Energy Shaping and Quasi-linearization of Mechanical Systems

Dong Eui Chang
University of Waterloo, Canada

Int. Workshop on Perspectives in Dynamical Systems \& Control

Motivation

Objective

Linear Energy Shaping

Example

- The unstable system

$$
\ddot{x}-x=u, \quad E=\frac{1}{2} \dot{x}^{2}-\frac{1}{2} x^{2}
$$

is transformed by $u=-2 x-\dot{x}$ to exp. stable

$$
\ddot{x}+x=-\dot{x}, \quad \widehat{E}=\frac{1}{2} \dot{x}^{2}+\frac{1}{2} x^{2} .
$$

- The unstable system

$$
\ddot{x}-x=u, \ddot{y}+y=0, \quad E=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2}\left(-x^{2}+y^{2}\right)
$$

is transformed by $u=-2 x-\dot{x}$ to Lyap. stable

$$
\ddot{x}+x=-\dot{x}, \ddot{y}+y=0, \quad \widehat{E}=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2}\left(x^{2}+y^{2}\right) .
$$

Example

- Impossible to shape the energy function of

$$
\ddot{x}-x=u, \ddot{y}-y=0, \quad E=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+\frac{1}{2}\left(-x^{2}-y^{2}\right) .
$$

- Any criterion for energy shapability and stabilizability by dissipation?

$$
\begin{array}{ll}
\Sigma_{1}: & \ddot{x}-x=u, \\
\Sigma_{2}: & \ddot{x}-x=u, \quad \ddot{y}+y=0, \\
\Sigma_{3}: \quad \ddot{x}-x=u, \quad \ddot{y}+-y=0 .
\end{array}
$$

Controllability \& Stabilizability

$$
\dot{x}=A x+B u, \quad x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m} .
$$

- Controllability $\Leftrightarrow \operatorname{rank}\left[B, A B, \cdots, A^{n-1} B\right]=n$
- $\dot{x}=A x+B u$ is controllable \Rightarrow by feedback $u=-K x$, eigenvalues of ($A-B K$) can be arbitrarily assigned provided complex conjugates appear in pairs.
- Controllability \Rightarrow stabilizability.
- Let $k=\operatorname{rank}\left[B, A B, \cdots, A^{n-1} B\right]<n$. Then, $\exists z=P x$ with $z=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{n-k} \times \mathbb{R}^{k}$ such that

$$
\left[\begin{array}{c}
\dot{z}_{1} \\
\dot{z}_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{\mathrm{uc}} & 0 \\
A_{21} & A_{\mathrm{c}}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
B_{\mathrm{c}}
\end{array}\right] u
$$

where $\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)$ is a controllable pair.

Controllability \& Stabilizability for 2nd-Order Systems

$$
\begin{equation*}
\ddot{x}=A x+B u, \quad x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m} . \tag{1}
\end{equation*}
$$

- $\ddot{x}=A x+B u$ controllable $\Leftrightarrow \dot{x}=A x+B u$ controllable.
- Let $k=\operatorname{rank}\left[B, A B, \cdots, A^{n-1} B\right]$. Then, $\exists z=P x$ with $z=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2(n-k)} \times \mathbb{R}^{2 k}$ such that

$$
\left[\begin{array}{l}
\ddot{z}_{1} \\
\ddot{z}_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{\mathrm{uc}} & 0 \\
A_{21} & A_{\mathrm{c}}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
B_{\mathrm{c}}
\end{array}\right] u
$$

where $\left(A_{\mathrm{c}}, B_{\mathrm{c}}\right)$ is a controllable pair.

- For (1),

$$
\text { controllability } \Leftrightarrow \text { stabilizability. }
$$

Proof of "Controllability \Leftrightarrow Stabilizability"

$$
\ddot{x}=A x+B u \text {. }
$$

- Eigenvalues of $\ddot{x}=A x$:

Proof of "Controllability \Leftrightarrow Stabilizability"

$$
\ddot{x}=A x+B u \text {. }
$$

- Eigenvalues of $\ddot{x}=A x$:

- Suppose system is uncontrollable and consider decomposition:

$$
\left[\begin{array}{c}
\ddot{z}_{1} \\
\ddot{z}_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{\text {uc }} & 0 \\
A_{21} & A_{\mathrm{c}}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
B_{\mathrm{c}}
\end{array}\right] u .
$$

- The uncontrollable dynamics $\ddot{z}_{1}=A_{\text {uc }} z_{1}$ is of 2 nd order, so it cannot be Hurwitz. Hence, system is unstabilizable.

Stabilizability of Stable Mech. Systems by Dissipation

Consider a stable mechanical system with control u

$$
M \ddot{x}+S x=B u
$$

where $M=M^{T}>0$ and $S=S^{T}>0$.
The following are equivalent:

1. The system is controllable.
2. The system is stabilizable.
3. For any (dissipative) feedback control

$$
u=-D B^{T} \dot{x}, \quad D=D^{T}>0
$$

the closed-loop system

$$
M \ddot{x}+B D B^{T} \dot{x}+S x=0
$$

is exponentially stable.

Proof of $1 \Rightarrow 3$

Suppose $\lambda \in \mathbb{C}$ satisfies

$$
\left|\lambda^{2} M+\lambda B D B^{T}+S\right|=0 .
$$

Then, $\exists v \neq 0 \in \mathbb{C}^{n}$ such that

$$
v^{*}\left(\lambda^{2} M+\lambda B D B^{T}+S\right)=0 .
$$

Post-multiplying by v,

$$
a \lambda^{2}+b \lambda+c=0
$$

where $a=v^{*} M v>0, b=v^{*} B D B^{T} v \geq 0, c=v^{*} S v>0$.

$$
\begin{aligned}
b=0 & \Rightarrow v^{*} B=0, \quad v^{*}\left(\lambda^{2} M+S\right)=0 \\
& \Rightarrow v^{*}\left[\lambda^{2} M+S, B\right]=0 \\
& \Rightarrow \operatorname{rank}\left[\lambda^{2} M+S, B\right]<n \\
& \Rightarrow \text { uncontrollable (why? use PBC test). }
\end{aligned}
$$

Hence, $b>0$, and thus $\operatorname{Re}[\lambda]<0$, implying exponential stability.

Oscillatory Dynamics

Definition

1st-order system $\dot{x}=A x$ is called oscillatory if A is diagonalizable and each $\lambda(A)$ is a non-zero purely imaginary number.

Example

Two (1st and 4th) oscillatory and three non-oscillatory systems:

$$
\begin{gathered}
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) \\
\left(\begin{array}{ccc}
0 & -1 & \\
1 & 0 & \\
& & 0 \\
1 & -1 \\
& & 1
\end{array}\right),\left(\begin{array}{cccc}
0 & -1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
& & 0 & -1 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

Theorem
$\ddot{x}=A x$ is oscillatory $\Leftrightarrow \exists M=M^{T}>0$ and $S=S^{T}>0$ such that $A=-M^{-1} S$. In other words,

$$
\ddot{x}=A x \quad \Leftrightarrow \quad \ddot{x}=-M^{-1} S x \quad \Leftrightarrow \quad M \ddot{x}+S x=0 .
$$

Energy Shaping of Linear Mechanical Systems

Linear mechanical system:

$$
\Sigma: \quad M \ddot{q}+S q=B u,
$$

where $M=M^{T}>0, S=S^{T}, q \in \mathbb{R}^{n}$.
Objective 1 (Energy Shaping): Find position feedback $u=-K q+v$ to transform Σ to a stable mechanical system

$$
\widehat{\Sigma}: \quad \widehat{M} \ddot{q}+\widehat{S} q=\widehat{B} v
$$

where

$$
\widehat{M}=\widehat{M}^{T}>0, \quad \widehat{S}=\widehat{S}^{T}>0
$$

Energy Shaping of Linear Mechanical Systems

Linear mechanical system:

$$
\Sigma: \quad M \ddot{q}+S q=B u
$$

where $M=M^{T}>0, S=S^{T}, q \in \mathbb{R}^{n}$.
Objective 1 (Energy Shaping): Find position feedback $u=-K q+v$ to transform Σ to a stable mechanical system

$$
\widehat{\Sigma}: \quad \widehat{M} \ddot{q}+\widehat{S} q=\widehat{B} v
$$

where

$$
\widehat{M}=\widehat{M}^{T}>0, \quad \widehat{S}=\widehat{S}^{T}>0
$$

Answer: It is possible $\Leftrightarrow \Sigma$ is controllable or its uncontrollable dynamics is oscillatory.

$$
\left[\begin{array}{l}
\ddot{z}_{1} \\
\ddot{z}_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{\mathrm{uc}} & 0 \\
A_{21} & A_{\mathrm{c}}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
B_{\mathrm{c}}
\end{array}\right] u .
$$

Energy Shaping of Linear Mechanical Systems

Linear mechanical system:

$$
\Sigma: \quad M \ddot{q}+S q=B u
$$

where $M=M^{T}>0, S=S^{T}, q \in \mathbb{R}^{n}$.
Objective 1 (Energy Shaping): Find position feedback $u=-K q+v$ to transform Σ to a stable mechanical system

$$
\widehat{\Sigma}: \quad \widehat{M} \ddot{q}+\widehat{S} q=\widehat{B} v
$$

where

$$
\widehat{M}=\widehat{M}^{T}>0, \quad \widehat{S}=\widehat{S}^{T}>0
$$

Answer: It is possible $\Leftrightarrow \Sigma$ is controllable or its uncontrollable dynamics is oscillatory.

$$
\left[\begin{array}{l}
\ddot{z}_{1} \\
\ddot{z}_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{\mathrm{uc}} & 0 \\
A_{21} & A_{\mathrm{c}}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
B_{\mathrm{c}}
\end{array}\right] u .
$$

Objective 2 (Stabilization by Dissipation): Can dissipative feedback $v=-D \widehat{B}^{T} \dot{q}$ exponentially stabilize the energy-shaped system $\widehat{\Sigma}$?

Energy Shaping of Linear Mechanical Systems

Linear mechanical system:

$$
\Sigma: \quad M \ddot{q}+S q=B u
$$

where $M=M^{T}>0, S=S^{T}, q \in \mathbb{R}^{n}$.
Objective 1 (Energy Shaping): Find position feedback $u=-K q+v$ to transform Σ to a stable mechanical system

$$
\widehat{\Sigma}: \quad \widehat{M} \ddot{q}+\widehat{S} q=\widehat{B} v
$$

where

$$
\widehat{M}=\widehat{M}^{T}>0, \quad \widehat{S}=\widehat{S}^{T}>0
$$

Answer: It is possible $\Leftrightarrow \Sigma$ is controllable or its uncontrollable dynamics is oscillatory.

$$
\left[\begin{array}{l}
\ddot{z}_{1} \\
\ddot{z}_{2}
\end{array}\right]=\left[\begin{array}{cc}
A_{\mathrm{uc}} & 0 \\
A_{21} & A_{\mathrm{c}}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
B_{\mathrm{c}}
\end{array}\right] u .
$$

Objective 2 (Stabilization by Dissipation): Can dissipative feedback $v=-D \widehat{B}^{T} \dot{q}$ exponentially stabilize the energy-shaped system $\widehat{\Sigma}$?
Answer: Yes $\Leftrightarrow \Sigma$ is controllable.

Summary

	controllable	oscillatory uncontrollable dynamics	non-oscillatory uncontrollable dynamics
energy shapability	Yes	Yes	No
stabilizability by dissipation after energy shaping	Yes	No	N/A

- not energy-shapable

$$
\ddot{x}-x=0, \quad \ddot{y}-y=u
$$

- energy-shapable, but not stabilizable by dissipation after shaping

$$
\ddot{x}+x=0, \quad \ddot{y}-y=u
$$

- energy shapable, and stabilizable by dissipation after shaping

$$
\ddot{x}+x+y=0, \quad \ddot{y}+x-y=u
$$

Non-Linear Energy Shaping

"Simple" Mechanical Systems

- Lagrangian $L(q, \dot{q})=K(q, \dot{q})-V(q)=\frac{1}{2} m(q)_{i j} \dot{q}^{i} \dot{q}{ }^{j}-V(q)$.
- Total Energy: $E(q, \dot{q})=K(q, \dot{q})+V(q)$
- Force: $F=\left(F_{1}, \cdots, F_{n}\right) \in \mathbb{R}^{n}$ (actually, $T^{*} Q$-valued).
- Equations of motion:

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial L}{\partial \dot{q}^{i}}-\frac{\partial L}{\partial q^{i}}=F_{i}, \quad i=1, \ldots, n \\
\Leftrightarrow & m_{i j} \ddot{q}^{j}+[j k, i] \dot{q}^{j} \dot{q}^{k}+\frac{\partial V}{\partial q^{i}}=F_{i}, \quad i=1, \ldots, n \\
\Leftrightarrow & \ddot{q}^{i}+\Gamma_{j k}^{i} \dot{q}^{j} \dot{q}^{k}+m^{i j} \frac{\partial V}{\partial q^{j}}=m^{i j} F_{j}, \quad i=1, \ldots, n
\end{aligned}
$$

where

$$
\begin{aligned}
{[j k, i] } & =\frac{1}{2}\left(\frac{\partial m_{i k}}{\partial q^{j}}+\frac{\partial m_{j i}}{\partial q^{k}}-\frac{\partial m_{j k}}{\partial q^{i}}\right), \\
\Gamma_{j k}^{i} & =m^{i \ell}[j k, \ell] .
\end{aligned}
$$

Force Types

Total energy is $E(q, \dot{q})=K(q, \dot{q})+V(q)$. Along the trajectory of the system we have

$$
\begin{aligned}
& \frac{d E}{d t}=\langle F, \dot{q}\rangle \\
& \text { rate of change in energy }=\text { power. }
\end{aligned}
$$

Normally, $F: T Q \rightarrow T^{*} Q$, i.e., $F=F(q, \dot{q})$.

- F is called dissipative if

$$
\langle F(q, \dot{q}), \dot{q}\rangle \leq 0 \quad \forall(q, \dot{q}) \in T Q
$$

- F is called gyroscopic if

$$
\langle F(q, \dot{q}), \dot{q}\rangle=0 \quad \forall(q, \dot{q}) \in T Q
$$

- F is called locally dissipative if $\langle F(q, \dot{q}), \dot{q}\rangle \leq 0$ for all (q, \dot{q}) in neighborhood of $(0,0)$.

Gyroscopic Force Quadratic in Velocity

$$
F(q, \dot{q})=\left[\begin{array}{c}
C_{i j 1}(q) \dot{q}^{i} \dot{q}^{j} \\
\vdots \\
C_{i j n}(q) \dot{q}^{i} \dot{q}^{j}
\end{array}\right], \quad C_{i j k}=C_{j i k} .
$$

Theorem

1. Quadratic dissipative force $=$ quadratic gyroscopic force.
2. F is gyroscopic force iff

$$
C_{i j k}=C_{j i k}, \quad C_{i j k}+C_{j k i}+C_{k i j}=0 .
$$

Proof.

$\langle F(q, \dot{q}), \dot{q}\rangle=C_{i j k} \dot{q}^{i} \dot{q}^{j} \dot{q}^{k} \leq 0$. Being cubic in \dot{q},

$$
C_{i j k} \dot{q}^{i} \dot{q}^{j} \dot{q}^{k}=0 .
$$

Hence, $\operatorname{Sym}\left(C_{i j k}\right)=0$, or

$$
C_{i j k}+C_{j k i}+C_{k i j}+C_{i k j}+C_{k j i}+C_{j i k}=0 .
$$

Not-So-Good Tradition in Robotics

- Many robotics books write equations of motion in the following form

$$
M(q) \ddot{q}+C(q, \dot{q}) \dot{q}+d V=F
$$

and then claim that

$$
\dot{M}-2 C
$$

is a skew-symmetric matrix. They then state that this property implies energy conservation when $F=0$.

- However, this skew-symmetric property is of little use. One can show energy conservation very simply without this observation of skew-symmetric property of the strange quantity " $\dot{M}-2 C$."
- This unfortunate tradition comes from the unnecessary effort to put a $(0,3)$ tensor into " matrix form" .

Objective \& Strategy

Matching

$$
\underbrace{\underbrace{1, \ldots, n_{1}}_{\alpha, \beta, \gamma, \ldots} ; \underbrace{n_{1}+1, \ldots, n}_{a, b, c, \ldots}}_{i, j, k \ldots}
$$

Given cL system with $L=\frac{1}{2} m_{i j} \dot{q}^{i} \dot{q}^{j}-V(q)$ with $\left(n-n_{1}\right)$ control u_{a} :

$$
\left\{\begin{array}{l}
m_{\alpha j} \ddot{q}^{j}+[j k, \alpha] \dot{q}^{j} \dot{q}^{k}+\frac{\partial V}{\partial q^{\alpha}}=0 \tag{2}\\
m_{a j} \ddot{q}^{j}+[j k, a] \dot{q}^{j} \dot{q}^{k}+\frac{\partial V}{\partial q^{a}}=u_{a}
\end{array}\right.
$$

find a feedback equivalent cL system with $\widehat{L}=\frac{1}{2} \widehat{m}_{i j} \dot{q}^{i} \dot{q}^{j}-\widehat{V}$:

$$
\begin{equation*}
\widehat{m}_{i j} \ddot{q}^{j}+\widehat{[j k, i]} \dot{q}^{j} \dot{q}^{k}+\frac{\partial \widehat{V}}{\partial q^{i}}=\widehat{C}_{j k i} \dot{q}^{j} \dot{q}^{k}+\widehat{u}_{i} \tag{3}
\end{equation*}
$$

where $\widehat{u} \in \widehat{W}$ of $\operatorname{dim} \widehat{W}=n-n_{1}, \widehat{[j k, i]}$ are Christoffel symbols of \widehat{m}, and

$$
\widehat{C}_{i j k}=\widehat{C}_{j i k}, \quad \widehat{C}_{i j k}+\widehat{C}_{j k i}+\widehat{C}_{k i j}=0 .
$$

Matching Conditions

Solving (3) for \ddot{q}^{j}, substituting them into (2), and collecting terms of equal degrees in \dot{q}
kinetic matching: $\quad m_{\alpha k} \widehat{m}^{k l}\left(\widehat{[i j, l]}-\widehat{C}_{i j l}\right)-[i j, \alpha]=0$,

$$
\begin{equation*}
\text { potential matching: } \quad m_{\alpha k} \widehat{m}^{k l} \frac{\partial \widehat{V}}{\partial q^{l}}-\frac{\partial V}{\partial q^{\alpha}}=0 \tag{4}
\end{equation*}
$$

control bundle matching: $\left\langle\widehat{W}, m_{\alpha k} \widehat{m}^{k l} \frac{\partial}{\partial q^{l}}\right\rangle=0$
and

$$
u_{a}=[j k, a] \dot{q}^{j} \dot{q}^{k}+\frac{\partial V}{\partial q^{a}}-m_{a r} \widehat{m}^{r l}\left(\widehat{[j k, l]} \dot{q}^{j} \dot{q}^{k}+\frac{\partial \widehat{V}}{\partial q^{l}}-\widehat{C}_{j k l} \dot{q}^{j} \dot{q}^{k}-\widehat{u}_{l}\right) .
$$

where \# of PDE's in kinetic matching $=\frac{n_{1} n(n+1)}{2}$.
Hence, need to solve PDEs for $\left(\widehat{m}_{i j}\right)=\left(\widehat{m}_{j i}\right)>0, \widehat{V}$ with $D^{2} \widehat{V}\left(q_{e}\right)>0$, and gyroscopic $\widehat{C}_{i j k}$. Then \widehat{W} is uniquely determined as $\widehat{W}=\widehat{m} m^{-1} \operatorname{span}\left\{d q^{a}\right\}=\operatorname{span}\left\{m^{a i} \widehat{m}_{i j} d q^{j}\right\}$.

Decomposition and Reduction of Kinetic Matching PDEs

Decompose the $\frac{n_{1} n(n+1)}{2}$ kinetic matching PDEs

$$
m_{\alpha k} \widehat{m}^{k l}\left(\widehat{[i j, l]}-\widehat{C}_{i j l}\right)-[i j, \alpha]=0
$$

into two sets: one without $\widehat{C}_{i j k}$ and the other with $\widehat{C}_{i j k}$. Let

$$
\begin{align*}
& \widehat{A}_{i j k}=m_{i p} m_{j q} m_{k r} \widehat{m}^{p l} \widehat{m}^{q s} \widehat{m}^{r t} \widehat{l}_{l s t}, \tag{7}\\
& \widehat{S}_{i j k}=m_{i p} m_{j q} \widehat{m}^{p l} \widehat{m}^{q s}\left(m_{k r} \widehat{m}^{r t}[l s, t]-[l s, k]\right) . \tag{8}
\end{align*}
$$

The kinetic matching (4) is equivalent to

$$
\begin{equation*}
\widehat{A}_{i j \alpha}=\widehat{S}_{i j \alpha} . \tag{9}
\end{equation*}
$$

Write the Jacobi identities for $\widehat{A}_{i j k}$ in the following four sets of equations:

$$
\begin{array}{r}
\widehat{A}_{\alpha \beta \gamma}+\widehat{A}_{\beta \gamma \alpha}+\widehat{A}_{\gamma \alpha \beta}=0, \\
\widehat{A}_{a \beta \gamma}+\widehat{A}_{\beta \gamma a}+\widehat{A}_{\gamma a \beta}=0, \\
\widehat{A}_{a b \gamma}+\widehat{A}_{b \gamma a}+\widehat{A}_{\gamma a b}=0, \\
\widehat{A}_{a b c}+\widehat{A}_{b c a}+\widehat{A}_{c a b}=0 . \tag{13}
\end{array}
$$

Decomposition and Reduction of Kinetic Matching PDE's

By (9), eqns (10) - (13) are equivalent to

$$
\begin{array}{r}
\widehat{S}_{\alpha \beta \gamma}+\widehat{S}_{\beta \gamma \alpha}+\widehat{S}_{\gamma \alpha \beta}=0, \\
\widehat{S}_{a \beta \gamma}+\widehat{A}_{\beta \gamma a}+\widehat{S}_{\gamma a \beta}=0, \\
\widehat{S}_{a b \gamma}+\widehat{A}_{b \gamma a}+\widehat{A}_{\gamma a b}=0, \\
\widehat{A}_{a b c}+\widehat{A}_{b c a}+\widehat{A}_{c a b}=0 . \tag{17}
\end{array}
$$

where

$$
\widehat{S}_{i j k}=m_{i p} m_{j q} \widehat{m}^{p l} \widehat{m}^{q s}\left(m_{k r} \widehat{m}^{r t} \frac{1}{2}\left(\frac{\partial \widehat{m}_{t s}}{\partial q^{l}}+\frac{\partial \widehat{m}_{t l}}{\partial q^{s}}-\frac{\partial \widehat{m}_{l s}}{\partial q^{t}}\right)-[l s, k]\right) .
$$

1. Solve PDEs (14) for $\widehat{m}_{i j}$ where $\#$ of PDEs in (14)
$=\frac{n_{1}\left(n_{1}+1\right)\left(n_{1}+2\right)}{6} \leq \frac{n_{1} n(n+1)}{2}=\#$ of orignal kinetic PDEs in (4). (${ }^{\prime}=$ ' holds iff $n_{1}=n-1$, i.e., underactuation degree 1)
2. $\widehat{A}_{i j \alpha}=\widehat{S}_{i j \alpha}$ from (9).
3. $\widehat{A}_{\beta \gamma a}=-\widehat{S}_{a \beta \gamma}-\widehat{S}_{\gamma a \beta}$ and $\widehat{A}_{\gamma a b}=\widehat{A}_{b \gamma a}=-\frac{1}{2} \widehat{S}_{a b \gamma}$ from (15) and (16).
4. Choose any $\widehat{A}_{a b c}$'s such that (17) holds. E.g. $\widehat{A}_{a b c}=0$.
5. Compute $\widehat{C}_{i j k}$ from (7).

Further "Reduction" of Total Matching PDEs

- Total $\left(\frac{n_{1}\left(n_{1}+1\right)\left(n_{1}+2\right)}{6}+n_{1}\right)$ PDE's for $\left(\frac{n(n+1)}{2}+1\right)$ unknowns, $\widehat{m}_{i j}$ and \widehat{V} :

$$
\widehat{S}_{\alpha \beta \gamma}+\widehat{S}_{\beta \gamma \alpha}+\widehat{S}_{\gamma \alpha \beta}=0 ; \quad m_{\alpha k} \widehat{m}^{k l} \frac{\partial \widehat{V}}{\partial q^{l}}-\frac{\partial V}{\partial q^{\alpha}}=0
$$

where

$$
\widehat{S}_{\alpha \beta \gamma}=m_{\alpha p} m_{\beta q} \widehat{m}^{p l} \widehat{m}^{q s}\left(m_{\gamma r} \widehat{m}^{r t} \frac{1}{2}\left(\frac{\partial \widehat{m}_{t s}}{\partial q^{l}}+\frac{\partial \widehat{m}_{t l}}{\partial q^{s}}-\frac{\partial \widehat{m}_{l s}}{\partial q^{t}}\right)-[l s, \gamma]\right)
$$

- Let $\widehat{T}=m \widehat{m}^{-1} m$, so that finding $\widehat{T} \Leftrightarrow$ finding \widehat{m}. The, matching PDEs become
- Total $\left(\frac{n_{1}\left(n_{1}+1\right)\left(n_{1}+2\right)}{6}+n_{1}\right)$ PDEs for $\left(\frac{n_{1}\left(2 n-n_{1}+1\right)}{2}+1\right)$ unknowns, $\widehat{T}_{\alpha i}$ and \widehat{V} :

$$
\widehat{J}_{\alpha \beta \gamma}+\widehat{J}_{\beta \gamma \alpha}+\widehat{J}_{\gamma \alpha \beta}=0 ; \quad \widehat{T}_{\alpha i} m^{i l} \frac{\partial \widehat{V}}{\partial q^{l}}-\frac{\partial V}{\partial q^{\alpha}}=0
$$

where

$$
\widehat{J}_{\alpha \beta \gamma}=\frac{1}{2} \widehat{T}_{\gamma s} m^{s k}\left(\frac{\partial \widehat{T}_{\alpha \beta}}{\partial q^{k}}-\widehat{T}_{\alpha i} \Gamma_{\beta k}^{i}-\widehat{T}_{\beta i} \Gamma_{\alpha k}^{i}\right)
$$

Superiority of use of \widehat{T} to that of \widehat{m}

\widehat{T}	\widehat{m}
$\widehat{J}_{\alpha \beta \gamma}+\widehat{J}_{\beta \gamma \alpha}+\widehat{J}_{\gamma \alpha \beta}=0$,	$\widehat{S}_{\alpha \beta \gamma}+\widehat{S}_{\beta \gamma \alpha}+\widehat{S}_{\gamma \alpha \beta}=0$
$\widehat{J}_{\alpha \beta \gamma}=\frac{1}{2} \widehat{T}_{\gamma s} m^{s k}\left(\frac{\partial \widehat{T}_{\alpha \beta}}{\partial q^{k}}-\widehat{T}_{\alpha i} \Gamma_{\beta k}^{i}-\widehat{T}_{\beta i} \Gamma_{\alpha k}^{i}\right)$	$\widehat{S}_{\alpha \beta \gamma}=m_{\alpha p} m_{\beta q} \widehat{m}^{p l} \widehat{m}^{q s}\left(m_{\gamma r} \widehat{m}^{r t}[l s, t]-[l s, \gamma]\right)$
$\frac{n_{1}\left(2 n-n_{1}+1\right)}{2}$ unknowns	$\frac{n(n+1)}{2}$ unknowns
$\frac{\widehat{T}_{\alpha i}}{\frac{n_{1}\left(n_{1}+1\right)}{2} n \text { first-order partials }}$	
$\frac{\partial \widehat{T}_{\alpha \beta}}{\partial q^{k}}$	$\frac{n(n+1)}{2} n$ first-order partials

Illustration: Superiority of \widehat{T} to \widehat{m}

\widehat{m}

Energy Shaping for Systems with Underactuation Degree 1

 2 Matching PDEs for \widehat{V} and $\widehat{T}_{11}, \ldots, \widehat{T}_{1 n}$ (and $\widehat{T}_{a b}, 2 \leq a, b \leq n$).$$
\widehat{T}_{1 j} m^{j k}\left(\frac{\partial \widehat{T}_{11}}{\partial q^{k}}-2 \widehat{T}_{1 i} \Gamma_{1 k}^{i}\right)=0 ; \quad \widehat{T}_{1 i} m^{i l} \frac{\partial \widehat{V}}{\partial q^{l}}-\frac{\partial V}{\partial q^{1}}=0 .
$$

Theorem (Energy Shaping)
Σ is energy-shapable
\Leftrightarrow its linearization Σ^{ℓ} is energy shapable
$\Leftrightarrow \Sigma^{\ell}$ is controllable or its uncontrollable dynamics is oscillatory.

Energy Shaping for Systems with Underactuation Degree 1

Theorem (Energy Shaping)

Σ is energy-shapable
\Leftrightarrow its linearization Σ^{ℓ} is energy shapable. (no hat here!)
$\Leftrightarrow \Sigma^{\ell}$ is controllable or its uncontrollable dynamics is oscillatory.(no hat here!)

Theorem (Stabilization by Dissipation after Energy Shaping)

Energy-shaped $\widehat{\Sigma}$ is exp. stabilized. by any linear dissipative feedback of full rank \Leftrightarrow the linearization Σ^{ℓ} of the original system Σ is controllable. (no hat here!)

Example: PVTOL

Controlled Lagrangian dynamics of a planar vertical takeoff and landing (PVTOL) aircraft

$$
\left[\begin{array}{l}
\ddot{x} \\
\ddot{y} \\
\ddot{\theta}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\frac{g}{c} \sin \theta
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\frac{1}{\epsilon} \cos \theta & \frac{1}{\epsilon} \sin \theta
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

where $g, c>0, \epsilon \neq 0$, and $q=(x, y, \theta) \in \mathbb{R}^{3}$.

- Equilibria $\left(x_{e}, y_{e}, 0\right)$.
- Degree of under-actuation $=1$.
- Linearization at $\left(x_{e}, y_{e}, 0\right)$ is controllable.
- Therefore, it can be energy-shaped and then be exponentially stabilized by any linear symmetric dissipative feedback force of full rank.

More Examples

Linearization of each is controllable, so exponential stabilization by energy shaping + dissipation is possible. See Ng, Chang and Song[2013] for detailed computation.

References on Energy Shaping

- D.E. Chang, "Some results on stabilizability of controlled Lagrangian systems by energy shaping," Proc. 17th IFAC World Congress, Seoul, Korea, 2008.
- D.E. Chang, "The method of controlled Lagrangians: Energy plus force shaping," SIAM J. Control and Optimization, 48 (8), 4821 - 4845, 2010.
- D.E. Chang, "Stabilizability of controlled Lagrangian systems of two degrees of freedom and one degree of under-actuation," IEEE Trans. Automatic Control, 55 (8), 1888 - 1893, 2010.
- D.E. Chang, "Pseudo-energy shaping for the stabilization of a class of second-order systems," International Journal of Robust and Nonlinear Control, 22(18), 1999 - 2013, 2012.
- W. Ng, D.E. Chang and G. Labahn, "Energy shaping for systems with two degrees of underactuation and more than three degrees of freedom," SIAM J. Control and Optimization, 51 (2), 881 - 905, 2013.
- W. Ng, D.E. Chang and S. Song, "Four representative applications of the energy shaping method for controlled Lagrangian systems," Journal of Electrical Engineering \& Technology, 8 (6), 1579 - 1589, 2013.
- D.E. Chang, "On the method of interconnection damping assignment and passivity-based control for the stabilization of mechanical systems," Preprint, arXiv:1301.4285.

Quasi-Linearization of Mechanical Systems

Equations of Motion of Mechanical System

Lagrangian

$$
L(x, \dot{x})=\frac{1}{2} g_{i j} \dot{x}^{i} \dot{x}^{j}-V(x)
$$

Equations of Motion:

$$
\ddot{x}^{i}+\Gamma_{j k}^{i} \dot{x}^{j} \dot{x}^{k}+g^{i j} \partial_{j} V=0
$$

or

$$
\begin{aligned}
& \frac{d}{d t} x^{i}=\dot{x}^{i} \\
& \frac{d}{d t} \dot{x}^{i}=-\Gamma_{j k}^{i} \dot{x}^{j} \dot{x}^{k}-g^{i j} \partial_{j} V .
\end{aligned}
$$

\exists coordinate system in which $\Gamma_{j k}^{i}=0 \Leftrightarrow R=0$.

Quasilinearization

Linear transformation of velocity \dot{x} :

$$
\begin{equation*}
\left(x^{i}, \dot{x}^{i}\right) \mapsto\left(x^{i}, v^{i}=A_{j}^{i}(x) \dot{x}^{j}\right) \tag{18}
\end{equation*}
$$

Quasilinearization

Linear transformation of velocity \dot{x} :

$$
\begin{equation*}
\left(x^{i}, \dot{x}^{i}\right) \mapsto\left(x^{i}, v^{i}=A_{j}^{i}(x) \dot{x}^{j}\right) \tag{18}
\end{equation*}
$$

Equations of motion in (x, v) coordinates:

$$
\begin{aligned}
\dot{x}^{i} & =B_{j}^{i} v^{j} \\
\dot{v}^{i} & =\frac{1}{2}\left(\partial_{k} A_{j}^{i}+\partial_{j} A_{k}^{i}-2 A_{l}^{i} \Gamma_{j k}^{l}\right) \dot{x}^{j} \dot{x}^{k}-A_{j}^{i} g^{j k} \partial_{k} V
\end{aligned}
$$

where B_{j}^{i} be the inverse of A_{j}^{i}, i.e., $B_{j}^{i} A_{k}^{j}=\delta_{k}^{i}$.

Quasilinearization

Linear transformation of velocity \dot{x} :

$$
\begin{equation*}
\left(x^{i}, \dot{x}^{i}\right) \mapsto\left(x^{i}, v^{i}=A_{j}^{i}(x) \dot{x}^{j}\right) \tag{18}
\end{equation*}
$$

Equations of motion in (x, v) coordinates:

$$
\begin{aligned}
\dot{x}^{i} & =B_{j}^{i} v^{j}, \\
\dot{v}^{i} & =\frac{1}{2}\left(\partial_{k} A_{j}^{i}+\partial_{j} A_{k}^{i}-2 A_{l}^{i} \Gamma_{j k}^{l}\right) \dot{x}^{j} \dot{x}^{k}-A_{j}^{i} g^{j k} \partial_{k} V,
\end{aligned}
$$

where B_{j}^{i} be the inverse of A_{j}^{i}, i.e., $B_{j}^{i} A_{k}^{j}=\delta_{k}^{i}$.
Equations of motion become

$$
\begin{aligned}
& \dot{x}^{i}=B_{j}^{i} v^{j}, \\
& \dot{v}^{i}=\quad-A_{j}^{i} g^{j k} \partial_{k} V,
\end{aligned}
$$

if and only if

$$
\begin{equation*}
\partial_{k} A_{j}^{i}+\partial_{j} A_{k}^{i}-2 A_{\ell}^{i} \Gamma_{j k}^{\ell}=0 \tag{19}
\end{equation*}
$$

Quasilinearizability in terms of Killing Vector Fields

A vector field $X=X^{i} \partial_{i}$ on a Riemannian manifold (M, g) is called a Killing (vector) field if it satisfies the Killing equation

$$
L_{X} g=0
$$

or in coordinates

$$
\partial_{k} \alpha_{j}+\partial_{j} \alpha_{k}-2 \alpha_{\ell} \Gamma_{j k}^{\ell}=0,
$$

where $\alpha=g^{\mathrm{b}} X=g_{j k} X^{k} d x^{j}$.

Theorem

Quasilinearizability:

$$
\partial_{k} A_{j}^{i}+\partial_{j} A_{k}^{i}-2 A_{\ell}^{i} \Gamma_{j k}^{\ell}=0
$$

\Leftrightarrow existence of n linearly independent Killing fields $\left(\mathfrak{i s o}(M, g)_{p}=T_{p} M\right)$.

Sufficient Conditions for Quasilinearizability

Theorem

Let p be a point in (M, g).

1. Quasilinearization is possible around $p \in M$ if $\nabla R=0$ in a neighborhood of p (i.e., local symmetricity).
2. Suppose $\operatorname{dim} M=2$. Then, quasilinearization is possible around $p \in M$ if and only if the scalar curvature R_{S} of g is constant in a neighborhood of p.

Remark:

- Easy to verify by differentiation only (c.f. Venkatraman, Ortega, Sarras, and van der Schaft [2010]).
- More general than the condition $R=0$ that was independently made use of by Bedrossian [1992] and Spring [1992].

Integrability Conditions of Killing Equation [Yano]

The Killing equation and all of its integrability conditions constitute the following involutive system of PDEs:

$$
\left\{\begin{array}{l}
L_{X} g=0 \\
L_{X} \nabla=0 \\
L_{X} R=0 \\
L_{X}\left(\nabla^{k} R\right)=0, \quad k=1,2,3, \ldots
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
g\left(\nabla_{Y} X, Z\right)+g\left(Y, \nabla_{Z} X\right)=0 \\
\left(\nabla^{2} X\right)(Y, Z)+R(X, Y) Z=0 \\
\left(\nabla_{X} R\right)(Y, Z) U-\nabla_{R(Y, Z) U} X+R\left(\nabla_{Y} X, Z\right) U+R\left(Y, \nabla_{Z} X\right) U+R(Y, Z) \nabla_{U} X=0 \\
L_{X}\left(\nabla^{k} R\right)=0, \quad k=1,2,3, \ldots
\end{array}\right.
$$

for all $Y, Z, U \in \mathfrak{X}(M)$.
The map $X \in \mathfrak{i s o}(M, g) \mapsto\left(\left.X\right|_{p},\left.(\nabla X)\right|_{p}\right)$ is 1-1 and linear.

- $\nabla R=0 \Rightarrow \mathfrak{i s o}(M, g)(p)=T_{p} M$.
- $R_{S}=$ const. $\Leftrightarrow \mathfrak{i s o}(M, g)(p)=T_{p} M$ for $\operatorname{dim} M=2$.

Mechanical Meaning of Quasilinearizability

For a Lagrangian $L=\frac{1}{2} g(\dot{x}, \dot{x})$,

$$
\partial_{k} \alpha_{j}+\partial_{j} \alpha_{k}-2 \alpha_{\ell} \Gamma_{j k}^{\ell}=0
$$

\Leftrightarrow

$$
\alpha_{i} \dot{x}^{i}(t)=\text { constant in } t .
$$

Namely, quasilinearizability is equivalent to the existence of n independent first integrals that are linear in the velocity.

For example, angular momentum conservation in the free rigid body dynamics implies quasilinearizability. Indeed,

$$
\begin{aligned}
\dot{\mathbf{R}} & =\mathbf{R}\left(\mathbb{I}^{-1} \mathbf{R}^{-1} \pi\right)^{\wedge} \\
\dot{\pi} & =0_{3} .
\end{aligned}
$$

Inverted Pendulum on a Cart

Scalar curvature $R_{S}=0 \Rightarrow$ quasilinearizable.

Mass and Beam

Scalar curvature $R_{S}=\frac{2 I}{\left(M x^{2}+1\right)^{2}}$ is not constant \Rightarrow NOT quasilinearizable.

Pendubot

non-constant scalar curvature \Rightarrow NOT quasilinearizable.

Furuta Pendululm

non-constant scalar curvature \Rightarrow NOT quasilinearizable.

Spherical Pendulum on a puck

$\mathfrak{i s o}(M, g)$ is generated by

$$
\begin{aligned}
& X_{1}=\frac{\partial}{\partial x} \\
& X_{2}=\frac{\partial}{\partial y} \\
& X_{3}=Y \frac{\partial}{\partial X}-X \frac{\partial}{\partial Y}+y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y} \\
& X_{4}=Y \frac{\partial}{\partial X}-X \frac{\partial}{\partial Y}-(\epsilon y+Y) \frac{\partial}{\partial x}+(\epsilon x+X) \frac{\partial}{\partial Y},
\end{aligned}
$$

where $\epsilon=\ell / m$. $\mathfrak{i s o}(M, g)(p)$ has at most rank 3 at every point p, so the dynamics are not quasilinearizable.

References on Quasi-Linearization of Mechanical Systems

- D. Koditschek, "Robot kinematics and coordinate transformations," in Proc. IEEE Conf. on Decision and Control, Ft. Lauderdale, FL, Dec. 1985, 1 - 4.
- N.S. Bedrossian, "Linearizing coordinate transformation and Riemannian curvature," in Proc. IEEE Conf. Dec. Control, Tucson, AZ, Dec. 1992, 80-85.
- M.W. Spong, "Remark on robot dynamics: Canonical transformations and Riemannian geometry," in Proc. IEEE Int. Conf. Robot. Autom., Nice, France, May 1992, 554 - 599.
- R. Brockett, "Beijing Lectures on Nonlinear Control Systems," in Lectures on Systems, Control, and Information: Lectures at the Morningside Center of Mathematics, Ed. by L. Guo and S.S.-T. Yau, American Mathematical Society, 2000.
- K.D. Do, Z.P. Jiang, J. Pan and H. Nijmeijer, "A global output-feedback controller for stabilization and tracking of underactuated ODIN: A spherical underwater vehicle," Automatica, 40 (1), 117 - 124, 2004.
- A. Venkatraman, R. Ortega, I. Sarras, and A. van der Schaft, "Speed observation and position feedback stabilization of partially linearizable mechanical systems," IEEE Trans. Automatic Control, 55 (5), 1059 - 1074, 2010.
- D.E. Chang and R.G. McLenaghan, Geometric Criteria for the Quasi-Linearization of the Equations of Motion of Mechanical Systems, IEEE Trans. Automatic Control, 58 (4), 1046 - 1050, 2013.

