
Chapter 0: Quantum Mechanics

1 Schröedinger Equation

In classical mechanics, we talk about a particle say an electron with a position x and velocity
v. In quantum mechanics, particle state is represented by complex waves exp(ikx) or sum
of such waves

∑

j exp(ikjx). In complex wave exp(ikx), k is the wavenumber of the particle.
The wave evolves in time as exp(i(kx−ω(k)t)), ω(k) is the frequency of the wave and depends
on wavenumber k. The dependence ω(k) is called the dispersion relation of the wave. First
postulate of quantum mechanics is that the energy of the wave is E = ~ω(k), where ~ is a
fundamental constant called Planck’s constant. Its units are angular momentum and in SI
units its value is 6.6× 10−34.

Consider a classical particle of mass m moving with velocity v in frame O′. It kinetic
energy is 1

2
mv2. If no work is done on the system with a force then this energy is conserved.

Furthermore this is conserved in all frames of reference. The kinetic energy in frame O
in which the frame O′ moves with velocity u is E(u) = 1

2
m(v + u)2. For infinitesimal u,

E(u) ∼ 1
2
mv2 +mvu and since energy is conserved in this new frame mv = dE

du
is conserved.

This quantity dE
du

is called momentum. Using this interpretation of momentum, we can
calculate the momentum of the complex wave. For this, we develop a little bit of theory of
relativity.

1.1 Relativity

Consider lab frame O and a frame O′ , moving with respect to lab frame with velocity v.
Then the space time increment (∆x,∆t) in O, corresponds to (∆x′,∆t′) in O′. The phase

increment of the light wave in both frames is the same.
Then

k∆x− ω∆t = k′∆x′ − ω′∆t′ (1)

k(∆x− c∆t) = k′(∆x′ − c∆t′). (2)

For light travelling in opposite direction

k′(∆x+ c∆t) = k(∆x′ + c∆t′). (3)

The two relations give
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(c∆t)2 −∆x2 = (c∆t′)2 −∆x′2. (4)

For ∆x′ = 0, we have, ∆x = v∆t and this gives

∆t =
∆t′

√

1− v2

c2

(5)

This is called time dilation. Furthermore

k′

k
=

1− v
c

√

1− v2

c2

(6)

Then combining Eq. (2. 3, 6), we get

[
∆x
c∆t

]

=
1

√

1− v2

c2

[
1 v

c
v
c

1

] [
∆x′

c∆t′

]

(7)

For a rod of length l′ in O′ we have (∆x′,∆t′) = (l′, 0), the l = ∆x − v∆t = l′
√

1− v2

c2
.

This is called length contraction.
For an object moving at velocity in the frame O′ at velocity u, for time ∆t′, we have

(∆x′,∆t′) = (u∆t′,∆t′). Then from (Eq. 7), the relative velocity

υ =
∆x

∆t
=

u+ v

1 + uv
c2

(8)

Consider a electron matter wave with frequency, wavevector (ω, k) and (ω′, k′) respec-
tively. Then

The phase increment of the matter wave in both frames is the same.
Then

k∆x− ω∆t = k′∆x′ − ω′′∆t′ (9)

[
k −ω

c

]
[

∆x
c∆t

]

=
[
k −ω

c

] 1
√

1− v2

c2

[
1 v

c
v
c

1

] [
∆x′

c∆t′

]

=
[
k′ −ω′

c

]
[

∆x′

c∆t′

]

(10)

This gives

[
k −ω

c

] 1
√

1− v2

c2

[
1 v

c
v
c

1

]

=
[
k′ −ω′

c

]
(11)
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Rewriting this equation we get

[
k
ω
c

]

=
1

√

1− v2

c2

[
1 v

c
v
c

1

] [
k′
ω′

c

]

(12)

Then the energy

E(v) = ~ω(v) =
~

√

1− v2

c2

(vk′ + ω′). (13)

Once again we use our interpretation of momentum and ask what is dE(v)
dv

|0 = ~k′. There-
fore momentum of our complex wave ω′, k′ is simply

~k′.

Thus we have two basic results in quantum mechanics the energy is ~ω and momentum ~k.
Now from classical mechanics E = p2

2m
. Then we get ~ω = ~

2k2

2m
or ω = ~k2

2m
. Thus my

complex wave ψ(x, t) = exp(i(kx− ωt)) satisfies

i~
∂ψ

∂t
= (− ~

2

2m

∂2ψ

∂x2
). (14)

This equation (14) is called Schröedinger equation. It is still true if we have

ψ(x, t) =
∑

j

αj exp(i(kjx− ω(kj)t)).

as individual exponential satisfy these equation.
ψ(x, t) is called a wavefunction of electron, it is superposition of plane waves. This is a fea-

ture of quantum mechanics, we can be in superposition of states. It satisfies the Schröedinger
equation. All we are saying is that if we start with initial state ψ(x) =

∑

j αj exp(ikjx),
these ways will evolve by their characteristic energies as ψ(x, t) =

∑

j αj exp(i(kjx−ω(kj)t))
and ψ(x, t) satisfies the Schröedinger equation.

1 2 3 4 k k+1φ φ φ φ φ φ

Figure 1: Figure shows how V (x) is decomposed as piecewise constant potential.
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Now how does my wavefunction evolve if I have a potential V . Then from classical
mechanics E − V = p2

2m
, implying ~ω − V = ~2k2

2m
or my wave satisfies

i~
∂ψ

∂t
= (−~

∂2

∂x2
+ V )ψ. (15)

and again same is true if we have superposition of plane waves.
Now how does the evolution of ψ(x) take place when we have V (x). Then we can break

ψ(x) into small pieces φi over which V (x) is constant as Vi. See fig 1. Then each φi sees a
potential Vi. Its evolution will be same if Vi was globally true. Then we can break φ into
exponentials and conclude it satisfies the equation

i~
∂φi

∂t
= (−~

∂2

∂x2
+ Vi)φi. (16)

Then adding them all we get

i~
∂ψ

∂t
= (−~

∂2

∂x2
+ V (x))ψ. (17)

Thus we have derived a fundamental equation of quantum mechanics. Wavefunction ψ(x)

has a probabilistic interpretation.
∫ b

a
|ψ(x)|2dx gives the probability of finding the particles

in the interval [a, b]
Lets take sum of such complex waves with kj centered around k0. Then using ∆kj =

kj − k0, with ∆kj ∈ [−B,B], such that ∆k is the spacing between successive ∆kj, we have

φ(x) =
∑

j

exp(ikjx) = exp(ik0x)
∑

j

exp(i∆kjx) = 2 exp(ik0x)
∑

j

cos(∆kjx) (18)

= 2 exp(ik0x)
sin(Bx)

∆kx
= 2 exp(ik0x)

B

∆k

sin(Bx)

Bx
. (19)

We summarize,

2 Wave Mechanics

lets Recap. The free electron wavefunction is ψ = exp(ikx). The momentum is ~

i
∂
∂x
. This

gives the kinetic energy ǫ = p2

2m
= ~2k2

2m
, which for ǫ = ~ω gives,

ω(k) =
~k2

2m
. (20)

The dispersion is a parabola as shown below in figure 2 A.
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Figure 2: Figure A shows the dispersion ω(k) vs k for a free electron. Figure B shows a
wavepacket centered at k0.

Now, consider a wavepacket centered at k0 shown the figure 2 A, B. The packet takes the
form

φ(x) =
1√
N

∑

j

exp(ikjx), φ(x, t) =
1√
N

∑

j

exp(−iω(kj)t) exp(ikjx), (21)

where ω(kj) = ω(k0) + ω′(k0)∆kj where ∆kj = kj − k0. Denote vg = ω′(k0) =
~k0
m
, as the

group velocity. Then

φ(x, t) =
1√
N

exp(i(k0x− ω(k0)t))
∑

j

exp(i∆kj(x− vgt)). (22)

The function f(x) = 1√
N

∑

j exp(i∆kjx) =
2√
N

∑

j cos(∆kjx), is centered at origin with

width ∝ (∆k)−1 as shown in figure 2 B. Then

|φ(x, t)| = |f(x− vgt)|, (23)

the free electron wavepacket moves with a group velocity vg.
Now lets apply an electrical field E in the x direction at t = 0. Then the Schröedinger

equation is

i~
∂ψ

∂t
=

1

2m
(−i~ ∂

∂x
)2 + eEx ψ. (24)
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The equation is satisfied by time varying wavevectors exp(ik(t)x), where k(t) = k − eEt
~
,

with energy (dispersion) ω(k(t)) = ~(k(t))2

2m
=

~(k− eEt
~

)2

2m
, so that the wavefunction becomes

exp(−i
∫ t

0

ω(k(τ)) dτ) exp(ik(t)x).

The initial wavepacket φ(x) evolves to φ(x, t), where,

φ(x) =
1√
N

∑

j

exp(ikjx), φ(x, t) =
1√
N

∑

j

exp(−i
∫ t

0

ω(kj(τ))dτ) exp(ikj(t)x). (25)

The group velocity

vg(t) =
~k(t)

m
=

~(k − eEt
~
)

m
;
dvg(t)

dt
= −eE

m
. (26)

The electron wavepacket simply accelerates the way we know from classical mechanics.
Being more pedagogical, we have

φ(x, t) =
1√
N

∑

j

exp(−i
∫ t

0

ω(kj(t)) ) exp(ikj(t)x)

=
1√
N

exp(−i
∫ t

0

ω(k0(t)) ) exp(ik0(t)x)
∑

j

exp(i∆kj(x−
∫ t

0

vg(σ)dσ)). (27)

The wavepacket evolves with instantaneous velocity vg(t).
The above method can be generalized to arbitrary potential. Consider the Schröedinger

equation

i~
∂ψ

∂t
= (− ~

2

2m

∂

∂x2
− eV (x))ψ. (28)

We approximate the potential V by piecewise linear potential such that V (x) = V (xi) +
V ′(xi)δx, where δx = x − xi, as shown in figure 3. We call these regions of linearized
potential, cells. We can rewrite the potential in a cell as V (x) = U(xi) + V ′(xi)x

We assume that the wavepacket has large k0 such that ∆k ∼
√
k0 is large and therefore

for the wavepacket, ∆x ∼ (∆k)−1 is small so that it fits well within one cell. Then in this
cell, the Schröedinger equation takes the form

i~
∂ψ

∂t
= (− ~

2

2m

∂

∂x2
− eV ′(xi)x− eU(xi))ψ. (29)
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Figure 3: Figure shows linear approximation of potential V (x). The wavepacket φ(x) is
confined to a cell.

Since the wavepacket is confined to a cell, it evolution would be same if the potential we
have was not only true in the cell but globally true. This is because the wavepacket doesn’t
know what the potential is outside the cell, its confined to the cell. Then lets solve the
Schröedinger equation with this potential assumed globally true and see how wavepacket
evolves.

Then as before for the Schröedinger equation is solved by wavevector ψ = exp(ik(t)x).
Let x(t) denote coordinates of center of wavepacket, then

k(t) = k +
e
∫ t

0
V ′(x(τ))dτ

~
, ω(k(t)) =

~(k +
e
∫ t

0
V ′(x(τ))dτ

~
)2

2m
− e

∫ t

0
U(x(τ))dτ

~
. (30)

The group velocity

vg(t) =
~(k +

e
∫ t

0
V ′(x(τ))dτ

~
)

m
;
dvg(t)

dt
=
eV ′(x(t))

m
. (31)

This is classical mechanics. Therefore at high energies where k0 is large and wavepacket
is well confined, i.e., over the packet width, the second order change of potential is small,
V ′′(x)∆x≪ V ′(x). A linearized potential is a good approximation and evolution in quantum
mechanics mimics classical mechanics.

3 Particle in a Square Well

In this section we solve Schröedinger equation with a special potential. The Schröedinger
equation has the form
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i~
∂ψ

∂t
= Hψ (32)

H(x) is the Hamiltonian of the system, it is an operator. If we can find eigenfunctions of H
call φi with energies Ei. Then the eigenfunction φi evolves as exp(−iEit

~
)φi(x). Given initial

wavefunction ψ(x) =
∑

i αiφi(x), we have ψ(x, t) =
∑

i αi exp(−iEit
~
)φi(x). Therefore all the

challenge is in finding φi(x). These are called stationary states, eigenfunctions, etc.
Lets take a potential as show in figure 4 which is −V in region II and zero elsewhere.

I
III

−V

II

a a

Figure 4: Figure shows a potential well of depth V.

We solve for
Hφ = Eφ.

We first do it in region II that gives

(− ~
2

2m

∂2

∂x2
− V )φ = Eφ (33)

− ~
2

2m

∂2

∂x2
φ = (E + V )φ (34)

then the solution is exp(ikx) and exp(−ikx) where k =

√
2m(E+V )

~
.

In region I we have solution is φ1 = exp(k1x), where k1 =
√
−2mE
~

. E should be negative as
solution should die to 0 at −∞. In region III we have solution is φ3 = exp(−k1x), as solution
should die to 0 at∞ In region 2, we can say we have a solution φ2 = A exp(ikx)+B exp(−ikx)
we match it to solution in I and III. Then we have

φ′
1(−a)
φ1(−a)

=
φ′
2(−a)
φ2(−a)

,
φ′
3(a)

φ3(a)
=
φ′
2(a)

φ2(a)
. (35)

From this we get

φ′
2(−a)
φ2(−a)

= −φ
′
2(a)

φ2(a)
. (36)
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which gives A = B from which we get for z0 =
√
2mV
~

,

k1 = k tan ka; (37)

Let z = ka and z0 =
a
√
2mV
~

, with z < z0 from which we get

tan z
︸ ︷︷ ︸

f1(z)

=
√

(z0/z)2 − 1
︸ ︷︷ ︸

f2(z)

(38)

A

B

f 2 (z)
f 1(z)

z

1
E
2E
3

E

Figure 5: Figure A shows plots of f1(z) and f2(z). The energies are depicted in fig B.

When nπ < z < (n + 1)π, we get n intersections as shown in fig 9A . These are bound
solutions. The energies are depicted in fig 9B. Until now we talked about bound states.
when total energy E < 0. They are like a ball stuck in pit and keeps going back and forth
as in Fig. A in 6. There are other states as shown in Fig. A in 6 when E > 0, then ball rolls
from left crosses the pit and moves to right. Lets find quantum mechanical analog of these
scattering states.

Since E > 0, we have k1 =
√
2mE
~

. Assume a incident wave (ball) from left exp(ik1x), part
of which is reflected R exp(−ikx) and part transmitted on right hand side T exp(ikx). Then
we have wavefunction exp(ik1x) + R exp(−ik1x) in region I and A exp(ikx) + B exp(−ikx)
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A B

Bound States Scattering states

Figure 6: Figure A shows bound states. Figure B shows scattering states

in region II and T exp(ikx) in region 3. We have 4 boundary conditions

exp(−ik1a) +R exp(ik1a) = A exp(−ika) +B exp(ika).

T exp(ik1a) = A exp(ika) + B exp(−ika).
k1(exp(−ik1a)−R exp(ik1a)) = k(A exp(−ika)−B exp(ika)).

k1T exp(ik1a) = k(A exp(ika)− B exp(−ika)).

On solving we get

T =
exp(−i2k1a)

cos(2ka)− i
k2+k2

1

2kk1
sin(2ka)

.

R = −ik
2 − k21
2kk1

sin(2ka)T.

All energies E > 0 are allowed as scattering states.

4 Infinite Square Well

Figure shows an infinite square well which has zero potential in the center and infinite
potential V = ∞ outside. Let the eigen energy of φ be E0 then 〈E〉 = E0. But then φ
cannot have an presence outside center region else 〈E〉 = ∞. Therefore φ is confined to
center region. φ has to be continuous (else its double derivative is ∞2 which cannot satisfy
the Schröedinger equation). Then we look for

−∂
2φ

∂x2
= E0x

which gives φn = cos(nπx
2a

) with energies En = n2π2

(2a)2
or φn = sin(nπx

a
), with En = n2π2

a2
.
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a a

VV

Figure 7: Figure shows an infinite square well.

5 Harmonic Oscillator

Consider Harmonic Oscillator with Hamiltonian

H =
p2

2m
+

1

2
kx2. (39)

k

m

x

1/2 k x^2

A B

 

Figure 8: Figure A shows a spring-mass system, a harmonic oscillator. Fig. B shows the
quadratic potential

Let ω2
0 = k

m
, be the natural frequency of the oscillator. Then the Hamiltonian takes the

form

H =
p2

2m
+

1

2
mω2

0x
2 =

1

2
~ω0(

p2

m~ω0

+
1

~
mω0x

2). (40)

We can further write it as

H = ~ω0(a
†a+

1

2
), (41)

where
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a =

√
mω0

2~
x+ i

p√
2m~ω0

= X + iP (42)

a† =

√
mω0

2~
x− i

p√
2m~ω0

= X − iP, (43)

where as before p = ~

i
∂
∂x

and we use the commutation relation [ ∂
∂x
, x] = 1 or [p, x] = −i~.

Then we get

[aa†] = ~ω0. (44)

Now as before we want to find eigenfunctions of H. The reason for writing H in terms of
operator a, a† is that it helps to find these eigenfunctions. Lets see how. If φ is an eigenvector
with eigenvale E, then aφ and a†φ are both eigenfunctions with eigenvalues E − ~ω0 and
E + ~ω0 respectively.

To see this

~ω0(a
†a+

1

2
)aφ = a~ω0(a

†a− 1

2
)φ = (E − ~ω0)aφ. (45)

~ω0(a
†a+

1

2
)a†φ = a†~ω0(a

†a+
3

2
)φ = (E + ~ω0)a

†φ. (46)

Therefore a and a† are called lowering and raising or annihilation and creation operators
respectively. Observe energy has to be positive so we cannot keep lowering the energy. It
means there is a φ0 such that

aφ0 = 0, (47)

which gives

∂φ0

∂x
= −mω0

2~
xφ0. (48)

This can be integrated to get a unique solution

φ0(x) = C exp(−x
2mω0

4~
), (49)

with energy ~ω0

2
. All other eigenfunctions can be derived by raising φ0 as

φ1 = a†φ0 = D x exp(−x
2mω0

4~
), (50)

with energy 3~ω0

2
. These eigenfunctions are called Hermite polynomials
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Figure 9: Figure shows first two Hermite polynomials.

6 Hydrogen Atom

In polar coordinates r =
√

x2 + y2 and φ = tan−1( y
x
).

Then

∂

∂x
=

∂r

∂x

∂

∂r
+
∂φ

∂x

∂

∂φ
= cosφ

∂

∂r
− sinφ

r

∂

∂φ
∂

∂y
=

∂r

∂y

∂

∂r
+
∂φ

∂y

∂

∂φ
= sinφ

∂

∂r
+

cosφ

r

∂

∂φ
.

∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂

∂φ2
.

∂2

∂z2
+

∂2

∂x2
+

∂2

∂y2
=

∂2

∂z2
+

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂

∂φ2
.

Using R =
√
z2 + r2 and θ = tan−1( r

z
).

∂2

∂z2
+

∂2

∂x2
+

∂2

∂y2
=

∂2

∂R2
+

2

R

∂

∂R
+

1

R2

∂

∂θ2
+

cot θ

R2

∂

∂θ
+

1

R2 sin2 θ

∂

∂φ2

=
1

R2

∂

∂R
(R2 ∂

∂R
) +

1

R2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

R2 sin2 θ

∂

∂φ2
.

To Schroedinger Eigenvalue Eq. reals

{ ~
2

2m
(
1

R2

∂

∂R
(R2 ∂

∂R
) +

1

R2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

R2 sin2 θ

∂

∂φ2
) + (E − V (R))}ψ = 0.
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{( ∂
∂R

(R2 ∂

∂R
) +

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂

∂φ2
) +

2mR2

~2
(E − V (R))}ψ = 0.

We write the solution ψ = f(R)Y (θ, φ).

(
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂

∂φ2
+ l(l + 1)
︸ ︷︷ ︸

E1

)Y (θ, φ) = 0. (51)

Writing Y (θ, φ) = Θ(θ)eimφ, we get

(
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
)− 1

sin2 θ
m2 + l(l + 1)

︸ ︷︷ ︸

E1

)Θ(θ) = 0.

For x = cos θ, the above equation reads

(1− x2)Θ′′ − 2xΘ′ + (l(l + 1)− m2

1− x2
)Θ = 0.

The solution Θm
l exits for integer l,m satisfying 0 ≤ |m| ≤ l. For m ≥ 0

Θm
l (x) =

(−1)m

2ll!
(1− x2)

m
2

dl+m

dxl+m
(x2 − 1)l.

with

Θ−m
l (x) = (−1)m

(l −m)!

(l +m)!
Θm

l (x).

Then the equation for R gives

∂

∂R
(R2 ∂f

∂R
) = (l(l + 1) +

2mR2

~2
(V (R)− E))f.

Let u = Rf , then

− ~
2

2m

∂2u

∂R2
+ (V +

~
2

2mR2
l(l + 1))u = Eu,

where V = −e2

4πǫ0r
. This is one-dimensional Schroedinger equation. Guess a solution of

the form u(r) = Rl+1e
− R

a0 . Then twice differentiating Rl+1 cancels the centrifugal part.

Differentiating Rl+1 and e
− R

a0 , cancels V , when ~
2

m
l+1
a0

= e2

4πǫ0
, i.e,

a0 =
(l + 1)~24πǫ0

me2
, E =

~
2

2ma20
.
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However, we donot have to cancel V immediately. We can add another term

u(r) = Rl+1e
− R

a0 + c1R
l+2e

− R
a0 .

Then centrifugal part of second term c1 can cancel the part of first term obtained by dif-

ferentiating Rl+1 and e
− R

a0 . For this c1 has to be chosen correct. Now we cancel V by

differentiating Rl+2 and e
− R

a0 .
Then in general

u(r) = Rl+1e
− R

a0 (1 +
d∑

j=1

cjR
j),

with n = l + d+ 1, the principle quantum number. Then

~
2

m

n

a0
=

e2

4πǫ0
. a0 ∝ n

and

cj
cj−1

=
2(l + j − n)a−1

0

j(2l + j + 1)
.

This gives a0 and finally

E =
~
2

2ma20
, E ∝ 1

n2
.

6.1 Angular Momentum

L = r × p.

Lx = ypZ − zpy, Ly = zpx − xpz, Lz = xpy − ypx.

Using [px, x] = −i~, etc, we have

L2 = L2
x + L2

y + L2
z = R2(p2x + p2y + p2z)− (xpx + ypy + zpz − i~)2 + ~

2.

A quick calculation shows

xpx + ypy + zpz = −i~R ∂

∂R
.

Now substituting for
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p2x + p2y + p2z = −~
2(

1

R2

∂

∂R
(R2 ∂

∂R
) +

1

R2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

R2 sin2 θ

∂

∂φ2
) (52)

L2 = −~
2(

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

R2 sin2 θ

∂

∂φ2
). (53)

Then from Eq. 51,

L2Y (θ, φ) = ~
2l(l + 1).

and

LzY (θ, φ) = −i~ ∂

∂φ
Y (θ, φ) = ~mY (θ, φ).

We denote the eigenfunction as Ylm
Observe easily verifiable commutation relations

[Lx, Ly] = i~Lz, [Ly, Lz] = i~Lx, [Lz, Lx] = i~Ly. (54)

Define L− = Lx− iLy and L
+ = Lx+ iLy. L

− is called lowering operator and L+ is called
raising operator.

[L2, L±] = 0, [Lz, L
±] = ±~L±. (55)

Then note [L2, L±]Ylm = 0 implies L2L±Ylm = ~
2l(l + 1)L±Ylm hence L±Ylm is a linear

combination of Ylm for different m. Now [Lz, L
+]Ylm = L+Ylm implying LzL

+Ylm = ~(m +
1)L+Ylm implying L+Ylm = amYl,m+1. Similarly L−Ylm = bmYl,m−1. Then observe L+Yll = 0
and L−Yl,−l = 0. Furthermore

[L+, L−] = 2~Lz. (56)

Furthermore we get

L+L− + L−L+ = 2(L2 − L2
z). (57)

Then we get

L+L− = L2 − L2
z + ~Lz (58)

L−L+ = L2 − L2
z − ~Lz. (59)

For normalized Ylm we get
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blm = ~

√

l(l + 1)−m(m− 1) (60)

alm = ~

√

l(l + 1)−m(m+ 1) (61)

We talked about orbitals with principle quantum number n and integer angular momen-
tum number l and z angular momentum l, with |m| ≤ l ≤ n − 1. Here l was integer. In
principle it can be half integer and is ascribed to an intrinsic angular momentum called spin.
We use the quantum number s instead of l. In particular s = 1

2
is called spin 1

2
a property

of electron. We then have two values of sz = ±1
2
. Then an electron as two set of quantum

numbers l,m and s, sz.

orbital

electron
 

Figure 10: Fig. shows an atomic orbital and an electron with an inner orbital that constitutes
its spin angular momentum

7 Perturbation Theory

In quantum mechanics, we are faced with situation that we have a Hamiltonian and we
calculate its eigenvalues and eigenvectors (energies and orbitals) and then we perturb the
Hamiltonian slightly, this could be say application of electric or magnetic fields. We want to
know how does the eigenvalues and eigenvectors change when perturbation is small.

To make matters more concrete suppose I have matrix H0 whose eigenvalues and eigen-
vectors I have calculated and I change H0 → H0 + λH1 where λ is a small perturbation. We
want to know how does the eigenvalues and eigenvectors change. To fix ideas consider
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H0 =

[
1 0
0 −1

]

its eigevectors are

[
1
0

]

and

[
0
1

]

with eigenvalues 1 and −1 respectively and I perturb

H0 →
[
1 0
0 −1

]

+ λ

[
0 1
1 0

]

We can calculate the eigenvalues and eigenvectors they are
√
1 + λ2 and −

√
1 + λ2 with

eigevectors

[
cosλ′

sinλ′

]

and

[
−sinλ′
cosλ′

]

respectively where λ′ = λ
1+λ2 . We can expand the new

eigenvalues and eigenvectors in terms of λ as

√
1 + λ2 = 1 +

λ2

2
− λ2

8
+ . . .

similarly we can expand

[
cosλ′

sinλ′

]

=

[
1
0

]

+ λ

[
0
1

]

− λ2

2

[
1
0

]

+ . . .

what do we find, the new eigenvalues and eigenvectors can be expanded as a power series
in perturbation parameter λ.

Let ei be eigenvector of H0 with eigenvalue Ei, after I perturb we can write the new
eigenvalues as a power series

Ei → Ei + λE ′
i + λ2E ′′

i + . . . (62)

ei → ei + λe′i + λ2e′′i + . . . . (63)

lets compute these corrections. We are saying

(H0 + λH1)(ei + λe′i + λ2e′′i + . . . ) = (Ei + λE ′
i + λ2E ′′

i + . . . )(ei + λe′i + λ2e′′i + . . . ) (64)

Now just match terms in powers of λ. We get

H0ei = Eiei (65)

H0e
′
i +H1ei = Eie

′
i + E ′

iei (66)

First note ei+λe′i+λ2e′′i + . . . is a unit vector then this implies that e′†i e is imaginary which
gives that
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E ′
i = e†iH1ei (67)

We can expand e′i =
∑

j αijej, where αii is imaginary as just argued. Then E. (66) gives,

H0

∑

j

αijej +H1ei = Eiαijej + E ′ei
∑

j

αij(Ej − Ei)ej = (E ′ −H1)ei. (68)

This gives for i 6= j we have αij =
e
†
jH1ei

Ei−Ej
. where we assume Ei are non-degenerate. Now

H0e
′′
i +H1e

′
i = Eie

′′
i + E ′′

i ei + E ′
ie

′
i. (69)

This gives

E ′′
i = e†iH1e

′
i =

∑

i 6=j

e†iH1eje
†
jH1ei

Ei − Ej

(70)

Eq. (67 and 70) give the first and second order change of energies. These are important
enough to memorize.
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