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Stabilization around an Operating Point
Controlled Dynamics in Discrete Time

x+(t) = x(t+ 1)

x+(t) = f(x(t), u(t))

where x, u are n, m dimensional.

Operating Point

x0 = f(x0, u0)

WLOG x0 = 0, u0 = 0

Constraints

0 ≤ g(x, u)

We seek a feedback law

u = κ(x)

to stabilize the system around the operating point.
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Optimal Control Problem
A standard approach is to recast this as an infinite horizon
optimal control problem

min

∞∑
t=0

l(x(t), u(t))

subject to

x+ = f(x, u)

0 ≤ g(x, u)

The running cost may be given by economic considerations or
just chosen so that x(t)→ 0 without using too much u(t) , e.g.

l(x, u) = x′Qx+ u′Ru
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Dynamic Programming Equation

π(x) , Optimal Cost given x(0) = x
κ(x) , Optimal Control given x(t) = x

Dynamic Programming (DP) Equations

π(x) = minu {π(f(x, u)) + l(x, u)}
κ(x) = argminu {π(f(x, u)) + l(x, u)}

where the minimum is over all admissible controls

{u : 0 ≤ g(f(x, u), u)}

These equations are notoriously difficult to solve if the state
dimension n is greater than 2 .
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Stability

The optimal cost π(x) is a Lyapunov function which ensures the
stability of the closed loop system

π(x+(t)) ≤ π(x(t))

provided

π(x) > 0 if x 6= 0

l(x, u) ≥ 0 if x 6= 0

and other conditions are satisfied.



Model Predictive Control
An increasingly popular way of solving the stabilization problem
is Model Predictive Control (MPC).

If x(t) = xt then we pose the finite horizon optimal control
problem

min

t+T−1∑
s=t

l(x(s), u(s)) + πT (x(t+ T ))

subject to

x+ = f(x, u)

0 ≤ g(x, u)

x(t) = xt

The terminal cost πT (x) may only be defined in some compact
neighborhood X of x0 = 0 so an extra constraint is needed,

x(t+ T ) ∈ X
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Model Predictive Control

This is a nonlinear program and a fast solver is used to obtain
the optimal control sequence

u∗(t), . . . , u∗(t+ T − 1)

Then the feedback

κ(x(t)) = u∗(t)

is used for one time step.

The process is repeated at subsequent times.
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Model Predictive Control

The key issues are the following

• The horizon T must be short enough so that the nonlinear
program can be solved in one time step.

• The horizon T must be long enough and/or X large enough
so that x(t+ T ) ∈ X .

• The terminal cost must be a control Lyapunov function for
the dynamics.

• The ideal terminal cost is the optimal cost of the infinite
horizon optimal control problem provided that it can be
computed on a large enough X . Then the solutions to the
finite horizon and infinite horizon optimal control problems
are identical.
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Regulation

In the regulation problem we are given a plant

x+ = f(x, u,w)

y = h(x, u,w)

that it is affected by an external signal w(t) that might be a
command or a disturbance. The dimension of y is p and we
usually assume that p = m .

The goal is to find a feedforward and feedback u = κ(x,w)
such that y(t)→ 0 as t→∞ .
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Exosystem

Francis and Wonham solved the linear problem assuming that
the external signal is generated by a linear exosystem.

Isidori and Byrnes solved the nonlinear problem assuming that
the external signal is generated by a nonlinear exosystem.

Nonlinear Exosystem:

w+ = a(w)

The dimension of w is k .

A usual assumption is that the exosytem is neutrally stable in
some sense, e.g., all the eigenvalues of

∂a

∂w
(0)

are on the unit circle.
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Francis Byrnes Isidori Equation

The first step in nonlinear regulation is to solve the discrete
time Francis Byrnes Isidori (FBI) equations.
Find x = φ(w) and u = α(w) such that

f(φ(w), α(w), w) = φ(a(w))

h(φ(w), α(w), w) = 0

Then the graph of x = φ(w) is a controlled invariant
submanifold of (x,w) space on which y = 0 .
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Optimal Regulation
The next step is to find an additional feedforward and feedback
control law that makes this invariant manifold attractive.

Krener cast this as an optimal control problem in the transverse
state and control coordinates.

z = x− φ(w)

v = u− α(w)

Choose a suitable running cost l(z, v) and

min

∞∑
t=0

l(z(t), v(t))

subject to

z+ = f̄(z, v, w) = f(φ(w) + z, α(w) + v, w)− φ(a(w))

w+ = a(w)
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Optimal Regulation
This is a nonstandard optimal control problem because there is
no control over part w of the combined state (z, w) .

Despite this Krener showed in continuous time under suitable
conditions that a nice solution exists locally around
(x0, w0) = (0, 0) . The optimal cost ρ(z, w) is a Lyapunov
function for the z dynamics under the feedforward and feedback
control law v = β(z, w) .

Hence y(t)→ 0 under the combined control law

u = κ(x,w) = α(w) + β(x− φ(w), w)

and the optimal cost is

π(x,w) = ρ(x− φ(w), w)

In particular the running cost l(z, v) should be nonnegative
definite in z and positive definite in v . One possibility is

l(z, v) = z′Qz + v′Rv
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Model Predictive Regulation

Optimal regulation seems to require the solution of both the FBI
and DP equations. These are two difficult tasks when n > 2 .

Can we use an MPC approach?

Yes!

The key thing is to choose a running cost l(x(t), u(t), w(t))
that is zero when y(t) = 0 . It should also be nonegative
definite in z(t) and positive definite in v(t) even though we
might not know what v = u− α(w) is.

How do we do this?

By making l a function of y(t), y(t+ 1), . . . , y(t+ r) where r
is the relative degree of the plant.
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Relative Degree
For simplicity of exposition we assume a SISO system,
m = p = 1 .

Define a family of functions h(j)(x, u,w) as

h(0)(x, u,w) = h(x, u,w)

h(j)(x, u,w) = h(j−1)(f(x, u,w), u, a(w))

The plant and exosystem

x+ = f(x, u,w)

w+ = a(w)

y = h(x, u,w)

have well-defined relative degree r if for all x, u,w

∂h(j)

∂u
(x, u,w)

= 0 if 0 ≤ j < r
6= 0 if j = r

In other words y(t+ r) is the first output influenced by u(t) .
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Running Cost

Then we can choose the running cost as

l(x, u,w) =

r∑
j=0

γj(h
(j)(x, u,w))2

where γj ≥ 0 and in particular γ0 > 0, γr > 0 . Or a similar l .

Clearly if exact regulation is achieved at time t , i.e.,

0 = y(t) = y(t+ 1) = y(t+ 2) = · · ·

then the running cost is zero from t on.



Running Cost

Then we can choose the running cost as

l(x, u,w) =

r∑
j=0

γj(h
(j)(x, u,w))2

where γj ≥ 0 and in particular γ0 > 0, γr > 0 . Or a similar l .

Clearly if exact regulation is achieved at time t , i.e.,

0 = y(t) = y(t+ 1) = y(t+ 2) = · · ·

then the running cost is zero from t on.



Infinite Horizon Optimal Regulation

min

∞∑
t=0

l(x(t), u(t), w(t))

subject to

x+ = f(x, u,w)

w+ = a(w)

y = h(x, u,w)

l(x, u,w) =
r∑

j=0

γj(h
(j)(x, u,w))2

We can also consider constraints

0 ≤ g(x, u,w)

This is to difficult to solve via the DP equations.



Infinite Horizon Optimal Regulation

min

∞∑
t=0

l(x(t), u(t), w(t))

subject to

x+ = f(x, u,w)

w+ = a(w)

y = h(x, u,w)

l(x, u,w) =
r∑

j=0

γj(h
(j)(x, u,w))2

We can also consider constraints

0 ≤ g(x, u,w)

This is to difficult to solve via the DP equations.



Infinite Horizon Optimal Regulation

min

∞∑
t=0

l(x(t), u(t), w(t))

subject to

x+ = f(x, u,w)

w+ = a(w)

y = h(x, u,w)

l(x, u,w) =
r∑

j=0

γj(h
(j)(x, u,w))2

We can also consider constraints

0 ≤ g(x, u,w)

This is to difficult to solve via the DP equations.



Infinite Horizon Optimal Regulation

min

∞∑
t=0

l(x(t), u(t), w(t))

subject to

x+ = f(x, u,w)

w+ = a(w)

y = h(x, u,w)

l(x, u,w) =
r∑

j=0

γj(h
(j)(x, u,w))2

We can also consider constraints

0 ≤ g(x, u,w)

This is to difficult to solve via the DP equations.



Finite Horizon Optimal Regulation
Instead if x(t) = xt, w(t) = wt then we consider the finite
horizon optimal control problem

min

t+T−1∑
s=t

l(x(t), u(t), w(t)) + πT (x(t+ T ), w(t+ T )

subject to

x+ = f(x, u,w)

w+ = a(w)

x(t) = xt

w(t) = wt

0 ≤ g(x, u,w)

x(t+ T ) ∈ X
w(t+ T ) ∈ W

where the terminal cost πT (x,w) is defined on X ×W .
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Model Predictive Regulation

Again this is a nonlinear program and a fast solver is used to
obtain the optimal control sequence

u∗(t), . . . , u∗(t+ T − 1)

Then the feedback

κ(x(t), w(t)) = u∗(t)

is used for one time step.

The process is repeated at subsequent times.

The method that we are proposing is a one step method for
optimal regulation via MPC techniques.

Falugi and Mayne (CDC13) have proposed a two step method
for tracking a periodic signal.
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Model Predictive Control

The key issues are the following

• The horizon T must be short enough so that the nonlinear
program can be solved in one time step.

• The horizon T must be long enough and/or X large enough
so that x(t+ T ) ∈ X .

• The set W must be invariant under the exosystem
dynamics and large enough to contain all possible w(t) .

• The terminal cost must be a control Lyapunov function for
the closed loop dynamics. If (x,w) ∈ X ×W such that
h(x, u,w) > 0 for all admissible u then

π(x,w) > 0

π(x,w) ≥ min
u
π(f(x, u,w), a(w))
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Ideal Terminal Cost

• The ideal terminal cost is the optimal cost π(x,w) of the
infinite horizon optimal control problem provided that it can
be computed on a large enough X ×W . Then the
solutions to the finite horizon and infinite horizon optimal
regulation problems are identical.

• Suppose the FBI equations are solvable for φ(w), α(w) for
w ∈ W and the HJB equations for the transverse optimal
control problem are solvable for ρ(z, w), β(z, w) for
z ∈ (X − φ(W)) , w ∈ W then the ideal terminal cost is

πT (x,w) = ρ(x− φ(w), w)

Later we shall present a method for calculating these functions
on a reasonably large X ×W .
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Infinite Horizon Optimal Regulation

We return to the infinite horizon optimal regulation problem

min

∞∑
t=0

l(x(t), u(t), w(t))

subject to

x+ = f(x, u,w)

w+ = a(w)

0 ≤ g(x, u,w)

Suppose that the DP equations are solvable for the optimal cost
π(x,w) and optimal feedback u = κ(x,w) .
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Generalized FBI Equations
A subset of (x,w) space is said to satisfy the generalized FBI
Equations (gFBI) if there exists a feedforward and feedack
u = κ(x,w) such that the subset is forward invariant under the
close loop dynamics

x+ = f(x, κ(x,w), w)

w+ = a(w)

and y = 0 on this subset

0 = h(x, κ(x,w), w)

The zero set of π(x,w) ,

Z = {(x,w) : π(x,w) = 0}

is obviously a solution of the gFBI equations.
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Simple Linear Example

Plant, n = 3, m = 1, p = 1

x+ =

 0 1 0
0 0 1
0 0 0

x+

 0
1

0.5

u
y = x1 − w1

Three plant poles at 0 . Relative degree r = 2 so there is
n− r = 1 plant zero at −0.5

Exosystem, q = 2

w+ =

[
0 −1
1 0

]
w

Two exosystem poles at ±i .
There are no plant zero, exosystem pole resonances so the
Francis equations are solvable.
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Simple Linear Example
Suppose we let

l(x(t), u(t), w(t)) = (y(t))2 + (y(2)(t))2 = (y(t))2 + (y(t+ 2))2

Then the solution to the DP equations for the infinite horizon
optimal control problem is

π(x,w) =


x1

x2

x3

w1

w2


′ 

1 0 0 −1 0
0 1 0 0 1
0 0 0 0 0
−1 0 0 1 0
0 1 0 0 1



x1

x2

x3

w1

w2



κ(x,w) = −
[

0 0 1 0.2 0.4
]

x1

x2

x3

w1

w2





Simple Linear Example

The zero set Z of π(x,w) is a three dimensional subspace of
(x,w) space given by the equations

0 = x1 − w1

0 = x2 + w2

In the terminology of Wonham this is V∗ , the maximal A, B
invariant subspace in the kernel of C for combined x, w system.

The graph of the solution to the Francis equations is a two
dimensional subspace of (x,w) space given by the equations

0 = x1 − w1

0 = x2 + w2

0 = x3 + 0.2w1 + 0.4w2
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Simple Linear Example

We conclude that the zero set Z of π(x,w) can be larger than
the graph of x = φ(w) .

This happens in this example because the relative degree,
r = 2, is less than plant dimension, n = 3.

If they were equal, r = n , then the zero set Z of π(x,w) is
the graph of x = φ(w) .

In this example the spectrum of the optimal closed loop
dynamics on Z is 0, 0,−0.5 . The Francis dynamics on the
graph of x = φ(w) has spectrum 0, 0 so optimal trajectories in
Z converge to the graph of x = φ(w) according to the extra
eigenvalue −0.5 which is the zero of the plant. In other words
at each time step the magnitude of quantity
x3 + 0.2w1 + 0.4w2 is halved and its sign is flipped.
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Questions

Given a nonlinear plant and nonlinear exosystem

x+ = f(x, u,w)

w+ = a(w)

y = h(x, u,w)

• Is there a unique maximal solution to the gFBI equations
when there are constraints, g(x, u) ≥ 0 ?

• When do solutions to the gFBI converge to the graph of the
solution to the FBI equations?

• Can we use MPC techniques to compute the solution to the
infinite horizon optimal control problem?

• How do we choose the terminal sets X , W and the
terminal cost πT (x,w) ?
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Terminal Cost
As we mentioned above the ideal choice for the terminal cost
πT (x,w) is the solution π(x,w) to the infinite horizon optimal
control problem. But this hard to compute for several reasons.

• Solutions to DP equations are hard to compute when
n > 2.

• The combined state (x,w) has even higher dimension
n+ k.

• In MPC we seek the terminal cost πT (x) at least around
the operating point x0 = 0, u0 = 0 .

• In MPR we seek the terminal cost πT (x,w) at least around
the operating trajectory x0(t), w0(t) that satisfies the FBI
condition x0(t) = φ(w0(t)) .

• The infinite horizon optimal control problem is nonstandard
because we have no control over w . Standard software,
e.g., Matlab’s dare.m, cannot solve the resulting algebraic
Riccati equation even in the linear quadratic case.
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Two Stage Solution

Because of the last point, it is better to solve the DP equations
for infinite horizon optimal control problem in two stages.

First solve the FBI equations for x = φ(w), u = α(w) .

Then solve the DP equations of the transverse infinite horizon
optimal control problem in z = x− φ(w), v = u− α(w)
coordinates to get ρ(z, w), β(z, w) .

The desired solution is

π(x,w) = ρ(x− φ(w), w)

κ(x,w) = α(w) + β(x− φ(w), w)
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The desired solution is

π(x,w) = ρ(x− φ(w), w)

κ(x,w) = α(w) + β(x− φ(w), w)
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Approximate Solution of the FBI Equations by Taylor
Polynomials

Huang and Rugh showed that the Taylor polynomials of the
solution to the FBI equations can be solved around the
operating point (x0, w0) = (0, 0) by solving a sequence of linear
algebraic equations for the coefficients.

We have showed that the Taylor polynomials of the solution to
the FBI equations can be solved around an operating trajectory
(x0(t), w0(t)) by solving a sequence of linear differential
equations for the coefficients.

Increasing the degree of the Taylor polynomials can lead to a
larger domain of validity. But this is not always the case. High
degree approximations can be more inaccurate as we move away
from the operating sets.

If necessary these solutions can be patched together to get the
solution on a larger domain in (x,w) space
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Approximate Solution of the
Transverse DP Equations by Taylor Polynomials

Using Al’brecht’s method we can find the Taylor polynomials of
the solutions to the transverse DP equations around the
operating point (x0, w0) = (0, 0) . At the lowest level this
requires solving a discrete time linear quadratic regulator. Then
we solve a sequence of linear algebraic equations for the higher
coefficients.

Using Willemstein’s method we can find the Taylor polynomials
of the solutions to the transverse DP equations around the
operating trajectory (z0(t) = 0, w0(t)) . At the lowest level this
requires solving a discrete time varying linear quadratic
regulator. Then we solve a sequence of linear differential
equations for the higher coefficients.

If necessary these solutions can be patched together to get the
solution on a larger domain in (z, w) space
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Terminal Cost

Then we compose the polynomial solutions to the FBI and DP
equations to get a polynomial terminal cost, πT (x,w) .

We compute the set X ×W on which this πT (x,w) is a control
Lyapunov function and use MPR to solve the infinite horizon
optimal control problem.
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Example 2
Plant: x+
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Exosystem: [
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=
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a −b
b a
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]
Output: a2 + b2 = 1

y = x1 − w1

Relative degree r = 2.
Running Cost:

l(x, u,w) = (h(x1, w1))2 + (h
(2)
2 (x, u,w))2



Example 2

y(t) = x1(t)− w1(t), 0 ≤ t ≤ 50
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Example 2

y(t) = x1(t)− w1(t), 0 ≤ t ≤ 20, T = 4, |umpr(t)| ≤ 90
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Example 2

u(t), 0 ≤ t ≤ 20, T = 4, |umpr(t)| ≤ 90
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Closing Remark

We do not necessrily need w(t) to come from an exosystem to
do MPR. All we need is to know its values far enough in the
future to be able to compute the finite horizon cost.

min

t+T−1∑
s=t

l(x(t), u(t), w(t)) + πT (x(t+ T ), w(t+ T ))

An interesting question is then how do we choose the terminal

cost πT (x,w) .

Thanks!

Questions?
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