)2)

[
(1+ cos2 \)

]
− 824+ 2

4
�2

5

+
2
5

�
cos\ }

The differential cross-section

∑
B

|M|2 = ( �2

2((2�)2 −<2
/
)
)2{( (24�)

2 + (24+ )2 )( (2 5
�
)2 + (2 5

+
)2)

[
(1+ cos2 \)

]
− 824+ 2

4
�2

5

+
2
5

�
cos\ }

The differential cross section is
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3f

3\
= c( UFℏ2�

(2�)2 −<2
/

)2{( (24�)
2 + (24+ )2 )( (2 5

�
)2 + (2 5

+
)2)

[
(1+ cos2 \)

]
− 824+ 2

4
�2

5

+
2
5

�
cos\ }

7.8 Electroweak Unification, Parity violation and mass

7.8.1 Introduction

Beginning with the seminal work of Yang and Lee [1] and its experimental verifi-
cation by Wu [2], it is well known that weak interactions do not preserve parity. In
the theory of weak interactions, this is manifested by coupling only the left handed
components of the fermion doublet. The work of parity violation began with Yang
and Lee’s observations on K-mesons which led them to question parity conservation
in weak interactions. This led them to devise many experiments that would test parity
conservation. The first of these was carried out by Wu [2], which confirmed parity
violation in weak interactions.

The basic experiment of Wu was V decay of a Cobalt �$60 nucleus that had
its nuclear spin oriented by Magnetic field along I direction. After V decay the
nucleus changed to #860 by neutron changing to proton. Electron and neutrino were
emitted, with both having spin along I direction but electron (relativistic) could
have been moving along or opposite to I and it always turned out it wa salong I ,
which is violation of parity. The explanation now is of-course obvious the vertex has
projection on the left spinor so we donot see the alternatively. Fig. 7.9 shows the
Cobalt decay experiment of Wu, where electrons are always emitted in one direction.

Fig. 7.9 Fig. shows the Cobalt decay experiment of Wu, where electrons are always emitted in one
direction.

Further developments in the theory of weak interactions include invention of
Higg’s mechanism which gives masses to vector bosons and fermions [3, 4, 5] and
the theory of electroweak unification [6, 7]. Historical facts suggest that work on
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parity violation preceded the work on Higg’s mechanism and electroweak unification.
In this chapter, we take a different viewpoint. We suggest that parity violation in weak
interactions can be predicted on pure theoretical grounds. In this paper, we show
that parity violation is a natural consequence of gauge invariance. In a theory where
there is no parity violation, we cannot assign masses to fermions in a gauge invariant
way using the Higg’s mechanism because Higg’s field transforms in a quadratic way
under gauge transformation. However when we violate parity and only couple the left
handed components of the fermions, Higg’s field transforms in a linear way under
gauge transformation and it becomes possible to give masses to fermions in a gauge
invariant manner.

The section is organized as follows. We first review the basics of Higg’s mecha-
nism for giving masses to vector bosons and fermions [8, 9, 10]. We then go through
the exercise of showing how the theory is gauge invariant, when we have parity
violation. Then we work through a theory where there is no parity violation and
show we cannot assign masses to fermions in a gauge invariant way using the Higg’s
mechanism.

7.8.2 Theory

We consider the Higg’s doublet

Φ =

[
Φ�

Φ�

]
. (7.79)

The field is coupled to electromagnetic field and W,Z bosons with gauge coupling,
with Lagrangian density

LΦ = �`Φ
†�`Φ−+ (Φ†

Φ), (7.80)

where

�` = m` + 8
61

2
�` + 8

62

2
W`, (7.81)

with �D and W` the vector potential for EM and Weak interactions respectively and
61 and 62 as the corresponding coupling constants and

+ (Φ†
Φ) = <2

2q2
0

[(Φ†
Φ) −q2

0]2, (7.82)

where the ground state of the Higg’s field is

Φ6A>D=3 =

[
0
q0

]
, (7.83)

and the excited state
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Φ =

[
0

q0 + ℎ (G)√
2

]
. (7.84)

Substituting Φ in Eq. (7.80) gives masses to ,,/ bosons and the Higgs boson via
gauge coupling.

�`Φ =

(
0
m`ℎ√

2

)
+ 8 61

2

(
0

�` (q0 + ℎ (G)√
2
)

)
+ 8 62

2

(√
2,+

` (q0 + ℎ (G)√
2
)

−,3
` (q0 + ℎ (G)√

2
)

)
, (7.85)

and

LΦ =
1

2
m`ℎm

`ℎ+
62

2

4
(,+

`
′
,+`+,−

`
′,−`)(q0+

ℎ(G)
√

2
)2+

62
1 +6

2
2

4
/`/

` (q0+
ℎ(G)
√

2
)2−+ (ℎ),

(7.86)

where,+
` =

, 1
`−8, 2

`√
2

and,−
` =

, 1
`+8, 2

`√
2

are the W bosons and

/` =,
3
` cos\F −�` sin\F , (7.87)

the / boson and the massless photon

�` =,
3
` sin\F +�` cos\F , (7.88)

where \F is the Weinberg angle

cos\F =
62√
62

1 +62
2

, sin\F =
61√
62

1 +62
2

. (7.89)

The field couples to fermions as follows. Let us consider the the neutrino-electron
doublet written as a four vector

! =



a'
a!
4!
4'


. (7.90)

Using the notationf9 = (fG ,fH ,fI),fD = (f0,fG ,fH ,fI), and f̃D = (f0,−fG ,−fH ,−fI),
the doublet evolves (ℏ and 2 are implicit) as 8 3!

3C
=



8m 9f9 <a 0 0
<a −8m 9f9 + 1

2 (62,
3
` −61�`)f` 62√

2
,+
`f` 0

0 62√
2
,−
`f` −8m 9f9 − 1

2 (62,
3
` +61�`)f` <4

0 0 <4 8m 9f9 −61�`f̃`





a'
a!
4!
4'


.

(7.91)
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where<4 = 24 (q0+ ℎ (G)√
2
) and<a = 2a (q0+ ℎ (G)√

2
), with 24, 2a as coupling of electron

and neutrino to Higg’s boson.
When we express the above equation in terms of the fields /`, �`, it takes the

form
8 3!
3C

=



8m 9f9 <a 0 0
<a −8m 9f9 + 4

sin2\F
/`f`

62√
2
,+
`f` 0

0 62√
2
,−
`f` −8m 9f9 − 4(�` + cot2\F/`)f` <4

0 0 <4 8m 9f9 − 4(�` − tan\F/`)f̃`





a'
a!
4!
4'


.

(7.92)
where 61 cos\F = 62 sin\F = 4, with −4, the electron charge.

Now we look at how equations (7.80) and (7.91) transform when we make a
Gauge transformation on W and �. The transformations are for* ∈ (* (2), we have

W` → * (G)W`*
† (G) +

8m`* (G)*† (G)
62/2

, (7.93)

�` → �` −
m`\ (G)
61/2

. (7.94)

Then the Higg’s doublet transforms as

Φ→ Θ(G)Φ (7.95)

where Θ(G) = exp(8\ (G))* (G).
In terms of field Φ the equation for ! takes the form 8 3!

3C
=



8m 9f9 2aΦ
∗
�

2aΦ
∗
�

0
2aΦ� −8m 9f9 + 1

2 (62,
3
` −61�`)f` 62√

2
,+
`f` −24Φ∗

�

2aΦ
∗
�

62√
2
,−
`f` −8m 9f9 − 1

2 (62,
3
` +61�`)f` 24Φ

∗
�

0 −24Φ� 24Φ� 8m 9f9 −61�`f̃`





a'
a!
4!
4'


.

(7.96)
where under the gauge transformation ! transforms as

[
a!
4!

]
→ exp(−8\ (G))* (G)

[
a!
4!

]
(7.97)

4' → exp(−82\ (G))4' (7.98)

In equation (7.91) only 4! and a! are coupled. 4' and a' are not coupled. That
is to say we have parity violation. We now show that this physical law is infact a
consequence of the fact that it is not possible to give masses to fermions in a manner
that is gauge invariant (as above), if we donot violate parity.
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To see this lets reorganize the doublet as

" =

[
a

4

]
, a =

[
a!
a'

]
, 4 =

[
4!
4'

]
. (7.99)

8
3"

3C
=

©­­­­­«

[
−8m 9U 9 + 1

2 (62,
3
` −61�`)U` 62√

2
,+
`U`

62√
2
,−
`U` −8m 9U 9 − 1

2 (62,
3
` +61�`)U`

]
+

[
<a 0
0 <4

]
︸      ︷︷      ︸

�

V

ª®®®®®¬

[
a

4

]
,

(7.100)
where, V = fG ⊗f0 and UD = fI ⊗f` (U0 is identity), with f` Pauli matrices. If we
plan to write this Eq. (7.100), in terms of Higg’s field Φ, then we find that Φ enters
the term � above. To make it gauge invariant, this term should be of the form

� (Φ) = Θ(G)
[
<a 0
0 <4

]
Θ
†(G), (7.101)

In the above, � (Φ) cannot be expressed in terms of Φ alone. The best we can write
it is

� (Φ) =
[
2aΦ

∗
�
24Φ�

−2aΦ∗
�
24Φ�

] [
exp(8\ (G)) 0

0 exp(−8\ (G))

]
*† (G), (7.102)

which is still not just Φ dependent. Hence when <4 ≠ <a , we cannot make our
equations gauge invariant unless we do a parity violation. Therefore parity violation
arises as a consequence of gauge invariance.

7.9 Gauge Potential

Energy of Gauge Potential,` is

,`a = �`a +
8

6
[,`,,a]

�`a = m`,a − ma,`

� = CA ,`,a,
`,a

If we define gauge transformation as

, →, ′
=*,* ′− 86 m`* *†.

Then we have, ′
`,a =*,`,a*

† and energy doesnot take.
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Now if we have three photons 1, 2, 3, whose gauge potential forms a BD(2) algebra,
then the interaction energy density of the three photon can be written as � = �1+�2,

� =
1

6
,

†
3�

1
`a,2. (7.103)

If the momentum of three photons add to zero then density integrates to finite
interaction energy.

7.10 Renormalizing the W-Z Boson mass

Fig. 7.11 shows a / photon transit to ,+ and ,− photon, which recombine to
give back / boson. There is correction to the Boson energy due to this Feynmann
diagram.

We calculate this in limit |: | becomes large, then in expression for � scale like
1
�:

, then the total amplitude

M = [
�2

2

�:
=
[

�3
:

∼ 1

�4
 

,

which is summable and renormalizable.
The effective mass of Boson increases as result of this normalization

" ′
/ > "I .

7.11 Problems

1. Mass of , Boson is ", = 80�4+/22. Find its energy if its momentum
? = 1�4+/2.

2. Mass of / Boson is "/ = 90�4+/22. Find its energy if its wavelength is
1 5 4<C><4C4A .

3. In inverse muon decay electron and muon neutrino collide at energy of 1�4E
each along I axis. Find the differential cross section of muon production given
mass <` = 107"4+/22.

4. find the decay rate of a muon to electron and antineutrino , in particular find
numerically the coeffecient � discussed in the chapter.

5. Find the decay rate of
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Fig. 7.10 Fig. shows a 3 vertex, a / photon transit to, + and,− photon, the interaction energy
is as in Eq. (7.103)

c− → c0 + 4 + ā4 .

In particular find numerically the coeffecient � discussed in the chapter.
<c− = 139"4+/22. <c0 = 135"4+/22.

In above take weak fine structure constant UF =
1
29 .
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Fig. 7.11 Fig. shows a / photon transit to, + and,− photon, which recombine to give back /
boson.





Chapter 8

Scattering in Quantum Chromodynamics

8.1 Quarks, color and gluons

The nucleus of a atom is made of protons and neutrons. Protons and neutrons are
themselves divisible and composed of elementary particles quarks. Quarks can have
charge 2

3 4 as in quarks D, 2, C or charge− 1
3 4 as in quarks 3, B, 1. As 4;42CA>=,=4DCA8=>

forms a doublet

(
4

a

)
which interacts through weak force we have the doublets

(
D

3

)
,(

2

B

)
and

(
C

1

)
forms a doublet which interacts through weak force.

Baryons are composed of three quarks, like proton is DD3 and neutron D33.
Similarly mesons are composed of a quark and anti-quark like pion c+ is D3̄ and c−

is 3D̄ , kaon  + is DB̄ and  − is D̄B.
Quarks also posses like charge another property called color. Quarks come in

three color A, 6, 1 or A43, 6A44=, 1;D4, we write the state of a quarks as

A =
©­«

1
0
0

ª®¬
; 1 =

©­«
0
1
0

ª®¬
; 6 =

©­«
0
0
1

ª®¬
(8.1)

The color state are states in three dimension space. Transition between then is
mediated by six gluons, which can be represented as (* (3) generators , which are
BD(3) matrices, the eight dimensional space consisting of matrices. The extra two
diagonal generators gives two extra gluons making in all 8 gluons.

177



178 8 Scattering in Quantum Chromodynamics

_1
=

©­«
0 1 0
1 0 0
0 0 0

ª®¬
, _2

=
©­«

0 −8 0
8 0 0
0 0 0

ª®¬
, _3

=
1
√

2

©­«
1 0 0
0 −1 0
0 0 0

ª®¬
_4

=
©­«

0 0 1
0 0 0
1 0 0

ª®¬
, _5

=
©­«

0 0 8
0 0 0
−8 0 0

ª®¬
,_6

=
©­«

0 0 0
0 0 1
1 0 0

ª®¬
_7

=
©­«

0 0 0
0 0 −8
0 8 0

ª®¬
,_8

=
1
√

6

©­«
1 0 0
0 1 0
0 0 −2

ª®¬
_ 9 is what we call Gauge potential, the gluon that transits 1 to 6 written as 1̄6

takes the following form which can be written as a Gauge potential,
Consider the matrix

©­«
0 exp(8(:G−lC)) 0

exp(−8(:G−lC)) 0 0
0 0 0

ª®¬
= cos(:G−lC)_1 + sin(:G−lC)_2

This corresponds to a gluon 1̄A with momentum : that makes a transition from 1 to
A by absorbing the gluon or we can transit from A to 1 by emitting this gluon. In first
case the momentum increases by : and in second case decreases by : .

Consider the matrix

cos(:G−lC)_4 + sin(:G−lC)_5 =
©­«

0 0 exp(8(:G−lC))
0 0 0

exp(−8(:G−lC)) 0 0

ª®¬
This corresponds to a quark 6̄A with momentum : that makes a transition from 6 to
1 by absorbing the gluon or we can transit from A to 6 by emitting this gluon. In first
case the momentum increases by : and in second case decreases by : .

How does this transition take place. The state of the 6 quark is a spinor D1 exp(8?G)
with momentum : and let @ = ?+: , then we make transition to red spinor D2 exp(8@G),
with amplitude that is

M =
�

√
2�:

D̄2n`W
`D1 (8.2)

where � =
ℏ26B√
+

with 6B strong coupling constant and n` gluon polarization.
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8.2 Quark Quark interaction and Color factor

8.2.1 quark-antiquark interaction

q

u
2 2c

c4

v

v

c
1 1

 

u
3

c
3

4

Fig. 8.1 Fig. shows quark-antiquark interaction by gluon exchange.

Let us consider a meson with quark and antiquark pair. Let us hypothesize the
color state be say A6̄. Fig. 8.1 shows the Feynman diagram for quark-antiquark
interaction. 28 are the colors on quarks with 21 = 23 = A and 22 = 24 = 1̄. Red scatters
to red and blue to blue. This can be accounted by two set of gluons as in _3 and _8.
The resulting amplitude is as in electron-electron scattering

M = �2 D̄3W
`D1Ē4W`E2

@2

(
2′1_

3212
′
2_

322 + 2′1_8212
′
2_

822

)
(8.3)

5 =
(
2′1_

3212
′
2_

322 + 2′1_8212
′
2_

822

)
=
−1

3
(8.4)

5 is called the color factor. This leads to interaction potential

+ =
−1

3

UBℏ2

A
(8.5)

Observe the potential is repulsive. The quarks in a meson are infact in the singlet

state AĀ+66̄+11̄√
3

. Let us calculate the color factor for this the singlet state. Now we get

a color factor we have to calculate AĀ scattering to AĀ and AĀ scattering to 11̄ and 66̄.
The resulting factor is −8

3 .
This leads to interaction potential

+ = −8

3

UBℏ2

A
(8.6)

Observe the potential is attractive explaining why mesons are in singlet state
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8.2.2 triplet state

Let the quark-anti-quark pair be in the triplet state AĀ+11̄−266̄√
6

, let us calculate the

color factor for this the singlet state. Now we get a color factor we have to calculate
AĀ scattering to AĀ and AĀ scattering to 11̄ and 66̄. The resulting factor is −

3 .
This leads to interaction potential

+ = −1

3

UBℏ2

A
(8.7)

8.2.3 quark-quark interaction

q

u
2 2c

c4

c
1 1

 

u
3

c
3

4
u

u

Fig. 8.2 Fig. shows quark-quark interaction with gluon exchange

For Baryons like proton we have the color singlet state

A61−6A1 +61A − 16A + 1A6− A16
√

6

. We now have quark quark interaction as shown in Fig. 8.2. Again interaction
potential is negative.

8.3 Proton Collisions and Reactions: Pions and Kaons

Protons with enough energy when collide can produce pions. They exchange mo-
mentum ? + : with gluons, not directly, the gluons create an anti-quark-quark pair
with momentum ? and : respectively, the quark further exchanges momentum with
second proton, resulting in a pion and protons with reduced energy. This is shown
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in 8.3. The color of the proton quark changes which can be restored by exchanging
a third gluon shown in dotted 8.3.

Fig. 8.3 Fig. shows how two protons collide with sufficient energy, exchange a ? + : momentum
photon, not directly, but by exciting a quark-antiquark pair, the neutral pion, the energy of quark
pair is paid by change in momentum of protons.
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Protons with enough energy when collide can produce positve-negative pion
pairs. They exchange momentum ? + : with gluons, not directly, the gluons create
an antiquark-quark pair with momentum ? and : respectively, the quark further
exchanges momentum with second proton, we can repeat the process resulting in
two pairs DD̄ and 33̄ which reassemble to give positive pion c+ (D3̄) and negative
pion c+ (D3̄). This is shown in 8.4.

Fig. 8.4 Fig. shows how two protons collide with sufficient energy, exchange a ? + : momentum
photon, not directly, but by exciting a two quark-antiquark pair, the positive and negative pion, the
energy of quark pair is paid by change in momentum of protons.
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Protons with enough energy when collide can produce positive-negative pion
pairs. They exchange momentum ? + : with gluons, not directly, the gluons create
an antiquark-quark pair with momentum ? and : respectively, the quark further
exchanges momentum with second proton, we can repeat the process resulting in
two pairs DD̄ and 33̄ which reassemble to give positive pion  + (DB̄) and negative
kaon  − (D̄B). This is shown in 8.5.

Fig. 8.5 Fig. shows how two protons collide with sufficient energy, exchange a ? + : momentum
photon, not directly, but by exciting a two quark-antiquark pair, the positive and negative kaon, the
energy of quark pair is paid by change in momentum of protons.
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8.4 Strong Nuclear Force

Neighboring Protons have quarks which can talk trough gluons, but proton is color
neutral so there is no net potential due to this. But by exchanging gluons we can
create a pion which can exchange momentum between protons. Shown in 8.7, is
how a D blue quark emits a ? + : gluon which excites a antiquark-quark pair with
momentum ? and : and color 6̄ and 1. Color of the emitting proton quark changes
to green but the produced quark 1 can exchange again with other proton quark to
make it blue as shown in Fig. 8.7 to produce a quark-antiquark pair that is 66̄.

The amplitude of pion exchange M ∝ 1
@2 , where @ is the exchange momentum ,

which is

M ∝ 1

|: |2 +<2
0

, this gives a potential

+ ∝
4G?(− A

A0
)

A
,

where A0 =
ℏ

<02
is the pion Compton wavelength ∼ 5 <, then the potential is very

short range around fm scale. At around 2 5 < it is 30"4+ . It is attractive.

8.5 Pair production

Pion is c0 =
DD̄−33̄√

2
, what does it mean ? The quark pair DD̄ can annihilate to give a

gluon which creates pair 33̄, called pair production. The two quark-antiquark states

are almost degenerate so we can have a superposition c0 =
DD̄−33̄√

2
, with smaller

energy.

8.6 Asymptotic freedom

In Vacuum polarization in QED, we saw how energy of a exchange photon is
modified. Same happens to exchange gluon, in QCD. There are now two kind of
vertices as shown in Fig. 8.8, where exchange gluon splits into two gluons (Boson
vertex) or quark-antiquark pair (Fermion vertex). We already studies Fermion vertex
in QED in chapter 3 and Boson vertex in Gauge potential in weak interaction in
chapter 4. We saw amplitude of Vertex B in Fig. 8.8 is negative, QED correction
to photon energy is negative and interactions become stronger. We saw amplitude
of Vertex A in Fig. 8.8 is positve, QCD correction to photon energy is positive and

interactions become weaker. The boson veretx interaction scales
�2

1
�2
�3, if we look

at small distances, �1 is large and hence we have very weak interactions termed
asymptotic freedom.
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Fig. 8.6 Fig. shows how two protons exchange momentum ?+ :, by emitting and absorbing a pion
that mediates a nuclear force.

1. What is quark-antiquark potential at distance of 1 fm is they are in singlet state ?

2. What is quark-antiquark potential at distance of 1 fm is they are in triplet state ?

3. What is energy of outgoing protons if a they collide at 2 GeV each to make a c0

at rest ?
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Fig. 8.7 Fig. shows how quark-antiquark DD̄ annhilate to create the pair 33̄.

4. What is their outgoing momentum in above ?

5. What is energy of outgoing protons if a they collide at 2 GeV each to make a c+

and c− at rest ?
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Fig. 8.8 Fig. shows the Boson and the Fermion veretx for energy correction of a Gluon





Chapter 9

Collisions and Scattering: Electron-proton,
proton-antiproton, proton-proton

9.1 Electron Proton Scattering

Beautiful electron proton scattering experiments were carried out by Robert Hofs-
tadter in 1950’s [62]. These were Electron scattering experiments can be elastic or
inelastic (where we excite internal modes of nucleus). Cross-section of scattering
sheds light on spatial charge and magnetic moment distribution of the proton (any
other nucleus in general).

9.1.1 Elastic scattering

lets first discuss elastic scattering [63] where nucleus internal modes are not excited,
so that its mass stays same. This is at electron energies ≪ "22, (in MeV). Fig. 9.1
depicts how electron scatters of nucleus at certain choice of \. Let �0 and �1 be
incident energy of electron and < mass of electron, " mass of nucleus which is at
rest, then conserving energy momentum gives

θ

Fig. 9.1 Fig. depicts how electron scatters of nucleus at certain choice of \ .

189
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1

�1
− 1

�0
=

1− cos\

"22
, (9.1)

when electron energies are relativistic with �0 =
ℎ2
_0

and �1 =
ℎ2
_1

, with _8 de-broglie
wavelength’s, we have

_1 −_0 =
ℎ(1− cos\)

"2
, (9.2)

Proton is three quarks as an approximation equal masses, theta G1, G2, G3 be their
coordinates and let -1 =

G1+G2+G3
3 , -2 = G1−G2 and -3 =

G1+G2
2 −G3 be Center of Mass

and two relative coordinates.
Using

∑
8 :8G8 =

∑
8  8-8 , we have 1 = :1+:2+:3, 2 =

:1−:2
2 and 3 =

:1+:2−2:3
3 .

When electron transfer momentum @ to :1 we have proton wavefunction q0

change by

q′0 = exp(8@G1)q0 = exp(8@-1) exp(8 @
2
-2) exp(8 @

3
-3)q0

The amplitude for this momentum transfer is M0 ∝ 441

@2 n0+
, where + is electron

column and 41 quark charge. Overlap of new wavefunction with old one is simply

Ω = 〈q′0 |q0〉 =
∫

cos( @
2
-2)q2

03-2

∫
cos( @

3
-3)q2

03-3 ∼
1

@2

Cross section of scattering ∝ Ω2 ∝ @−4, that’s it, this is what we find in the
experiments, the elastic cross section dies as 1

@4 which means there are three quarks

! else it will die as 1
@2= for = quarks, that’s it.

Now lets calculate M0 in three different regimes when energy � of the incident
electron satisfies � ≪ <42

2, this is the limit of elastic scattering.
In this limit, straightforward computation shows for ? momentum of the electron,

the cross-section

; ∼ Uℏ

? sin2 \
2

, (9.3)

its scaled de-Broglie wavelength. More precisely, we get

; ∼
Uℏ

√
1+ ( E

2
cos \2 )2

? sin2 \
2

, (9.4)

For incident and scattered electrons at energy �1 and �3 and �1 ≫ <42
2, we

have,

; ∼ Uℏ2 5 (\)
�1 sin2 \

2

�3

�1
, (9.5)

Details of 5 (\) is a spinor excercise.
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9.1.2 Deep Inelastic Scattering

u

u
d

e

p

f
f

Fig. 9.2 Fig. depicts deep inelastic scattering of electron and proton.

We talked about elastic scattering of electrons and protons. But at high energies
we can have in-elastic scattering [64], where by we can excite the internal modes
off the proton, such that its internal energy or mass rises from " to , . Since @
needed to create new mass is big comparable A−1

0 (radius of proton), cross section
will be every small, and will die more with increasing @. But we donot need to talk to
proton directly. We can first exchange momentum and create a quark-antiquark 5 5̄

pair (meson) as shown in 9.2, this is creating energy , but we cannot just do it in thin
air, because we cannot balance energy , we do this by further exchanging momentum
with the proton and burning this energy in the heavy mass of proton. Scattering
amplitude of 5 5̄ has no @ dependence, we are just scattering a free particle, so
inelastic cross-section is independent of @ for a gives G, where

G =
@2

@2 +,2 −"2
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q2

cross−section

 

x = .2

x = .1
   

Fig. 9.3 Fig. depicts inelastic cross section as a function of @2 for given G.

9.2 Discovery of W-Z Bosons

The, −/ Boson predicted by Weinberg, Salam and Glashgow (1968) were discov-
ered in CERN lab in (1983) by group of Carlo Rubia. They collided prodons (uud)
and antiprotons (D̄D̄3̄) to give D3̄ →,+ and D̄3 →,− Bosons, which decayed to
positrons and electrons respectively, which were detected. Masses were estimated
to around 80 GeV. The DD̄→ / was also detected by its decay to electron-positron
pair, with Mass estimated to 90 GeV. Clearly the Center of Mass energy for these
measurements is around 90×3 ∼ 270 GeV.

9.3 Discovery of Higgs Boson

Higgs boson was discovered at CERN in 2013 in two big projects ATLAS and
CIMMS. Protons at Teravolt energies collide to generate top quark-antiquark pairs
which recombine to give Higgs boson as in 9.4. Fig. 9.4 shows how each proton
produces a Higgs pair and the two opposite momentum Higgs from colliding protons
can then give,+ and,− Bosons respectively which can combine to form / boson
which readily decays intro electron-positron pair.
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Fig. 9.4 Fig. shows Higgs production from Proton collisions.

9.4 Problems

1. Calculate the approximate (without spinor sum) differential cross-section of
electron-positron collision at 1 GeV each.

2. Calculate the approximate differential cross-section of electron-positron colli-
sion at 1 GeV each to produce muon-antimuon pair.

3. Calculate the approximate differential cross-section of a4 + `→ a` + 4 collision
at 1 GeV each.

4. Calculate the approximate differential cross-section of a4 + `→ a4 + ` collision
at 1 GeV each.

5. Calculate scattering cross-section of electrons of protons when electron energy
is 10 KeV.
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