
Chapter1: Linear Systems

1 Peano Baker Series

Solution of n dimensional system ẋ = A(t)x is given by x(t) = Φ(t, t0)x(t0), where,

φ(t, t0) = I +

∫ t

t0

A(σ1)dσ1 +

∫ t

t0

∫ σ1

t0

A(σ1)A(σ2)dσ2dσ1 + . . . ...

We show the above series converges. For σ ∈ [t0, t], let a = max|Aij(σ)|. Then using
|BC| ≤ nbc, where b = max|Bij|, we get

|Φ(t, t0)ij| ≤ 1 +
1

n
( na(t− t0) + (na)2(t− t0)

2/2 + (na)3(t− t0)
3/3+ ...) (1)

≤ 1 +
1

n
( exp(na(t− t0))− 1 ) (2)

Φ(t+∆t, t0)− Φ(t, t0) =

∫ t+∆t

t

B(σ)dσ (3)

B(σ) = A(σ) + A(σ)

∫ σ

t0

A(σ1)dσ1 + . . . (4)

lim
∆t→0

Φ(t+∆t, t0)− Φ(t, t0)

∆t
= B(t) = A(t)Φ(t, t0) (5)

d

dt
Φ(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = I (6)

Series is absolutely bounded then it converges absolutely and hence converges. Φ(t, t0)
is called the state transition matrix.

Solution is unique, else there is another solution y(t), with y(t0) = x0 satifying ẏ(t) =
A(t)y(t) then for z(t) = z(t)− y(t) we have ż(t) = A(t)z(t), with z(0) = 0, then

d‖z‖2
dt

= zT (AT + A)z ≤ λ‖z‖2,

for λ > 0. Then for η > λ, we have

d

dt
exp(−ηt)‖z‖2 ≤ 0.
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Hence z(t) = 0 and y(t) = x(t). Therefore we have a solution that exists for all times and is
unique.

Observe
ẋ = (1 + x2), x(0) = 0

has solution x(t) = tan t that does not exist beyond π
2
.

Similarly
ẋ =

√
x, x(0) = 0

has solution x(t) = (t− c)2/4 for t ≥ c and x(t) = 0 for t < c. Family of solutions for c > 0,
not unique. For linear system we have existence and uniqueness.

By uniqueness, we can say that

Φ(t, t0) = Φ(t, τ)Φ(τ, t0).

In particular

I = Φ(t0, t0) = Φ(t0, τ)Φ(τ, t0).

Φ(t, t0) is invertible with inverse Φ(t0, t).

When A is constant

Φ(t, t0) = I + A(t− t0) + A2(t− t0)
2/2 + · · ·+ Ak (t− t0)

k

k!
+ · · · = exp(A(t− t0)).

when A(t) = a(t) a scalar, then we have

∫ t

t0

∫ σ1

t0

..

∫ σk

t0

a(σ1) . . . a(σk)dσk..dσ1 =
(
∫ t

t0
a(σ)dσ)k

k!
.

Φ(t, t0) = exp(

∫ t

t0

a(σ)dσ).

As some examples

1.

A =

[
0 −a
a 0

]

; exp(At) =

[
cos(at) − sin(at)
sin(at) cos(at)

]

2



2.

A =

[
0 a
a 0

]

; exp(At) =

[
cosh(at) sinh(at)
sinh(at) cosh(at)

]

3.

A =

[
0 1
0 0

]

; exp(At) =

[
1 t
0 1

]

4.

A =

[
0 −a(t)

a(t) 0

]

; Φ(t, 0) =

[
cos b(t) − sin b(t)
sin b(t) cos b(t)

]

; b(t) =

∫ t

0

a(σ)dσ

When A and B commute exp((A + B)t) = exp(At) exp(Bt). They both satify the Ẋ =
(A+ B)X, X(0) = I. Therefore,

A =

[
1 1
0 1

]

; exp(At) = et
[
1 t
0 1

]

.

If A(t), B(t) commute for all t then ΦA+B(t, t0) = ΦA(t, t0)ΦB(t, t0).

Given A(t) and its transition matrix Φ(t, t0), we have

d

dt
detΦ(t, t0) = tr (a(t)) detΦ(t, t0)

d

dt
detΦ(t, t0) =

∑ ∂Φ(t, t0)

∂Φij

Φ̇ij

detΦ(t, t0) =
∑

cijΦij

d

dt
detΦ(t, t0) =

∑

cijΦ̇ij = tr(AΦCT ) = tr(A)detΦ

detΦ(t, t0) = exp(

∫ t

t0

tr(A(σ))dσ).

2 Variation of Constant Formula

Now consider the linear control system,

ẋ = A(t)x+ B(t)
︸︷︷︸

n×m

u(t)
︸︷︷︸

m×1

; x(0) = x0 (7)
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The solution is

x(t) = Φ(t, 0)x0 +

∫ t

0

Φ(t, τ)B(τ)u(τ)dτ. (8)

Observe

d

dt

∫ t

0

Φ(t, τ)B(τ)u(τ)dτ = A(t)

∫ t

0

Φ(t, τ)B(τ)u(τ)dτ + B(t)u(t).

When A and B are constant variation of constant formula is

x(t) = exp(At)x0 +

∫ t

0

exp(A(t− τ))Bu(τ)dτ. (9)

Consider a force harmonic oscillator

d2

dt2
x(t) + x = u(t),

driven by a sinusoidal input u(t) = sinωt, with x(0) = ẋ(0) = 0.
Writing x1 = x and x2 = ẋ, we have,

d

dt

[
x1

x2

]

=

[
0 1
−1 0

]

︸ ︷︷ ︸

A

[
x1

x2

]

+

[
0
1

]

︸ ︷︷ ︸

B

u(t).

[
x1(t)
x2(t)

]

=

[
cos t sin t
− sin t cos t

]

︸ ︷︷ ︸

exp(At)

[
x1(0)
x2(0)

]

+

∫ t

0

[
cos(t− τ) sin(t− τ)
− sin(t− τ) cos(t− τ)

] [
0

sinωt

]

[
x1(t)
x2(t)

]

=
1

2

∫ t

0

[
cos(−ωτ + t− τ)− cos(ωτ + t− τ)
sin(ωτ + t− τ)− sin(−ωτ + t− τ)

]

dτ.

when ω = 1,

[
x1(t)
x2(t)

]

=
1

2

[
sin t− t cos t

t sin t

]

.

The solution grows with t. This is excitation on resonance. Linear systems are ubiquitous.
Electrical, mechanical systems.
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3 Controllability

Consider

ẋ = B(t)u(t), x(t) = x0 +

∫ t

0

B(τ)u(τ)dτ.

Where all can you drive the system starting from x0. Let

W =

∫ t

0

B(τ)BT (τ)dτ.

x(t) is reachable iff y = x(t)− x(0) is in the range space of W denoted as R(W ).

Proof: If y ∈ R(W ) then y = Wξ =
∫ t

0
B(τ)BT (τ)dτξ. Let u(t) = BT (τ)ξ.

If y /∈ R(W ), then y = z + a where z ∈ R(W )⊥ and a ∈ R and z 6= 0. Then ∃z 6= 0 such
that 〈z, y〉 6= 0 and z ∈ R(W )⊥. Then

∫ t

0
zTB(τ)u(τ)dτ 6= 0. But

∫ t

0
zTB(τ)BT (τ)zdτ =

0 → zTB(τ) = 0. Hence contradiction. Therefore y ∈ R(W ).

The theorem has at it essence that given matrix P, R(P ) is same as R(PP T ). Given

y =
∫ T

0
B(τ)u(τ)dτ , we can write this as y = PU , where define discrete time approximation

with ∆t = T/n, we have

P =
√
∆t

[
B(n∆t) B((n− 1)∆t) . . . B(∆t)

]
, U =

√
∆t







u(n∆t)
u((n− 1)∆t)

. . .
u(∆t)






.

Now we come to the general linear system.

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0

and ask when is xf reachable at time T . Then it is reachable if we have u(τ) such that

xf − Φ(T, 0)x0 =

∫ T

0

Φ(T, τ)B(τ)u(τ)dτ.

Then from the above results xf −Φ(T, 0)x0 is reachable at time T is it lies in rangle space
of W , where

W =

∫ T

0

Φ(T, τ)B(τ)BT (τ)Φ(T, τ)Tdτ.
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W is called controllability grammian. Everypoint can be reached at time T , if controllability
Grammian is full rank. When A and B are constant then

W =

∫ T

0

exp(A(T − τ))BBT exp(A(T − τ))Tdτ =

∫ T

0

exp(At)BBT exp(At)Tdt.

Let
M =

[
B AB . . . An−1B

]
.

We claim
R(W ) = R(MMT ).

Recall by Cayley Hamilton theorem A satifies its nth order characteristic polynomial.
Which helps to express An in lower powers of A. Then we have

exp(At) =
n−1∑

i=0

αi(t)A
i,

and

Wx =

∫ T

0

exp(At)BBT exp(At)Tx dt =

∫ T

0

n−1∑

i=0

αi(t)A
iBy(t) = Mz.

for some z. Hence R(W ) ∈ R(M).
Now we show that Null space of of W denoted N (W ) belongs to N (MT ). Suppose

x ∈ N (W ), then

∫ T

0

exp(At)BBT exp(At)Tdt x = 0; xT

∫ T

0

exp(At)BBT exp(At)Tdt x = 0

∫ T

0

‖BT exp(At)Tx‖ dt = 0

This means ‖BT exp(At)Tx‖ = 0 for all t. It implies BTx = 0, else we make t small and
‖BT exp(At)Tx‖ 6= 0. Similarly we have

(AB)Tx = (A2B)Tx = · · · = (An−1B)Tx = 0.

Therefore x ∈ N (MT ) and hence x ∈ N (MMT ). Because given matrix P, N (P ) is same
as N (P TP ). Now given a symmetrix matrix S, N (S) and R(S) are orthogonal complement
of each other.
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To show this we remember given P , R(P )⊥ = N (P T ). Because if y ∈ R(P )⊥, we have
yTPx = 0, ∀x. Then (P Ty)Tx = 0, ∀x, hence P Ty = 0 and y ∈ N (P T ). Converse follows
on same lines.

Thus we have
R(W ) = R(MMT ); N (W ) = N (MMT ).

Now if M =
[
B AB . . . An−1B

]
is full rank, the system is controllable.

Consider the system

ẋ =












0 1 0 . . . . . . 0
0 0 1 0 . . . 0

0 0
. . . 1 . . . 0

0 0 . . .
. . . . . . 0

0 . . . . . . . . . 0 1
−αn −αn−1 . . . −αk . . . −α1












x+












0
0
...
...
0
1












u

Then see M is full ranked. The above form is called controllable canonical form.
In general, given a controllable control system

ẋ = A
︸︷︷︸

n×n

x+ b
︸︷︷︸

n×1

u.

Consider the full rank matrix

P =
[
An−1b . . . Ab b

]
,

Let y = P−1x.Then

ẏ = P−1APx+ P−1bu.

But note

P−1b =












0
0
...
...
0
1












.
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P−1AP =













−αn 1 0 . . . . . . 0
−αn−1 0 1 0 . . . 0

... 0
. . . 1 . . . 0

−αk 0 . . .
. . . . . . 0

... . . . . . . . . . 0 1
−α1 0 . . . 0 . . . 0













, An +
n∑

i=1

αiA
i−1 = 0

This is a canonical form.
Now let q be the first row of inverse of P . Then form the matrix

Q =







q
qA
. . .

qAn−1






. (10)

Let z = Qx.Then

ż = QAQ−1x+Qbu.

But note

Qb =












0
0
...
...
0
1












.

and

QAQ−1 =












0 1 0 . . . . . . 0
0 0 1 0 . . . 0

0 0
. . . 1 . . . 0

0 0 . . .
. . . . . . 0

0 . . . . . . . . . 0 1
−α1 −α2 . . . −αk . . . −αn












, An +
n∑

i=1

αiA
i−1 = 0

The standard controllable canonical form.
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4 Least square theory

For m ≤ n consider n×m matrix A of rank m, and the problem of minimizing ‖Au− b‖ for
choice of u. If we decompose b as b̂+ b⊥, where b̂ is projection of b on subspace spanned by
A, then

‖Au− b‖ = ‖Au− b̂‖+ ‖b⊥‖
Then choose u such that

Au = b̂, ATAu = AT b̂, ATAu = AT b , u = (ATA)−1AT b.

ATA invertible as A rank m. Now consider a second problem
For m ≤ n consider m× n matrix A of rank m, and the problem of minimizing ‖u‖ such

that Au = b. u = u0 + n where Au0 = b and n ∈ N (A). ‖n + u0‖ = ‖n − (−u0)‖, then
as above n = −û0 and n + u0 = u⊥

0 , thus u lies perpendicular to null space of A and recall
N⊥(A) = R(AT ). Then u = AT ξ and we get

AAT ξ = b; u = AT (AAT )−1b.

Again AAT invertible as A rank m.
Now consider the problem of steering the control system

ẋ = A(t)x(t) + B(t)u(t), x(0) = x0

to x(T ) = xf and minimize
∫ T

0
‖u‖2dt.

Then,

z = xf − Φ(T, 0)x0 =

∫ T

0

Φ(T, τ)B(τ)
︸ ︷︷ ︸

c(τ)

u(τ)dτ.

As before define descrete time approximation with ∆t = T/n, we have

C =
√
∆t

[
c(n∆t) c((n− 1)∆t) . . . c(∆t)

]
, U =

√
∆t







u(n∆t)
u((n− 1)∆t)

. . .
u(∆t)






,

We want to solve minimize UTU subject to z = CU . This is what we just solved. The
answer is U = CT (CCT )−1z. which is expressed as

u(τ) = B′(τ)Φ′(T, τ)W−1z, W =

∫ T

0

Φ(T, τ)B(τ)B′(τ)Φ′(T, τ)dτ.
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5 Misclleneous

let X be a n× n matrix that satifies

Ẋ = AX +XBT

Then X(t) = ΦA(t, 0)X(0)ΦB(t, 0)
T . Gust verify by differentiation.

Note
ΦA(T, t)ΦA(t, 0) = Φ(T, 0)

Differentiating both sides

d

dt
ΦA(T, t) = −ΦA(T, t)A.

or

d

dt
Φ′

A(T, t) = −A′Φ′

A(T, t).

Feedback Control Systems

6 Propotional Controller

Consider the servo control system

ẍ+ αẋ = u

we want to stabilize the system to x = 1. Let y = x− 1, then

ÿ + αẏ = u, α > 0

Let y1 = y and y2 = ẏ, then

d

dt

[
y1
y2

]

=

[
0 1
0 −α

] [
y1
y2

]

+ u

[
0
1

]

(11)

d

dt

[
y1
y2

]

=

[
0 1
0 −α

] [
y1
y2

]

+

[
0
1

]
[
−K 0

]
[
y1
y2

]

(12)

d

dt

[
y1
y2

]

=

[
0 1

−K −α

] [
y1
y2

]

(13)

When K > 0 both eigenvalues have negative real part and we stabilize the system.
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7 PI controller and Speed Control

Consider the control system

ẋ+ αx = u

we want to stabilize the system to x = 1. Let y = x− 1, then

ẏ + αy + α = u,

Let u(t) = −Ky(t)−Ki

∫ t

0
y(σ)dσ

Then

ÿ + αẏ = −Kẏ −Kiy,

Let y1 = y and y2 = ẏ, then

d

dt

[
y1
y2

]

=

[
0 1

−Ki −(α +K)

] [
y1
y2

]

(14)

When Ki > 0 and K + α > 0 both eigenvalues have negative real part and we stabilize
the system.

7.1 speed control

Consider the servo
θ̈ + αθ̇ = u+ T,

where T is unknown torque and we want to control to a certain speed θ̇. Let x = θ̇ then

ẋ+ αx = u+ T

we want to stabilize the system to x = 1. Let y = x− 1, then

ẏ + αy + α = u+ T,

Let u(t) = −Ky(t)−Ki

∫ t

0
y(σ)dσ

Then

ÿ + αẏ = −Kẏ −Kiy,

and unknown torque disappears. Now everything is same as above. Suppose torque
is changing with time say in discrete steps, then when we differentiate we get impulses at
discrete times. These are called disturbances. We don’t care now, we have a stable system.
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8 PD controller

Consider the control system

ẍ = u

we want to stabilize the system to x = 1. Let y = x− 1, then

ÿ = u.

Let y1 = y and y2 = ẏ, then

d

dt

[
y1
y2

]

=

[
0 1
0 0

] [
y1
y2

]

+ u

[
0
1

]

(15)

d

dt

[
y1
y2

]

=

[
0 1
0 0

] [
y1
y2

]

+

[
0
1

]
[
−K −Kd

]
[
y1
y2

]

(16)

d

dt

[
y1
y2

]

=

[
0 1

−K −Kd

] [
y1
y2

]

(17)

When K > 0 and Kd > 0 both eigenvalues have negative real part and we stabilize the
system.

9 PID controller and Servo

Consider the servo control system

ẍ+ αẋ+ ω2x = u

we want to stabilize the system to x = 1. Let y = x− 1, then

ÿ + αẏ + ω2y + ω = u,

Let u(t) = −Ky(t)−Kdẏ(t)−Ki

∫ t

0
y(σ)dσ

...
y + αÿ + ω2ẏ = −Kẏ(t)−Kdÿ(t)−Kiy(t),

Let y1 = y and y2 = ẏ, and y3 = ÿ then

d

dt





y1
y2
y3



 =





0 1 0
0 0 1

−Ki −(K + ω2) −(α +Kd)









y1
y2
y3



 (18)

We chooseK,Ki, Kd so all eigenvalues have negative real part and we stabilize the system.
That is Ki > 0 and α +Kd > 0 and K + ω2 > 0.
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9.1 Servo

Consider the servo control system

ẍ+ αẋ = u+ T,

where T is unknown torque.
we want to stabilize the system to x = 1. Let y = x− 1, then

ÿ + αẏ = u+ T,

Let u(t) = −Ky(t)−Kdẏ(t)−Ki

∫ t

0
y(σ)dσ

...
y + αÿ + ω2ẏ = −Kẏ(t)−Kdÿ(t)−Kiy(t),

everything is same as above , unknown torque disappears.

10 Pole Placement

Now consider a controllable single input system

ẋ = Ax+ bu

Then we can always stabilize the system and place the poles of the closed loop system
as desired. We can write the system in canonocal controllable form using y = P−1x

ẏ =












0 1 0 . . . . . . 0
0 0 1 0 . . . 0

0 0
. . . 1 . . . 0

0 0 . . .
. . . . . . 0

0 . . . . . . . . . 0 1
−α1 −α2 . . . −αk . . . −αn












y +












0
0
...
...
0
1












u

Let

u =
[
β1 β2 . . . βk . . . βn

]












y1
y2
...
yk
...
yn












Then closed loop evolution is
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ẏ =














0 1 0 . . . . . . 0
0 0 1 0 . . . 0

0 0
. . . 1 . . . 0

0 0 . . .
. . . . . . 0

0 . . . . . . . . . 0 1
β1 − α1
︸ ︷︷ ︸

−γ1

β2 − α2
︸ ︷︷ ︸

−γ2

. . . βk − αk
︸ ︷︷ ︸

−γk

. . . βn − αn
︸ ︷︷ ︸

−γn














y

The characteristic polynomial of the system takes the form

p(s) = sn + γns
n−1 + · · ·+ γ1

We can choose γk and hence βk are place the poles as we like. Going back to original
coordinates,

u =
[
β1 β2 . . . βk . . . βn

]
P−1P












y1
y2
...
yk
...
yn












=
[

β̃1 β̃2 . . . β̃k . . . β̃n

]












x1

x2
...
xk

...
xn












10.1 Observers

Our feedback in previous section depended on all the state variables. In practice all state
variables may not be measured. However we can be in a situation that although we don’t
see all state variables our system is still observable, i.e., given the controllable system

ẋ = Ax+ bu; y = cx, (19)

we have

P =








c
cA
...

cAn−1







,

is full rank.
Let P−1 =

[
...

... . . . q

]

. Let Q =
[
An−1q An−2q . . . q

]
.
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Then observe The transformation z = Q−1x gives the system

ż = Q−1AQz +Q−1bu; y = cQz, (20)

Note

c̃ = cQ =
[
1 0 . . . 0

]
.

and

Q−1AQ = Q−1
[
Anq An−1q . . . Aq

]
=













−αn 1 0 . . . . . . 0
−αn−1 0 1 0 . . . 0

... 0
. . . 1 . . . 0

−αk 0 . . .
. . . . . . 0

... . . . . . . . . . 0 1
−α1 0 . . . 0 . . . 0













︸ ︷︷ ︸

R

, An+
n∑

i=1

αiA
i−1 = 0.

Then

ż = Rz + b̃u; y = c̃z, (21)

Let

ȯ = Ro+ b̃u+







β1

β2

. . .
βn







︸ ︷︷ ︸

β

c̃(o− z); (22)

We are free to choose β, we call o observer. It reconstructs the state z, with inputs as what
can be observed about z.

Then

d

dt
(z − o) = R(z − o) +







β1

β2

. . .
βn







︸ ︷︷ ︸

β

c̃(z − o); (23)

Now choose R + βc̃
︸ ︷︷ ︸

R̄

so that we can place the poles and stabilize, then o aproaches z.

Now note z equation is a controllable equation so there exists a control u = dz such that
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ż = Rz + b̃dz = R̃z (24)

is stable. We instead use the feedback

ż = Rz + b̃do = Rz + b̃dz + b̃d(o− z) = R̃z + b̃d(o− z) (25)

Now writing a equation

d

dt

[
z

z − o

]

=

[

R̃ b̃d
0 R̄

] [
z

z − o

]

(26)

This is a stable system z goes to 0.
Let q = Qo and β̃ = Qβ, and d̃ = dQ−1 then note from Eq. 22 we have

q̇ = Aq + bu+ β̃c(q − x); (27)

and

ẋ = Ax+ bd̃q; (28)

As we have shown z goes to zero and x goes to zero.

11 Excercises

1. Let A be a n× n matrix,

A =













0 1 0 . . . . . . 0
0 0 1 0 . . . 0
... 0

. . . 1 . . . 0

0 0 . . .
. . . . . . 0

... . . . . . . . . . 0 1
0 0 . . . 0 . . . 0













.

Find exp(At).

2. Let A be a n× n matrix,
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A =













1 1 0 . . . . . . 0
0 1 1 0 . . . 0
... 0

. . . 1 . . . 0

0 0 . . .
. . . . . . 0

... . . . . . . . . . 1 1
0 0 . . . 0 . . . 1













.

Find exp(At).

3. Let A be a constant matrix, find the state transtion matrix Φ(T, 0) for the system
ẋ = f(t)A x, where f is a continuous function.

4. Let Ω(t) = −ΩT (t). Show that ΦΩ(t, 0)Φ
T
Ω(t, 0) = I.

5. Find
d

dt
exp(A+ tB)|t=0

.

6. Given n× n matrices A,B, define

A⊗ B =








A11B . . . . . . A1nB
A21B . . . . . . A2nB

...
...

...
...

An1B . . . . . . AnnB







.

Show
exp(A⊗ I + I ⊗ B) = exp(A)⊗ exp(B).

7. Let A be an n by n matrix. We say that a linear subspace of Rn is invariant under
A if every vector x in that subspace has the property that Ax also belongs to that
subspace. Show that

ẋ = Ax+ b
︸︷︷︸

n×1

u.

is controllable if and only if b does not belong to an invariant subspace of A.

8. Consider the scalar system ẋ = x + u. Given the constraint u(t + T ) = u(t), find the

control that drives x(0) = 1 to x(2T ) = 0 and minimizes
∫ 2T

0
u2(t)dt.

9. Show that Q in Eq. 10 is invertible.

10. Let A(t+ T ) = A(t), express ΦA(t, 0) for t > T in terms of ΦA(σ, 0) for σ ≤ T .
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