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Typical Problems

• Numerical Computation of Invariant Manifolds

• Numerical Solution of Optimal Control Problems

• Numerical Solution of Differential Games

• Numerical Solution of Conservation Laws

• Numerical Solution of Frances Byrnes Isidori PDEs

• Numerical Solution of Kazantzis Kravaris PDEs

• Numerical Solution of Duncan-Mortenson-Zakai PDEs

• Numerical Solution of H∞ PDEs
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An Important Problem
Infinite Horizon Optimal Control

minu(0:∞)

∫ ∞
0

l(x, u) dt

ẋ = f(x, u), x(0) = x0

x ∈ IRn×1, u ∈ IRm×1

Optimal Cost and Optimal Feedback

π(x0) = minu(0:∞)

∫ ∞
0

l(x, u) dt, u∗(0) = κ(x0)

Hamiltonian, a function of x, u and a new variable p ∈ IR1×n

H(p, x, u) = pf(x, u) + l(x, u)

Hamilton Jacobi Bellman Equations

0 = minuH(
∂π

∂x
(x), x, u)

κ(x) = argminuH(
∂π

∂x
(x), x, u)
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Stabilization by Optimization

Problem: Find a feedback u = κ(x) so that the closed loop
system is (locally) asymptotically stable around x = 0.

Solution: Choose a Lagrangian l(x, u) ≥ 0 and solve the infinite
horizon optimal control problem. Under suitable conditions the
optimal feedback u = κ(x) is stabilizing on some domain
around x = 0 and this can be verified because the optimal cost
π(x) ≥ 0 is a Lyapunov function,

d

dt
π(x(t)) =

∂π

∂x
(x(t))f(x(t), κ(x(t))) = −l(x(t), κ(x(t))) ≤ 0



Classic Example: LQR

f(x, u) = Fx+Gu, l(x, u) =
1

2

(
x′QX + u′Ru

)

Optimal Cost and Optimal Feedback

π(x) =
1

2
x′Px, κ(x) = Kx

The HJB equations reduce to a quadratic (algebraic Riccati)
equation and a linear equation

0 = F ′P + PF +Q− PGR−1G′P, K = −R−1G′P

Theorem: If Q ≥ 0, R > 0, (F,G) stabilizable and (Q1/2, F )
detectable then there exist a unique nonnegative definite
solution P to the Riccati equation and the feedback u = Kx is
asymtotically stable, i.e., all the poles of F +GK are in the
open left half plane.
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Another Important Problem
Finite Horizon Optimal Control

minu(0:T )

∫ T

0
l(t, x, u) dt+ πT (x(T ))

ẋ = f(t, x, u)

0 = g(x(0), X(T ))

u(t) ∈ U(t, x)

Pontryagin Maximum Principle:
If x∗(0 : T ), u∗(0 : T ) is optimal then there exists
p : [0, T ]→ IR1×n such that

ẋ∗i =
∂H
∂pi

(t, p, x∗, u∗)

ṗi = −
∂H
∂xi

(t, p, x∗, u∗)

u∗ = argminu∈U(T,x∗)H(t, p, x∗, u∗)

H(t, p, x, u) = pf(t, x, u) + l(t, x, u)
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Analyze vs Discretize

There is a PMP for infinite horizon OCP and an HJB for finite
horizon OCP but in the interests of time we shall not discuss
them.

In order to solve these problems we have to discretize them.
Discretize the optimal control problem or discretize the HJB or
PMP equations?

•• first analyze and then discretize

• first discretize and then analyze.
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Commutative Diagrams?

Infinite Horizon OCP → Dynamic Program
↓ ↓

HJB PDE → Dynamic Programming Equation

Finite Horizon OCP → Nonlinear Program
↓ ↓

PMP → Karush Kuhn Tucker Conditions
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Discretization of the HJB equation
For simplicty of exposition assume n = 2, m = 1 . Choose a
rectangle around x = 0 and partition it with stepsize h . Let
xi,j denote the i, j node. Let πi,j be the current computed
approximation to the optimal cost at the xi,j.

For each i, j solve for the next approximation κi,j to the
optimal feedback

κi,j = argminu

{(
πi+1,j − πi−1,j, πi,j+1 − πi,j−1

)
f(xi,j, u)

+2hl(xi,j, u)
}

The next approximation to the optimal cost π̄i,j is the solution
to(
π̄i+1,j − π̄i−1,j, π̄i,j+1 − π̄i,j−1

)
f(xi,jκi,j) = −2hl(xi,j, κi,j)

The boundary condition is π̄i0,j0 = 0 where xi0,j0 = 0.

This is called policy iteration and it is not very efficient because
it sweeps through the nodes many times.
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Discretization of the Optimal Contol Problem
Instead we can discretize the optimal control problem. Asumme
that the control takes on discrete values uk and time is
measured in steps of h.

Define f̄(xi,j, uk) to be the state node closest to

xi,j + f(xi,j, uk)h

Then on the state and control grids we have the discrete
dynamics

x+ = f̄(x, u)

x(0) = xi,j

and we minimize by choice of control sequence

πi,j = minu(0:∞)

∑
t=0:h:∞

l(x, u)h

κi,j = u∗(0)
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Discretization of the Optimal Contol Problem
Dynamic Programming Equation (DPE)

πi,j = minuk

{
l(xi,j, uk)h+ π(f̄(xi,j, uk))

}
κi,j = argminuk

{
l(xi,j, uk)h+ π(f̄(xi,j, uk))

}

This can be solved by policy iteration. Given the current
approximation π(xi,j) to the optimal cost at grid points xi,j,
define the next approximation to the optimal feedback as

κ(xi,j) = argminuk

{
l(xi,j, uk)h+ π(f̄(xi,j, uk))

}
Given κ(xi,j) then the next approximation to the optimal cost
π̄(xi,j) is the solution of the equations

π̄(xi,j) = l(xi,j, κ(xi,j))h+ π̄(f̄(xi,j, κ(xi,j))

This is again policy iteration but it is still slow.
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Approximation by a Markov Chain
Here is a simplistic version of this method.

Partition the state space into a grid with spacing h and partition
time with spacing k . Construct a Controlled Markov Chain with
transition probability p(x1|x0, u) from gridpoint x0 to grid point
x1 with control u. Choose a search radius r and define

p(x1|x0, u) =
exp(−(‖x1 − x0 − (f(x0, u)k‖2)

ρ(x0, u)

ρ(x0, u) =
∑
j

exp(−(‖x1 − x0 − (f(x0, u)k‖2)

where the sum is over all gridpoints xj such that

‖xj − x0 − (f(x0, u)k‖ ≤ r
The cost is defined to be the expected value of

∞∑
t=0

l(x, u)
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Approximation by a Markov Chain

The problem is solved via stochastic dynamic programming.

In dimensions n = 2, 3 and m = 1, 2 this is a feasible method.

Boue and Dupuis have proven that a more sophisticated version
converges to the true solution as h, k go to 0 .

But in higher dimensions it difficult to implement.
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Eikonal Equation
Suppose that the speed of propagation c(x) > 0 through a
medium varies with location. Consider any path x(t) between
the source x0 = 0 and x1. Then the propagation time along this
path is

∫ t
0 1 dτ so the Lagrangian l(x, u) = 1.

The dynamics is ẋ = f(x, u) = c(x)u where ‖u‖ = 1 .

The HJB equations are

0 = min‖u‖=1

{
∂π

∂x
(x)c(x)u+ 1

}
κ(x) = argmin‖u‖=1

{
∂π

∂x
(x)c(x)u+ 1

}
which reduce to∥∥∥∥∂π∂x (x)

∥∥∥∥ =
1

c(x)
, κ(x) = −

∂π
∂x

(x)∥∥∥∂π∂x (x)
∥∥∥
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Fast Marching Method for the Eikonal Equation
This method is due to Tsitsiklis and it was refined by Sethian,
Falcone and others.

Partitition the nodes into three families called accepted, narrow
band and far. Initially the only node in accepted family is the
origin and πi0,j0 = 0.
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Fast Marching Method for the Eikonal Equation
Assume that πi,j has been computed for all the accepted nodes.

For each node xi,j in the narrow band compute the rectilinear
path to a node xr,s in the accepted region that minimizes the
sum of travel time along the path plus πr,s.

This is typically done using Dykstra’s method for finding the
shortest path on a graph.

Then accept the narrow band node that minimizes this sum.

Repeat until the accepted nodes cover the region where the
solution is desired.

Different implimentations of FMM use different ways of
computing the sum of travel time along the path plus πr,s .

The advantage of FMM is that the computation visits each
node much less often than in the naive approach.

The FFM has been generalized to other optimal control
problems but computing the minimum sums is more complicated
because not every rectilinear path is feasible.
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Curse of Dimensionality
All methods for solving HJB equations suffer from Bellman’s

Curse of Dimensionality

Practical optimal control problems usually have state dimension
larger than 2 or 3. For example, the attitude control problem for
a spacecraft has state dimension n = 6 and control dimension
typically m = 3. The position and attitude control problem for
an airplane has state dimension n = 12 and control dimension
at least m = 4.

Consider trying to apply a grid based method.. For the solution
to be reasonably accurate we would need a substantial number
of grid points in each coordinate direction, e.g., 102. Then the
total number of grid points is 1012 for attitude control and 1024

for position and attitude control. If we can process 100 nodes a
second that works out to about 300 years for attitude control
and 3 · 1014 years for position and attitude control.
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HJB Equations and Conservation Laws
Suppose we have a time varying problem of the form

ẋ = f(t, x) + g(t, x)u

l(t, x, u) = q(t, x) +
1

2
u′R(t, x)u

Then the HJB PDEs reduce to the HJ PDE

0 =
∂π

∂t
+
∂π

∂x
f −

1

2

∂π

∂x
gRg′

(
∂π

∂x

)′
+ q

Let p = ∂π
∂x

and take the Jacobian of the HJ equation to obtain
the conservation law

0 =
∂p

∂t
+

∂

∂x
F (t, x, p)

where the flux term is

F (t, x, p) = pf −
1

2
pgRg′p′ + q



HJB Equations and Conservation Laws

This connection has been used to take advantage of the highly
developed methods for conservation laws to solve HJ and HJB
equations.

But there are difficulties, one is that we have increased the
dimension of the unkown.

π(x) ∈ IR, p(x) ∈ IR1×n

Another is that we are looking for a solution of the conservation
law that is a closed one form,

∂pi

∂xj
=

∂pj

∂xi
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Invariant Manifold Methods
Hamilton Differential Equations

ẋi =
∂H
∂pi

, ṗi = −
∂H
∂xi

Under suitable conditions the linear part of these equations have
n eigenvalues in the open left half plane and n eigenvalues in
the open right half plane so there is an n dimensional stable
manifold.

This stable manifold is the graph of a mapping

x 7→ p(x)

Because of the Hamiltonian structure this manifold is
Lagrangian, i.e., a gradient and

p(x) =
∂π

∂x
(x)

So we can compute π(x) by computing the stable manifold of
the Hamiltonian dynamics.
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Hauser-Osinga Method

Figure : Inverted Pendulum on a Cart
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Min-Plus Methods
The min-plus semiring is defined as follows

ξ ⊕ ζ = min{ξ, ζ}
ξ ⊗ ζ = ξ + ζ

These operations are commutative, associative and distributive,

ξ ⊗ (ζ ⊕ η) = (ξ ⊗ ζ)⊕ (ξ ⊗ η)

The ⊕ ”identity” is ∞ , the ⊗ ”identity” is 0.

It is not an algebra because there are no ⊕ inverses. We cannot
solve for ζ the equation

ξ ⊕ ζ = min{ξ, ζ} =∞

There is also a max-plus semiring where

ξ ⊕ ζ = max{ξ, ζ}
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Min-Plus Methods
Consider the semigroup acting on function ψ(x) for T ≥ 0

ST (φ)(xT ) = min
u(−T :0)

{∫ 0

−T
l(x(t), u(t)) dt+ φ(x(0)

}
ẋ = f(x, u)

x(−T ) = xT

This semigroup is nonlinear in the ordinary sense and the
optimal cost π(x) is a fixed point of this semigroup,

π(x) = ST (π)(x)

But is linear in the min-plus sense and π(x) is an eigenvector
corresponding to the eigenvalue 0 which is the ⊗ identity.

0⊗ π(x) = ST (π(x)
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Min-Plus Methods
The power method is the standard way to find an eigenvector.

Start with any φ(x) and compute

π(x) = lim
N→∞

ST (·) ◦ ST (·) ◦ · · · ◦ ST (φ)(x)

where N is the number of composition factors.

To make the calculation finite dimensional π(x) is chosen as a
min-plus combination of basis functions.

π(x) = (α1 ⊗ ψ1(x))⊕ · · · ⊕ (αk ⊗ ψk(x))

and a projection is done after each application of the semigroup.

This is very similar to policy iteration, the princple difference is
the restriction to min-plus combinations of basis functions.

The number of basis functions needed for a given accuracy is
exponential in the state dimension n but it is probably grows
slower than the number of grid points.
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Min-Plus Methods

McEneaney has developed a method for solving HJB equations
for Hamiltonians that are the minimum (or maxima) of a family
of Hamiltonian of LQR problems.

It is too complicated to discuss here but it uses min-plus
techniques and duality.

No grid is necessary so it does not suffer from the curse of
dimensionality on that score.

But the computational cost of the method grows exponentialy in
the number of LQR Hamiltonians. The number of LQR
Hamiltonians needed probably increases with the state
dimension but more slowy than the number of gridpoints does.

It also suffers from a curse of complexity as it requires
computing the pointwise maxima (or minima) of a large number
of functions which can be expensive.
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Hamiltonians needed probably increases with the state
dimension but more slowy than the number of gridpoints does.

It also suffers from a curse of complexity as it requires
computing the pointwise maxima (or minima) of a large number
of functions which can be expensive.



Higher Order Methods
Why go to higher order methods? Here is a simple answer.

If the true solution is smooth enough then the local truncation
error of a first order method with step size h1 is O(h1)2.

If the true solution is smooth enough then the local truncation
error of a third order method with step size h3 is O(h3)4.

Assuming the order constants are about the same size then to
achieve the same accuracy h2

1 ≈ h4
3 or h3 ≈

√
h1.

If h1 = 0.01 then h3 ≈ 0.1 so the number of grid points that is
needed for a given accuracy is reduced by a factor of 10 in each
dimension. If the state dimension is n then the reduction in grid
points is by a factor of 10n .

If the third order method takes k3(n) times longer to compute
for each node then the reduction in computational time is by the
factor 10n

k3(n)
. Typically k3(n) is polynomial in n.
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Higher Order Methods
Of course to use a higher order method the solution must be
smooth enough.

The computations become more difficult and less accurate.

There are diminishing returns as we go to higher orders.
Consider a fifth order method with step size h5 . Then for same
level of accuracy

h2
1 ≈ h

6
5 so h5 ≈ h

1/3
1

h5 ≈ 0.2154 when h1 = 0.01

So a third order method requires a factor of about 2n more grid
points than a fifth order method.

Recall that a first order method requires a factor of about 10n

more grid points than a third order method.

Suppose the fifth order method takes k5(n) times longer for
each node. Typically kd(n) grows exponentially in d.
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Richardson Extrapolation
This is the simplest way of generating a higher order method.

Suppose we have a first order method M1(h) for solving a
problem using stepsize h . If the problem and the method are
smooth enough then we expect that the error is a power series
in h with lowest order term a constant times h2 . Let α denote
the true solution then with steps sizes h and 2h

α = M1(h) + β2h
2 + β3h

3 + . . .

α = M1(2h) + β2(2h)2 + β3(2h)3 + . . .

Multiply the first by 4/3 and the second by −1/3 and add,

α = M2(h) + O(h)3

where M2(h) =
4

3
M1(h)−

1

3
M1(2h)

Szpiro and Dupuis have applied this technique to HJB equations.
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Singular PDEs

A first order quasilinear PDE

0 =
∂φ

∂x
(x)a(x) + b(x, φ(x))

is said to be singular at x = 0 if a(0) = 0. Usually b(0, 0) = 0.

We expand in power series.

a(x) = Ax+ a[2](x) + a[3](x) + . . .

b(x, φ(x)) = Cx+Bφ(x) + (b(x, φ(x)))[2] + (b(x, φ(x)))[3] + . . .

φ(x) = Tx+ φ[2](x) + φ[3](x) + . . .

where (·)[d] denotes terms homogeneous of degree d.
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Singular PDEs
Collect terms of first degree.

TA+BT = −C

This is solvable for any C iff there is no resonance of the form
αi + βj = 0 where αi is an eigenvalue of A and βj is an
eigenvalue of B.

Having found T we collect quadratic terms to get an equation
of the form

∂φ[2]

∂x
(x)Ax+Bφ[2](x) = known terms

Notice the map

φ[2](x) 7→ ∂φ[2]

∂x
(x)Ax+Bφ[2](x)

takes quadratic polynomials to quadratic polynomials. It is
invertible iff there is no resonance of the form

αi1 + αi2 + βj = 0

The higher degrees terms can be found in a similar fashion.
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Singular PDEs

Many of the most important PDEs of nonlinear dynamics and
control are essentially singular first order quasilinear including

• PDEs for Stable, Unstable, Center, etc. Manifolds

• Hamilton Jacobi Bellman PDEs

• Hamilton Jacobi Isaacs PDEs

• Francis Byrnes Isidori PDE of Nonlinear Regulation

• Kazantzis Kravaris PDE of Nonlinear Estimation

Discrete time and time varying problems can also be solved by
similar power series methods.

In discrete time the degree two nonresonance conditions are

αi1αi2 6= βj
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Al’brecht’s Method
Al’brecht developed the power series method for HJB equations
for the optimal cost and optimal feedback,

π(x) =
1

2
x′Px+ π[3](x) + π[4](x) + . . .

κ(x) = Kx+ κ[2](x) + κ[3](x) + . . .

At the lowest degree we get the familiar LQR equations

0 = F ′P + PF +Q− PGR−1G′P

K = −R−1G′P

If the standard LQR conditions are satisfied then the Riccati
equation has an unique nonnegative definite solution P and the
linear part of the closed loop dynamics

ẋ = (F +GK)x

is exponentially stable.

This guarantees there are no resonances so the higher degree
terms of π, κ can be found by solving invertible linear equations.
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Al’brecht’s Method

This method has been implimented in the Nonlinear Systems
Toolbox.

The HJB equations can be solved to degree 4 in π(x) and
degree 3 in κ(x) for systems with state dimension n = 25 and
control dimension m = 8 on a lap top.
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Pros and Cons of Power Series Methods
•• Power Series Methods can also be used for discrete time

and time varing problems.

• They involve mostly solving linear equations and Matlab
software is available.

• They are restricted to smooth systems with no state or
control constraints.

• The LQR part must yield a Hurwitz F +GK .
• The software can used for systems of moderately large state

dimension, e.g., n = 25 , m = 8.
• Going to higher degree approximations to π(x) and κ(x)

increases their accuracy near x = 0 .
• Going to higher degree approximations can enlarge the

basin of stability of the closed loop system but it is not
guaranteed. It can also decrease it.

• Going to higher degree approximations requires more
memory. There are n+ d− 1 choose d monomials of
degree d in n variables, approximately nd/d! .
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Patchy Methods

•

Figure : Optimal Cost of Inverting a Pendulum by a Torque at its Axis
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Patch Calculation
The HJB equations are not singular away from the origin. The
map

π[d+1] 7→
∂π[d+1]

∂x
(x)f(x1, u1)

takes a polynomial of degree d+ 1 to a polynomial of degree d.

So the map is not square. As a consequence π[d+1](x) is not
completely determined by the HJB equations.

Following Cauchy-Koveleskaya certain partial derivatives of π(x)
are inherited from partial derivatives of π(x) on the previous
patch.

For example we assume that ∂π1

∂x
(x1) = z ∂π

0

∂x
(x1) then the HJB

equations reduce to a quadratic polynomial in the scalar z.

Under suitable assumptions there is one positive root and one
negative root. We take the positive root.
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Invert a Pendulum

Figure : Periodicity of the Optimal Cost

The left axis is −15 ≤ θ̇ ≤ 15 and the right axis is
−15 ≤ θ ≤ 15. From points on the ridges there are two optimal
trajectories, one going to the left well and the other going to
the right well.



Adaptive Algorithm
The algorithm is adaptive. It splits a patch in two when the
relative residue of the first HJB equation is too high at the
lower corners of a patch. It also lowers the upper level of a ring
of patches if the relative residue is too high on it.

Ring 1 2 3 4

Initial Patch Level 0.64 1.21 1.96 2.89

Final Patch Level 0.36 0.63 1.38 2.23

Initial No. Patches 1 24 26 26

Final No. Patches 1 26 26 28

The initial levels of the optimal cost were set at

(0.8)2 (1.1)2 (1.4)2 . . . (10.7)2

Only the first ten patch levels were adjusted down.

The last ring (34) contains 78 patches.
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Patchy Hauser Osinga Pendulum

Figure : Patchy Optimal Cost to Level Set 70
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Patchy Hauser Osinga Pendulum

Figure : Patchy Optimal Cost to Level Set 490



Patchy Hauser Osinga Pendulum

Figure : Patchy Optimal Cost to Level Set 566



Error Comparison

A nonlinear change of state coordinates on an LQR problem
yields a nonlinear optimal control problem.

The exact solution to the nonlinear problem is given by applying
the nonlinear change of coordinates to the LQR solution.

Here are the errors between the true optimal cost and the
computed optimal cost which is of degree d+ 1.

Max Error Max Rel Error Error Factor
LQR (d = 1) 0.3543 0.8860 54.56

Al’brecht (d = 3) 0.1636 0.4101 25.16

Patchy (d = 3) 0.0065 0.0239 1

This shows that the patchy method can be very accurate and it
is parallelizable.
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Three Dimensional Example
Here is a level set of the patchy method applied to a three
dimensional problem
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Figure : Level Set 55

The complexity of keeping track of the patches probably makes
the patchy method infeasible in higher dimesions.
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Conclusions

There are feasible methods for solving HJB or DP equations in
dimensions n = 2 or n = 3.

It is questionable whether any of these methods are feasible
when n = 4 or n = 5.

It is unlikely that any of these methods are feasible when n ≥ 6.

Similar statements are true for the other PDEs of nonlinear
control.
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Trajectory Optimization
Typical Problem

min
u(0:T )

∫ T

0
l(x, u) dt

subject to

ẋ = f(x, u), 0 ≤ g(x, u)

x(0) = x0, x(T ) = xT

Hamiltonian H(p, x, u) = pf(x, u) + l(x, u).

Pontryagin Minimum Principle: There exists p(0 : T ) ∈ IR1×n

ẋi =
∂H
∂pi

(p, x, u∗)

ṗi = −
∂H
∂xi

(p, x, u∗)

u∗ = argminu {H(p, x, u) : 0 ≤ g(x, u)}
plus boundary and transversality conditions.
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Two Appoaches
Indirect Appoach: Discretize the PMP equations and solve the
resulting two point boundary value problem in 2n variables.

This is usually done by shooting methods or multiple shooting
methods. Such methods are slow and may not converge.

Direct Appoach: Discretize the trajectory optimization problem
to get a nonlinear program which can be solved by existing
software.

If we discretize time with step size h then decision variables are

u(0), u(h), u(2h), . . . , u(T − h)

Regardless of the state dimension n it requires optimizing a
function of mT/h variables subject to constraints.

Because of the development of excellent software for solving
nonlinear programs, the direct approach has become more
popular.
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Discretization of the Optimal Trajectory Problem

min
u(0:T )

∑
t=0:h:T−1 l̄(x, u)

x+ = f̄(x, u), 0 ≤ g(x, u)

x(0) = x0, x(T ) = xT

where the discrete dynamics and discrete Lagrangian are defined
by Lie differentiation

f̄(x, u) = x+ f(x, u)h+ Lf(x,u)f(x, u)
h2

2
+ L2

f(x,u)f(x, u)
h3

6
+ . . .

l̄(x, u) = l(x, u)h+ Lf(x,u)l(x, u)
h2

2
+ L2

f(x,u)l(x, u)
h3

6
+ . . .

Lie differentiation: Lf(x,u)h(x, u) =
∂h

∂x
(x, u)f(x, u)

The Euler approximation stops at the h terms.

If Lie differentiation is difficult use Runge-Kutta approximations.
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Discretization of the Optimal Trajectory Problem

There are other discretization schemes. The goal of any such
scheme is to approximate the continuous dynamics with high
accuracy using as few node points as possible.

In the scheme described on the last side accuracy is achieved by
using a higher order method and a small stepsize h . The
number of nodes is T/h so small h leads to a large number of
nodes.

Recall that we have to find the minimum of a function of mT/h
variables, u(0), u(h), u(2h), . . . , u(T − 1).

The discretization of the continuous time problem is a form a
quadrature so we could use any quadrature rule, e.g., Euler,
Trapezoidal, Hermite-Simpson, etc. in either explicit or implicit
form.
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nodes.

Recall that we have to find the minimum of a function of mT/h
variables, u(0), u(h), u(2h), . . . , u(T − 1).

The discretization of the continuous time problem is a form a
quadrature so we could use any quadrature rule, e.g., Euler,
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Efficient Quadrature Rules
Perhaps the most efficient quadrature is Legendre-Gauss (LG).
It uses only N nodes to exactly integrate any polynomial of
degree 2N − 1 or less.

On the standard interval [−1, 1] it takes the form∫ 1

−1
φ(t) dt =

N∑
i=1

wiφ(ti)

where the nodes ti are the zeros of the N th Legendre
polynomial PN(t).

The weights are given by

wi =
2

(1− t2i )(P ′N(ti))2

But all the nodes ti are in the open interval (−1, 1) so
Legendre-Gauss quadrature is not suitable if there are boundary
conditions.
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Efficient Quadrature Rules

Legendre-Gauss-Lobatto (LGL) quadrature is slightly less
efficient, It uses N + 1 nodes to exactly integrate any
polynomial of degree 2N − 1 or less.

It uses the two endpoints t0 = −1, tN = 1 and the N − 1
zeros t2, . . . , tN−1 of P ′N(t) .

The weights are 2
n(n−1)

at the endpoints and

wi =
2

n(n− 1)(PN(ti))2

in between.
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Pseudospectral Trajectory Optimization
Gong, Kang and Ross have shown that the pseudospectral
method converges for feedback linearizable systems. If m = 1
such a system can be transformed to

ẋ1 = x2

ẋ2 = x3

...

ẋn−1 = xn

ẋn = fn(x) + gn(x)u

Minimize ∫ 1

−1
l(x(t), u(t)) dt+ α(x(−1), x(1))

subject to

0 = β(x(−1), x(1))

0 ≤ γ(x(t), u(t))
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Pseudospectral Trajectory Optimization
Each xi(t) is approximated by an N th degree interpolating
polynomial x̄i(t) . These polynomials are represented by their
values at the N + 1 LGL nodes,

x̄i =
[
x̄0
i . . . x̄Ni

]′
x̄i(t) =

N∑
0

x̄jiφj(t)

where the φj(t) are the Lagrange polynomials at the LGL nodes.

The dynamics is approximated by the equations

x̄i+1 = Dx̄i, i = 1, . . . , n− 1

ūj =
(Dx̄n)j − f(x̄j)

g(x̄j)

so the N + 1 decision variables are x̄0
1, . . . , x̄

N
1 .
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Pseudospectral Trajectory Optimization
Multiplication of the interpolated values of a polynomial by the
differentiation matrix D yields the interpolating values of its
derivative.

The control u(t) is not an interpolating polynomial, rather

u(t) =
˙̄xn − f(x̄(t))

g(x̄(t))

The cost is approximated by a LGL quadrature

N∑
j=0

l(xj, uj)wj + α(x̄0, x̄N)

The boundary conditions are approximated by a relaxed version
of

0 = β(x̄0, x̄N)

and the constraints are approximated by a relaxed version of

0 ≤ γ(x̄j, ūj), j = 0, . . . , N
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Model Predictive Control
Suppose the problem of minimizing∫ ∞

0
l(x, u) dt

subject to

ẋ = f(x, u)

x(0) = x0

0 ≤ g(x, u)

has been discretized into minimizing∑
t=0:h:∞

l̄(x(t), u(t))

subject to

x+ = f̄(x, u)

x(0) = x0

0 ≤ g(x, u)



Model Predictive Control

Minimization over the infinite horizon is too difficult so choose a
time window T and a terminal cost πT (x) defined on a terminal
set XT which is a compact neighborhood of x = 0.

Consider the problem of minimizing∑
t=0:h:T−h

l̄(x(t), u(t)) + πT (x(T ))

subject to

x+ = f̄(x, u)

x(0) = x0

0 ≤ g(x, u)

x(T ) ∈ XT

The decision variables are u(0), . . . , u(T − h).
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Model Predictive Control
Then pass this nonlinear program to a fast solver to find the
optimal u0(0), . . . , u0(T − h). This needs to be done in less
than the time step h.

Use the control u0(0) to get the state to x1 = x(h).

Then between times h and 2h solve the problem of minimizing∑
t=h:h:T

l̄(x(t), u(t)) + πT (x(T + h))

subject to

x+ = f̄(x, u)

x(h) = x1

0 ≤ g(x, u)

x(T + h) ∈ XT
to obtain the optimal u1(h), . . . , u1(T ).

Use the control u1(h) to get the state to x2 = x(2h), etc.
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Model Predictive Control

The key issues are the following

• If the discrete time system is a discretization of a
continuous time system then the time step h must be short
enough to accurately approximate it.

• The time step h should be long enough for the nonlinear
program to be solved in one time step.

• The horizon T must be short enough so that the nonlinear
program can be solved in one time step h.

• The horizon T must be long enough and/or XT large
enough so that x(t+ T ) ∈ XT .

• The initial guess of u0(0), . . . , u0(T − 1) that is fed to the
solver must be close to optimal else the solver may fail to
converge to the true solution.
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Model Predictive Control

• This is not as much a problem with later initial guesses
because we can take u0(h), . . . , u0(T − h) as the initial
guess for u1(h), . . . , u1(T − h).

• The ideal terminal cost πT (x) is the optimal cost of the
infinite horizon optimal control problem provided that it can
be computed on a large enough XT . Then the exact
solutions to the finite horizon and infinite horizon optimal
control problems are identical.

• If the infinite horizon optimal control law κT (x) is known on
the terminal set XT then the initial guess for u1(T ) should
be κT (x0(T )) where x̄0(T ) is the T th state generated by
the last control sequence. u0(0), . . . , u0(T − 1)
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Concluding Remarks

• We can solve HJB or Dynamic Programming Equations only
in low state dimensions.

• Pseudospectral methods can solve trajectory optimization
problems in low to medium state dimensions.

• Model Predictive Control is a viable alternative to solving
Dynamic Programming Equations in low to medium state
dimensions for slow processes even when there are state and
control constraints.

• It may be possible to use power series methods to compute
the terminal cost πT (x) and feedback κT (x) on a larger
terminal set XT . This may allow us to lengthen the time
step h and/or shorten the horizon T so that MPC can be
used on faster processes.

• For a copy of these slides contact ajkrener@nps.edu

• Thank you! Questions?
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