
Chapter3: Optimal Control
Until now, our focus has been on controllability. Showing we can steer our control system

between points of interest. In this chapter we turn to another important question in control.
How to optimally steer a dynamical system. In this chapter we will learn about Pontryagin’s
maximum principle.

Consider the control system

ẋ = f(x, u), x ∈ Rn, u ∈ Ω ⊂ Rm

We want to steer the system from x0 to xf and want to minimize

η =

∫

L(x, u)dt,

We can write this as

ẋ = f(x, u) (1)

ẋn+1 = L(x, u) (2)

and say we want to minimize xn+1 at final time which say is T with a control u which is
optimal. We can make x, n+ 1 dimensional, (x, xn+1) and write the above system as

ẋ = f(x, u) (3)

with new f .
We do a needle peturbations on controls. For infinitesimal ∆t, between time (τ −∆t) and

τ , we change the control from u to v. How does the final point change. Then observe

δx(τ) = (f(x, v)− f(x, u))∆t (4)

δx(T ) = Φ(T, τ)δx(τ) (5)

Φ̇(t, τ) =
∂f

∂x
|(x∗(t),u(t))

︸ ︷︷ ︸

A(t)

Φ(t, τ) (6)

Observe δx(T ) lies in a cone. If I perturb at τ1 and τ2, I get end point perturbation
δ1x(T ) and δ2x(T ). Then by perturbing simulataneously for time α∆t and (1−α)∆t, we get
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Figure 1: Figure a shows the trajectory from x0 to xf and how end point is perturbed as we
make a needle perturbation to control in Fig. b.

δx(T ) = αδ1x(T ) + (1− α)δ2x(T ). Hence any convex combination is achievable. End point
perturbations lie in a convex cone C. Now we donot want that the point p = (0, . . . , 0

︸ ︷︷ ︸

n

,−1) /∈

C, else we make a perturbation that fixes x(T ) and decreases xn+1, then how is out trajectory
optimal. Then we can find a hyperplane which separates p from C̄, (first assume p /∈ C̄. Then
there are multipliers λ = (λ1, . . . , λn+1), such that λTp < 0 and λT C̄ ≥ 0. It means λn+1 > 0,
which can be chosen as 1 and λT δx(T ) ≥ 0

λ′Φ(T, τ)δx(τ) ≥ 0; (Φ(T, τ)′λ)′δx(τ) ≥ 0

call Φ(T, τ)′λ = λ(τ), then observe

λ̇(σ) = −AT (σ)λ.

λ′(τ)(f(x(τ), v)− f(x(τ), u)) ≥ 0

Note by definition of A(t) in 4, the last row of AT is zero. Hence λn+1 = 1 throughout.
Then define

H(x(t), λ(t), u) = λ(t)′f(x, u),

and

2



H(x(t), λ(t), u) ≤ H(x(t), λ(t), v), ∀v (7)

λ̇′ = −λ′
∂H

∂x
(8)

ẋ = (
∂H

∂λ
)′ (9)

p

p

a
b

Figure 2: Figure a shows the end point cone and point p outside it which can be separated
by a hyperplane. Figure b shows when p lie on boundary of C̄.

Since λn+1 = 1, we can write

H(x(t), λ(t), u) = λ(t)′f(x(t), u) + L(x, u),

where λ, f refers to first n coordinates.
Observe, we assumed p /∈ C̄. Such problems are called normal problems. It is possible

that p ∈ ∂C̄, just on the boundary. Then recall λTp = 0, separating plane passes through p.
Then since p = (0, . . . , 0,−1), we have xn+1 = 0 and then

H(x(t), λ(t), u) = λ(t)′f(x(t), u).

Such problems are called abnormal. When we are interested in minimizing time, then we
have so called time optimal control problem where L(x, u) = 1.

An important class of perturbations are when for infinitesimal ∆t, between time (τ−∆t)
and τ , we delete the evolution f(x, u). This leads to perturbation

δx(τ) = −

[
f(x, u)
L(x, u)

]

∆t.

We can also add the evolution f(x, u), this leads to peturbation

δx(τ) =

[
f(x, u)
L(x, u)

]

∆t,
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since λ′(τ)δx(τ) > 0, for both perturbations, we get

H(x(t), λ(t), u) = λ(t)′f(x(t), u) + L(x, u) = 0.

The control minimizes the Hamiltonian and the minimum value is zero.

Example 1 Consider the system ẍ = u, we want to bring the system to origin x, ẋ = 0 in
minimum time with the constraint |u| ≤ 1. We can write the system in standard form as

ẋ1 = x2

ẋ2 = u

Writing the Hamiltonian H = λ1x2 + λ2u with

(λ̇1, λ̇2) = −(0, λ1),

then λ1 = c is a constant and λ2 = λ0 + ct. Then u = −sgn(λ2). We only have two controls
±1. Let us study the trajectories under these two controls

ẋ1 = x2 (10)

ẋ2 = 1 (11)

Then the trajectories are x2(t) = x2(0) + t and x1(t) =
t2

2
+ x2(0)t + x1(0). Then x1(t) =

x2(t)2

2
+ c1. These trajectoris are sketched below in fig. 3 (bold).

ẋ1 = x2 (12)

ẋ2 = −1 (13)

Then the trajectories are x2(t) = x2(0)− t and x1(t) = − t2

2
+ x2(0)t + x1(0). Then x1(t) =

−x2(t)2

2
+ c2. These trajectoris are sketched below in fig. 3 (dashed).

Since we can only switch one, then if we are above the arc AOB, then we follow dotted
curve and come to bold curve and go to origin. If we are below the arc AOB, then we follow
bold curve and come to dotted curve and go to origin. If we are on arc AOB, we donot
switch.

.
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Figure 3: Figure shows optimal trajectories in Eq. 10 (in bold) and Eq. 12 (in dotted).

0.1 Transversality

Consider now a variant of the problem. Instead of reaching a final point xf , we want to
reach a surface/manifold M. Let us say we have a optimal control u that reaches M
optimally at point xf . Then at xf we have two vector spaces Txf

and Nxf
, tangent and

normal to M. Let us choose a basis e1, . . . , em for Nxf
. We can decompose the perturbation

δx(T ) as δxn(T ) normal to M and δxt(T ) parallel to M. We can write δxn(T ) in terms
of e1, . . . , em as coordinates (y1, . . . , ym). Let y = (y1, . . . , ym, δxn+1). Note y forms a cone
that doesnot include the point p = (0, . . . 0

︸ ︷︷ ︸

m

,−1) ( the last cordinate is the cost coordinate)

else we have a perturbation that is tangent to M and reduces the cost. Hence we can find
µ = (µ1, . . . , µm, λn+1) that separates p from y cone. Then µTp < 0 and µTy ≥ 0. Then
λ =

∑m

i=1 µiei + λn+1(0, . . . , 0
︸ ︷︷ ︸

n

, 1)′ . Then observe λT δx(T ) = µTy ≥ 0. Furthermore, the

system part of λ call λS is ⊥ Nxf
. This is called transversality.

Example 2 Consider the system ẍ = u, we want to bring the system to origin x = 0 (ẋ
can be anything) in minimum time with the constraint |u| ≤ 1. We can write the system in
standard form as

ẋ1 = x2

ẋ2 = u

As before writing the Hamiltonian H = λ1x2 + λ2u with
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(λ̇1, λ̇2) = −(0, λ1),

then λ1 = c is a constant and λ2 = λ0 + ct. Then u = −sgn(λ2). We only have two controls
±1. We have already studied the trajectories under these two controls. Since at terminal
time we donot have restriction on ẋ, we just want to reach the axis x1 = 0. This means at
terminal time λ2 = 0 by transversality. That means sign of λ2 never changes and we have
no switching.

Then if we are above the arc AOB (or on arc OB), then we follow dotted curve and come
to x1 = 0 axis. If we are below the arc AOB (or on arc OA), then we follow bold curve and
come to x1 = 0 axis.

Example 3 Consider the nonholonomic integrator,




ẋ
ẏ
ż



 =





u
v

xv − uy



 .

Find the optimal control (u, v) that steers (x(0), y(0), z(0)) = (0, 0, 0) to (x(1), y(1), z(1)) =
(0, 0, 1) and minimize

η =
1

2

∫ 1

0

u2 + v2dt

.
Since the final time is fixed, we can demand another state variable θ, such that θ̇ = 1

and θ(tf ) = 1, we call it the time coordinate and we also have the cost coordinate. Then
using maximum principle

H = λ1u+ λ2v + λ3(xv − yu) + λ4 +
u2 + v2

2

Minimizing the hamiltonian with u, v gives u = −λ1 + yλ3 and v = −λ2 − xλ3 and

λ̇1 = −λ3v

λ̇2 = λ3u

λ̇3 = 0

u̇ = 2λ3v

v̇ = −2λ3u

6



Then u = A cos(ωt + θ) and v = A sin(ωt + θ). Now integrating and matching boundary
conditions we get ω = 2nπ and A = ω. For minimum cost n = 1. Optimal controls are
sinusoids.

1 Excercises

1. For the system ẍ = u, with ‖u‖ ≤ 1, find the optimal way to steer the system from
(x(0), ẋ(0)) to (x, ẋ) = (0, 0) and minimize

∫ tf

0

‖u‖dt.

2. For the system ẍ = u, with ‖u‖ ≤ 1, find the optimal way to steer the system
(x(0), ẋ(0)) to x = 0 and minimize

∫ tf

0

‖u‖dt.

3. For the system ẍ+x = u, with ‖u‖ ≤ 1, find the time optimal way to steer the system
from (x(0), ẋ(0)) to (x, ẋ) = (0, 0).

4. For the system ẍ+x = u, with ‖u‖ ≤ 1, find the time optimal way to steer the system
(x(0), ẋ(0)) to x = 0.

5. For the system ẍ+x = u, with ‖u‖ ≤ 1, find the time optimal way to steer the system
from (x(0), ẋ(0)) to ẋ = 0.

6. For the system ẍ = u, with ‖u‖ ≤ 1, find the time optimal way to steer the system
(x(0), ẋ(0)) to ẋ = 0.

7. For the system ẍ+x = u, with ‖u‖ ≤ 1, find the optimal way to steer the system from
(x(0), ẋ(0)) to (x, ẋ) = (0, 0) and minimize

∫ tf

0

‖u‖dt.

8. For the system ẍ + x = u, with ‖u‖ ≤ 1, find the optimal way to steer the system
(x(0), ẋ(0)) to x = 0 and minimize

∫ tf

0

‖u‖dt.
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9. Steer ẋ = u form x(0) to x(1) and minimize
∫ 1

0
x2 + u2dt.

10. Steer ẋ = −x+ u form x(0) to x(1) and minimize
∫ 1

0
x2 + u2dt.
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