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Objective

Controller Dissipative Force
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Example

▸ The unstable system

ẍ − x = u, E =
1
2
ẋ2

−
1
2
x2

is transformed by u = −2x − ẋ to exp. stable

ẍ + x = −ẋ, Ê =
1
2
ẋ2

+
1
2
x2.

▸ The unstable system

ẍ − x = u, ÿ + y = 0, E =
1
2
(ẋ2

+ ẏ2
) +

1
2
(−x2

+ y2
)

is transformed by u = −2x − ẋ to Lyap. stable

ẍ + x = −ẋ, ÿ + y = 0, Ê =
1
2
(ẋ2

+ ẏ2
) +

1
2
(x2

+ y2
).
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Example

▸ Impossible to shape the energy function of

ẍ − x = u, ÿ−y = 0, E =
1
2
(ẋ2

+ ẏ2
) +

1
2
(−x2

−y2
).

▸ Any criterion for energy shapability and stabilizability by dissipation?

Σ1 ∶ ẍ − x = u,

Σ2 ∶ ẍ − x = u, ÿ + y = 0,
Σ3 ∶ ẍ − x = u, ÿ + −y = 0.
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Controllability & Stabilizability

ẋ = Ax +Bu, x ∈ Rn, u ∈ Rm.

▸ Controllability ⇔ rank[B,AB,⋯,An−1B] = n

▸ ẋ = Ax +Bu is controllable ⇒ by feedback u = −Kx, eigenvalues of
(A −BK) can be arbitrarily assigned provided complex conjugates
appear in pairs.

▸ Controllability ⇒ stabilizability.

▸ Let k = rank[B,AB,⋯,An−1B] < n. Then, ∃z = Px with
z = (z1, z2) ∈ Rn−k ×Rk such that

[
ż1
ż2

] = [
Auc 0
A21 Ac

] [
z1
z2

] + [
0
Bc

]u

where (Ac,Bc) is a controllable pair.
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Controllability & Stabilizability for 2nd-Order Systems

ẍ = Ax +Bu, x ∈ Rn, u ∈ Rm. (1)

▸ ẍ = Ax +Bu controllable ⇔ ẋ = Ax +Bu controllable.

▸ Let k = rank[B,AB,⋯,An−1B]. Then, ∃z = Px with
z = (z1, z2) ∈ R2(n−k) ×R2k such that

[
z̈1
z̈2

] = [
Auc 0
A21 Ac

] [
z1
z2

] + [
0
Bc

]u

where (Ac,Bc) is a controllable pair.

▸ For (1),
controllability ⇔ stabilizability.
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Proof of “Controllability ⇔ Stabilizability”

ẍ = Ax +Bu.

▸ Eigenvalues of ẍ = Ax:

X

X

X

X

X

X

XX

▸ Suppose system is uncontrollable and consider decomposition:

[
z̈1
z̈2

] = [
Auc 0
A21 Ac

] [
z1
z2

] + [
0
Bc

]u.

▸ The uncontrollable dynamics z̈1 = Aucz1 is of 2nd order, so it cannot
be Hurwitz. Hence, system is unstabilizable.
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Stabilizability of Stable Mech. Systems by Dissipation
Consider a stable mechanical system with control u

Mẍ + Sx = Bu

where M =MT ≻ 0 and S = ST ≻ 0.

The following are equivalent:

1. The system is controllable.

2. The system is stabilizable.

3. For any (dissipative) feedback control

u = −DBT ẋ, D =DT
≻ 0,

the closed-loop system

Mẍ +BDBT ẋ + Sx = 0

is exponentially stable.
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Proof of 1 ⇒ 3

Suppose λ ∈ C satisfies
∣λ2M + λBDBT + S∣ = 0.

Then, ∃v ≠ 0 ∈ Cn such that

v∗(λ2M + λBDBT + S) = 0.

Post-multiplying by v,
aλ2

+ bλ + c = 0

where a = v∗Mv > 0, b = v∗BDBT v ≥ 0, c = v∗Sv > 0.

b = 0⇒ v∗B = 0, v∗(λ2M + S) = 0

⇒ v∗[λ2M + S,B] = 0

⇒ rank[λ2M + S,B] < n

⇒ uncontrollable (why? use PBC test).

Hence, b > 0, and thus Re[λ] < 0, implying exponential stability.
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Oscillatory Dynamics
Definition
1st-order system ẋ = Ax is called oscillatory if A is diagonalizable and each λ(A)

is a non-zero purely imaginary number.

Example
Two (1st and 4th) oscillatory and three non-oscillatory systems:

(
0 −1
1 0 ),(

−1 0
0 −2) ,(

1 0
0 2)

⎛
⎜
⎜
⎜
⎝

0 −1
1 0

0 −1
1 0

⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

0 −1 1 0
1 0 0 1

0 −1
1 0

⎞
⎟
⎟
⎟
⎠

Theorem
ẍ = Ax is oscillatory ⇔ ∃ M =MT ≻ 0 and S = ST ≻ 0 such that A = −M−1S. In
other words,

ẍ = Ax ⇔ ẍ = −M−1Sx ⇔ Mẍ + Sx = 0.
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Energy Shaping of Linear Mechanical Systems
Linear mechanical system:

Σ ∶ Mq̈ + Sq = Bu,

where M =MT ≻ 0, S = ST , q ∈ Rn.
Objective 1 (Energy Shaping): Find position feedback u = −Kq + v to
transform Σ to a stable mechanical system

Σ̂ ∶ M̂ q̈ + Ŝq = B̂v

where
M̂ = M̂T

≻ 0, Ŝ = ŜT ≻ 0.

Answer: It is possible ⇔ Σ is controllable or its uncontrollable dynamics is
oscillatory.

[
z̈1
z̈2

] = [
Auc 0
A21 Ac

] [
z1
z2

] + [
0
Bc

]u.

Objective 2 (Stabilization by Dissipation): Can dissipative feedback
v = −DB̂T q̇ exponentially stabilize the energy-shaped system Σ̂?
Answer: Yes ⇔ Σ is controllable.
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Summary
oscillatory non-oscillatory

controllable uncontrollable uncontrollable
dynamics dynamics

energy shapability Yes Yes No

stabilizability by
dissipation Yes No N/A

after energy shaping
▸ not energy-shapable

ẍ − x = 0, ÿ − y = u

▸ energy-shapable, but not stabilizable by dissipation after shaping

ẍ + x = 0, ÿ − y = u

▸ energy shapable, and stabilizable by dissipation after shaping

ẍ + x + y = 0, ÿ + x − y = u
(PDSC2014) 14 / 45



Non-Linear Energy Shaping
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“Simple” Mechanical Systems

▸ Lagrangian L(q, q̇) =K(q, q̇) − V (q) = 1
2
m(q)ij q̇

iq̇j − V (q).

▸ Total Energy: E(q, q̇) =K(q, q̇) + V (q)

▸ Force: F = (F1,⋯, Fn) ∈ Rn (actually, T ∗Q-valued).

▸ Equations of motion:

d

dt

∂L

∂q̇i
−
∂L

∂qi
= Fi, i = 1, . . . , n

⇔ mij q̈
j
+ [jk, i]q̇j q̇k +

∂V

∂qi
= Fi, i = 1, . . . , n

⇔ q̈i + Γijkq̇
j q̇k +mij ∂V

∂qj
=mijFj , i = 1, . . . , n

where

[jk, i] =
1
2
(
∂mik

∂qj
+
∂mji

∂qk
−
∂mjk

∂qi
) ,

Γijk =m
i`
[jk, `].
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Force Types
Total energy is E(q, q̇) =K(q, q̇) + V (q). Along the trajectory of the
system we have

dE

dt
= ⟨F, q̇⟩

rate of change in energy = power.

Normally, F ∶ TQ→ T ∗Q, i.e., F = F (q, q̇).

▸ F is called dissipative if

⟨F (q, q̇), q̇⟩ ≤ 0 ∀(q, q̇) ∈ TQ.

▸ F is called gyroscopic if

⟨F (q, q̇), q̇⟩ = 0 ∀(q, q̇) ∈ TQ.

▸ F is called locally dissipative if ⟨F (q, q̇), q̇⟩ ≤ 0 for all (q, q̇) in
neighborhood of (0,0).
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Gyroscopic Force Quadratic in Velocity

F (q, q̇) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Cij1(q)q̇
iq̇j

⋮

Cijn(q)q̇
iq̇j

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, Cijk = Cjik.

Theorem
1. Quadratic dissipative force = quadratic gyroscopic force.
2. F is gyroscopic force iff

Cijk = Cjik, Cijk +Cjki +Ckij = 0.

Proof.
⟨F (q, q̇), q̇⟩ = Cijkq̇

iq̇j q̇k ≤ 0. Being cubic in q̇,

Cijkq̇
iq̇j q̇k = 0.

Hence, Sym(Cijk) = 0, or

Cijk +Cjki +Ckij +Cikj +Ckji +Cjik = 0.
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Not-So-Good Tradition in Robotics

▸ Many robotics books write equations of motion in the following form

M(q)q̈ +C(q, q̇)q̇ + dV = F

and then claim that
Ṁ − 2C

is a skew-symmetric matrix. They then state that this property
implies energy conservation when F = 0.

▸ However, this skew-symmetric property is of little use. One can show
energy conservation very simply without this observation of
skew-symmetric property of the strange quantity “Ṁ − 2C.”

▸ This unfortunate tradition comes from the unnecessary effort to put a
(0,3) tensor into ”matrix form”.
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Objective & Strategy

Controller Dissipative Force

Σ Σ̂

Σ` Σ̂`

Energy-shape by solving PDEs //

Linearize

��

Initial data

OO

Energy-shape with linear algebra //
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Matching

1, . . . , n1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
α,β,γ,...

;n1 + 1, . . . , n
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a,b,c,...

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i,j,k...

Given cL system with L = 1
2mij q̇

iq̇j − V (q) with (n − n1) control ua:

⎧⎪⎪
⎨
⎪⎪⎩

mαj q̈
j + [jk,α]q̇j q̇k + ∂V

∂qα = 0
maj q̈

j + [jk, a]q̇j q̇k + ∂V
∂qa = ua

(2)

find a feedback equivalent cL system with L̂ = 1
2m̂ij q̇

iq̇j − V̂ :

m̂ij q̈
j
+ [̂jk, i]q̇j q̇k +

∂V̂

∂qi
= Ĉjkiq̇

j q̇k + ûi (3)

where û ∈ Ŵ of dim Ŵ = n − n1, [̂jk, i] are Christoffel symbols of m̂, and

Ĉijk = Ĉjik, Ĉijk + Ĉjki + Ĉkij = 0.
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Matching Conditions
Solving (3) for q̈j , substituting them into (2), and collecting terms of equal
degrees in q̇

kinetic matching ∶ mαkm̂
kl

([̂ij, l] − Ĉijl) − [ij, α] = 0, (4)

potential matching ∶ mαkm̂
kl ∂V̂

∂ql
−
∂V

∂qα
= 0, (5)

control bundle matching ∶ ⟨Ŵ ,mαkm̂
kl ∂

∂ql
⟩ = 0 (6)

and

ua = [jk, a]q̇j q̇k +
∂V

∂qa
−marm̂

rl
([̂jk, l]q̇j q̇k +

∂V̂

∂ql
− Ĉjklq̇

j q̇k − ûl) .

where # of PDE’s in kinetic matching =
n1n(n+1)

2
.

Hence, need to solve PDEs for (m̂ij) = (m̂ji) ≻ 0, V̂ with D2V̂ (qe) ≻ 0, and

gyroscopic Ĉijk. Then Ŵ is uniquely determined as

Ŵ = m̂m−1 span{dqa} = span{maim̂ijdq
j}.
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Decomposition and Reduction of Kinetic Matching PDEs
Decompose the n1n(n+1)

2
kinetic matching PDEs

mαkm̂
kl

([̂ij, l] − Ĉijl) − [ij, α] = 0

into two sets: one without Ĉijk and the other with Ĉijk. Let

Âijk =mipmjqmkrm̂
plm̂qsm̂rtĈlst, (7)

Ŝijk =mipmjqm̂
plm̂qs

(mkrm̂
rt
[̂ls, t] − [ls, k]) . (8)

The kinetic matching (4) is equivalent to

Âijα = Ŝijα. (9)

Write the Jacobi identities for Âijk in the following four sets of equations:

Âαβγ + Âβγα + Âγαβ = 0, (10)

Âaβγ + Âβγa + Âγaβ = 0, (11)

Âabγ + Âbγa + Âγab = 0, (12)

Âabc + Âbca + Âcab = 0. (13)
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Decomposition and Reduction of Kinetic Matching PDE’s
By (9), eqns (10) – (13) are equivalent to

Ŝαβγ + Ŝβγα + Ŝγαβ = 0, (14)

Ŝaβγ + Âβγa + Ŝγaβ = 0, (15)

Ŝabγ + Âbγa + Âγab = 0, (16)

Âabc + Âbca + Âcab = 0. (17)

where

Ŝijk =mipmjqm̂
plm̂qs

(mkrm̂
rt 1

2
(
∂m̂ts

∂ql
+
∂m̂tl

∂qs
−
∂m̂ls

∂qt
) − [ls, k]) .

1. Solve PDEs (14) for m̂ij where # of PDEs in (14)

=
n1(n1+1)(n1+2)

6
≤
n1n(n+1)

2
= # of orignal kinetic PDEs in (4). ( ‘=’ holds

iff n1 = n − 1, i.e., underactuation degree 1)

2. Âijα = Ŝijα from (9).

3. Âβγa = −Ŝaβγ − Ŝγaβ and Âγab = Âbγa = −
1
2
Ŝabγ from (15) and (16).

4. Choose any Âabc’s such that (17) holds. E.g. Âabc = 0.

5. Compute Ĉijk from (7).
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Further “Reduction” of Total Matching PDEs
▸ Total (n1(n1+1)(n1+2)

6
+ n1) PDE’s for (

n(n+1)
2

+ 1) unknowns, m̂ij and V̂ :

Ŝαβγ + Ŝβγα + Ŝγαβ = 0; mαkm̂
kl ∂V̂

∂ql
−
∂V

∂qα
= 0,

where

Ŝαβγ =mαpmβqm̂
plm̂qs

(mγrm̂
rt 1

2
(
∂m̂ts

∂ql
+
∂m̂tl

∂qs
−
∂m̂ls

∂qt
) − [ls, γ]) .

▸ Let T̂ =mm̂−1m, so that finding T̂ ⇔ finding m̂. The, matching PDEs
become

▸ Total (n1(n1+1)(n1+2)
6

+n1) PDEs for (
n1(2n−n1+1)

2
+1) unknowns, T̂αi and V̂ :

Ĵαβγ + Ĵβγα + Ĵγαβ = 0; T̂αim
il ∂V̂

∂ql
−
∂V

∂qα
= 0,

where

Ĵαβγ =
1
2
T̂γsm

sk
(
∂T̂αβ

∂qk
− T̂αiΓiβk − T̂βiΓ

i
αk) .
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Superiority of use of T̂ to that of m̂

T̂ m̂

Ĵαβγ + Ĵβγα + Ĵγαβ = 0, Ŝαβγ + Ŝβγα + Ŝγαβ = 0

Ĵαβγ =
1
2 T̂γsm

sk
(

∂T̂αβ

∂qk
− T̂αiΓ

i
βk − T̂βiΓ

i
αk) Ŝαβγ =mαpmβqm̂

plm̂qs(mγrm̂
rt̂

[ls, t] − [ls, γ])

n1(2n−n1+1)
2

unknowns n(n+1)
2

unknowns

T̂αi m̂ij

n1(n1+1)
2

n first-order partials n(n+1)
2

n first-order partials

∂T̂αβ
∂qk

∂m̂ij
∂qk
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Illustration: Superiority of T̂ to m̂
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Energy Shaping for Systems with Underactuation Degree 1
2 Matching PDEs for V̂ and T̂11, . . . , T̂1n (and T̂ab, 2 ≤ a, b ≤ n).

T̂1jm
jk

(
∂T̂11

∂qk
− 2T̂1iΓi1k) = 0; T̂1im

il ∂V̂

∂ql
−
∂V

∂q1
= 0.

Σ Σ̂

Σ` Σ̂`

Solve Matching PDEs for Energy Shaping //

Linearize

��

Initial data

OO

Energy-shape //

Theorem (Energy Shaping)

Σ is energy-shapable

⇔ its linearization Σ` is energy shapable

⇔ Σ` is controllable or its uncontrollable dynamics is oscillatory.
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Energy Shaping for Systems with Underactuation Degree 1

Σ Σ̂

Σ` Σ̂`

Solve Matching PDEs for Energy Shaping //

Linearize

��

Initial data

OO

Energy-shape //

Theorem (Energy Shaping)

Σ is energy-shapable

⇔ its linearization Σ` is energy shapable. (no hat here!)

⇔ Σ` is controllable or its uncontrollable dynamics is oscillatory.(no hat here!)

Theorem (Stabilization by Dissipation after Energy Shaping)

Energy-shaped Σ̂ is exp. stabilized. by any linear dissipative feedback of full rank

⇔ the linearization Σ` of the original system Σ is controllable. (no hat here!)
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Example: PVTOL

Controlled Lagrangian dynamics of a planar vertical takeoff and landing
(PVTOL) aircraft

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ẍ
ÿ

θ̈

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0

g
c sin θ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 1

1
ε cos θ 1

ε sin θ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[
u1

u2
]

where g, c > 0, ε ≠ 0, and q = (x, y, θ) ∈ R3.
▸ Equilibria (xe, ye,0).
▸ Degree of under-actuation = 1.
▸ Linearization at (xe, ye,0) is controllable.
▸ Therefore, it can be energy-shaped and then be exponentially

stabilized by any linear symmetric dissipative feedback force of full
rank.
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More Examples

u

q2

Linearization of each is controllable, so exponential stabilization by energy
shaping + dissipation is possible. See Ng, Chang and Song[2013] for
detailed computation.
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Equations of Motion of Mechanical System

Lagrangian

L(x, ẋ) =
1
2
gij ẋ

iẋj − V (x).

Equations of Motion:

ẍi + Γijkẋ
j ẋk + gij∂jV = 0

or

d

dt
xi = ẋi

d

dt
ẋi = −Γijkẋ

j ẋk − gij∂jV.

∃ coordinate system in which Γijk = 0 ⇔ R = 0.
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Quasilinearization
Linear transformation of velocity ẋ:

(xi, ẋi) ↦ (xi, vi = Aij(x)ẋ
j
) (18)

Equations of motion in (x, v) coordinates:

ẋi = Bi
jv
j ,

v̇i =
1
2
(∂kA

i
j + ∂jA

i
k − 2AilΓ

l
jk)ẋ

j ẋk −Aijg
jk∂kV,

where Bi
j be the inverse of Aij , i.e., Bi

jA
j
k = δ

i
k.

Equations of motion become

ẋi = Bi
jv
j ,

v̇i =
1
2
(∂kA

i
j + ∂jA

i
k − 2AilΓ

l
jk) ẋ

j ẋk −Aijg
jk∂kV,

if and only if
∂kA

i
j + ∂jA

i
k − 2Ai`Γ

`
jk = 0. (19)
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Quasilinearizability in terms of Killing Vector Fields

A vector field X =Xi∂i on a Riemannian manifold (M,g) is called a
Killing (vector) field if it satisfies the Killing equation

LXg = 0

or in coordinates
∂kαj + ∂jαk − 2α`Γ`jk = 0,

where α = g♭X = gjkX
kdxj .

Theorem
Quasilinearizability:

∂kA
i
j + ∂jA

i
k − 2Ai`Γ

`
jk = 0

⇔ existence of n linearly independent Killing fields (iso(M,g)p = TpM).
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Sufficient Conditions for Quasilinearizability

Theorem
Let p be a point in (M,g).

1. Quasilinearization is possible around p ∈M if ∇R = 0 in a neighborhood
of p (i.e., local symmetricity).

2. Suppose dimM = 2. Then, quasilinearization is possible around p ∈M if
and only if the scalar curvature RS of g is constant in a neighborhood of p.

Remark:

▸ Easy to verify by differentiation only (c.f. Venkatraman, Ortega,
Sarras, and van der Schaft [2010]).

▸ More general than the condition R = 0 that was independently made
use of by Bedrossian [1992] and Spring [1992].
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Integrability Conditions of Killing Equation [Yano]
The Killing equation and all of its integrability conditions constitute the
following involutive system of PDEs:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

LXg = 0
LX∇ = 0
LXR = 0,
LX(∇kR) = 0, k = 1,2,3, . . . .

or

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

g(∇YX,Z) + g(Y,∇ZX) = 0
(∇2X)(Y,Z) +R(X,Y )Z = 0
(∇XR)(Y,Z)U−∇R(Y,Z)UX+R(∇Y X,Z)U+R(Y,∇ZX)U+R(Y,Z)∇UX = 0

LX(∇kR) = 0, k = 1,2,3, . . . .

for all Y,Z,U ∈ X(M).
The map X ∈ iso(M,g) ↦ (X ∣p, (∇X)∣p) is 1-1 and linear.

▸ ∇R = 0 ⇒ iso(M,g)(p) = TpM .
▸ RS = const. ⇔ iso(M,g)(p) = TpM for dimM = 2.
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Mechanical Meaning of Quasilinearizability

For a Lagrangian L = 1
2g(ẋ, ẋ) ,

∂kαj + ∂jαk − 2α`Γ`jk = 0

⇔

αiẋ
i
(t) = constant in t.

Namely, quasilinearizability is equivalent to the existence of n independent
first integrals that are linear in the velocity.

For example, angular momentum conservation in the free rigid body
dynamics implies quasilinearizability. Indeed,

Ṙ = R(I−1R−1π)∧

π̇ = 03.
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Inverted Pendulum on a Cart

Scalar curvature RS = 0 ⇒ quasilinearizable.
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Mass and Beam

Scalar curvature RS =
2I

(Mx2+1)2 is not constant ⇒ NOT quasilinearizable.
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Pendubot

non-constant scalar curvature ⇒ NOT quasilinearizable.
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Furuta Pendululm

u

θ

q2ϕ

non-constant scalar curvature ⇒ NOT quasilinearizable.
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Spherical Pendulum on a puck

iso(M,g) is generated by

X1 =
∂

∂x

X2 =
∂

∂y

X3 = Y
∂

∂X
−X

∂

∂Y
+ y

∂

∂x
− x

∂

∂y

X4 = Y
∂

∂X
−X

∂

∂Y
− (εy + Y )

∂

∂x
+ (εx +X)

∂

∂Y
,

where ε = `/m. iso(M,g)(p) has at most rank 3 at every point p, so the
dynamics are not quasilinearizable.
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