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Objective

—>

Controller | Dissipative Force
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Linear Energy Shaping
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Example

> The unstable system

is transformed by u = —2x — = to exp. stable

~ 1 1
T+x=-I, E==i%+ =22
2 2

> The unstable system
L R N
T-x=u, j+y=0, E—§($ +y)+§(x+y)
is transformed by u = -2x — 2 to Lyap. stable
L = 1. .9 o0 1 o 9
T+x=-x, j+y=0, E—§(:c +y)+§(x +1y”).
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Example

» Impossible to shape the energy function of
L BN
r—x=u, j-y =0, E—2(a7 +y)+2(a: y~).

> Any criterion for energy shapability and stabilizability by dissipation?

X1 T —T=u,
X:2: L= =U, y+y:07
d3: xrx—-—x=u, Yy+-y=0.
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Controllability & Stabilizability

t=Ax+Bu, xe¢R" ueR™,

» Controllability < rank[B, AB, -, A" 1B] =n

» & = Ax + Bu is controllable = by feedback v = - Kz, eigenvalues of
(A - BK) can be arbitrarily assigned provided complex conjugates
appear in pairs.

» Controllability = stabilizability.

> Let k =rank[B, AB, -, A" 1B] <n. Then, 3z = Pz with
2= (21, 22) € R"* x R* such that

731 _ Auc 0 <1 + 0 ”
| A Ac||z| | B
where (A¢, B.) is a controllable pair.
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Controllability & Stabilizability for 2nd-Order Systems

¥=Ax+ Bu, ze¢R" ueR"™. (1)

» ¥ = Axr + Bu controllable < = = Ax + Bu controllable.

» Let k =rank[B, AB,---, A" 1 B]. Then, 3z = Px with
2= (21, 29) € R2"F) x R?* sych that

51 _ Auc 0 21 + 0 ”
Zo| |Aar Ac||z2] | Bc
where (Ac, B:) is a controllable pair.

» For (1),
controllability < stabilizability.
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Proof of “Controllability < Stabilizability”

» Eigenvalues of & = Ax:

(PDSC2014)
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Proof of “Controllability < Stabilizability”

T = Ax + Bu.

» Eigenvalues of & = Ax:
.
- -
Jr x| x
» Suppose system is uncontrollable and consider decomposition:
21 _ Auc 0 21 n 0 ”
) Axr Acl|] 22 B.|

> The uncontrollable dynamics Z1 = Aycz1 is of 2nd order, so it cannot
be Hurwitz. Hence, system is unstabilizable.

Y
Y

Y
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Stabilizability of Stable Mech. Systems by Dissipation

Consider a stable mechanical system with control
Mx+ Sz = Bu

where M =M% >0 and S=5% >0.

The following are equivalent:
1. The system is controllable.
2. The system is stabilizable.
3. For any (dissipative) feedback control

w=-DB'%:, D=D!>0,
the closed-loop system
M#+BDB i+ Sx =0

is exponentially stable.
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Proof of 1 = 3

Suppose ) € C satisfies
IA2M + ABDB' + S| =0.

Then, Jv # 0 € C™ such that
v* (MM + ABDB* + 5) = 0.
Post-multiplying by v,
aX> +bA+¢=0
where a =v*Mv >0, b=v*BDBYv >0, ¢c=v*Sv > 0.
b=0=0v*B=0, v*(\V*M+S8)=0
= v*[N*M +S,B]=0

= rank[\°M + S, B] <n
= uncontrollable (why? use PBC test).

Hence, b > 0, and thus Re[A] < 0, implying exponential stability.

(PDSC2014)
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Oscillatory Dynamics

Definition
1st-order system & = Ax is called oscillatory if A is diagonalizable and each A\(A)
IS a non-zero purely imaginary number.

Example
Two (1st and 4th) oscillatory and three non-oscillatory systems:

L6 6

(0 -1 \(O -1 1 O\

1 0 1 0 0 1
0O -1V 0 -1

\ 1 0)\ 1 0

Theorem
& = Ax is oscillatory < 3 M = M* >0 and S = ST >0 such that A=-M~1S. In

other words,
P=Ar < i=-M1'Sx < Mi+Sz=0.

(PDSC2014) 12 / 45



Energy Shaping of Linear Mechanical Systems

Linear mechanical system:
> Mg+ Sq = Bu,

where M = M1 >0, §=581 q € R".
Objective 1 (Energy Shaping): Find position feedback u = -Kq+ v to
transform X to a stable mechanical system

—_~

P ]\7@+§q:§v

where

—

M:A7T>O, S=5">0.
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Energy Shaping of Linear Mechanical Systems

Linear mechanical system:
> Mg+ Sq = Bu,

where M = M1 >0, §=51 q € R".
. Find position feedback u =-Kqg+ v to
transform X to a stable mechanical system

o~

P ]\7('1’+§q:§v

where

—

M:A7T>O, S=5">0.

Answer: It is possible < I is controllable or its uncontrollable dynamics is
oscillatory.

,'2;1 Auc 0 21 0

.| = + U.

Z29 Ao Acl] 2 B.
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Energy Shaping of Linear Mechanical Systems

Linear mechanical system:
> Mg+ Sq = Bu,

where M = M1 >0, §=51 q € R".
. Find position feedback u =-Kqg+ v to
transform X to a stable mechanical system

o~

P ]\7('1’+§q:§v

where

—

M:A7T>O, S=5>0.

Answer: It is possible < I is controllable or its uncontrollable dynamics is

oscillatory.
21 _ Auc 0 21 + 0 ”
Zol Ao Acl| 20 B.|

. Can dissipative feedback
v = —DB'§ exponentially stabilize the energy-shaped system %7
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Energy Shaping of Linear Mechanical Systems

Linear mechanical system:
> Mg+ Sq = Bu,

where M = M1 >0, §=51 q € R".
. Find position feedback u =-Kqg+ v to
transform X to a stable mechanical system

o~

P ]\7('1’+§q:§v

where

—

M:A7T>O, S=5>0.

Answer: It is possible < I is controllable or its uncontrollable dynamics is

oscillatory.
21 _ Auc 0 21 + 0 ”
Zol Ao Acl| 20 B.|

. Can dissipative feedback
v = —DB'§ exponentially stabilize the energy-shaped system %7

Answer: Yes < Y is controllable.
(PDSC2014) 13 / 45



oscillatory

non-oscillatory

controllable | uncontrollable | uncontrollable
dynamics dynamics
energy shapability Yes Yes No
stabilizability by
dissipation Yes No N/A

after energy shaping

not energy-shapable

r-x=0, y-y=u

energy-shapable, but not stabilizable by dissipation after shaping

r+x=0, y-y=u

energy shapable, and stabilizable by dissipation after shaping

(PDSC2014)
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Non-Linear Energy Shaping
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“Simple” Mechanical Systems

> Lagrangian L(q,q) = K(q,4) -V (q) = 3m(q);d*¢’ -V (q).
» Total Energy: E(q,q) = K(q,q) +V(q)
» Force: F = (F1,---, F,) € R" (actually, T*Q-valued).

> Equations of motion:

d OL
a..—aL.:Fz', z':l,...,n
dt 0¢* 0q"
: oV
= mijij‘7+[jk,z]qq +8 _Fq;, izl,...,n
q'L
OV i .
< (' +F]qu +m38q3 =m"F;, i=1,...,n
where
om;; Om,;
(k. ] = (3mzk+ mj; mj.k;)7
8q1 Oq* 0q"
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Total energy is F(q,q) = K(q,q) + V(q). Along the trajectory of the
system we have

dE
iy ly AR

rate of change in energy = power.
Normally, F: TQ - T*Q, i.e., F = F(q,q).
F' is called dissipative if
(F(¢:G),4) <0 V(q,q) € TQ.

F' is called gyroscopic if

(F(q,4),4)=0 V(q,q) eTQ.

F' is called locally dissipative if (F'(q,q),q) <0 for all (¢,q) in
neighborhood of (0,0).

(PDSC2014)



Gyroscopic Force Quadratic in Velocity

Cijn(q)d"¢ |

F(q,q) = , Cijk = Cjik-

Ciin(0)q'¢

Theorem

1. Quadratic dissipative force = quadratic gyroscopic force.
2. F is gyroscopic force iff

Cijk = Cjik, Ciji + Cjki + Crij = 0.
Proof. o
(F(q,4),q) = Ci;xG'¢’¢" < 0. Being cubic in ¢,
Cijrd'd " = 0.
Hence, Sym(Cj k) =0, or

Cijk + Cjki + Ck.f,;j + Cikj + iji + Cjz’k = 0.

(PDSC2014) 18 Iﬁw



Not-So-Good Tradition in Robotics

> Many robotics books write equations of motion in the following form
M(q)i+C(q,q)g+dV = F

and then claim that

M -2C
Is a skew-symmetric matrix. They then state that this property
implies energy conservation when F' = 0.

» However, this skew-symmetric property is of little use. One can show
energy conservation very simply without this observation of
skew-symmetric property of the strange quantity “M - 2C."

> This unfortunate tradition comes from the unnecessary effort to put a
(0,3) tensor into " matrix form”.
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Objective & Strategy

—>

Controller < Dissipative Force l¢

Energy-shape by solving PDEs
> >

Linearize Initial data

Energy-shape with linear algebra

—~

Ef

EE
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Matching

Given cL system with L = 2m;;4"'¢’ — V(q) with (n —nq) control u,:

av
=0
av (2)
q

majq + []k a’]qj

Maj '+ [jk, Oz]qjq +
o,

—~

find a feedback equivalent cL system with L = %mijqiqj -V

N~ ik
i ikid’ " + T, (3)

;i + [k, i]¢" ¢~ +

———

where Te W of dimW =n — n1, |jk,i] are Christoffel symbols of 7, and

P P —~

Cijk = Cjik,  Cijk + Cjki + Clij = 0.
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Matching Conditions

Solving (3) for (7, substituting them into (2), and collecting terms of equal
degrees in ¢

kinetic matching:  mgpm"™ ([z’], wl) li7,a] =0, (4)
ov oV
potential matching:  mqrm"™ =0, (5)
gt g~
0
control bundle matching: <W Mak Akla )z 0 (6)
q'
and
. oV B e oV o~ i
Ua = [k, ald’ ¢ + —— = ma, " | [k, 11§ 0" + — - Cimd® " - |-
0q“ dq
nin(n+l)

where # of PDE's in kinetic matching = 5

Hence, need to solve PDEs for (7;;) = (;;) > 0, V with D2V (¢.) > 0, and
gyroscopic @jk. Then TV is uniquely determined as

W = mm ™ span{dq®} = span{m®m;;dq’ }.
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Decomposition and Reduction of Kinetic Matching PDEs

(le) kinetic matching PDEs

Decompose the 2=~

mari"™ ([17,1] = Cijt) - [id,0] = 0
Into two sets: one without @jk and the other with @jk Let

1 ~pl ~qgs ~1rt ~
Ak = mipmjomp,mP M m"™ Cgy, (7)

—~

Sisk = mipmjgm®' m? (my,m" [Is, ] - [Is, k]) (8)

The kinetic matching (4) is equivalent to

Aijo = Sija. (9)
Write the Jacobi identities for A\ijk in the following four sets of equations:
Appy + Apra + Aap =0, (10)
A\aﬁv T Zﬁva T A\vaﬁ =0, (11)
Zaby + Zb’ya + A\wb =0, (12)
Agve + Apea + Acap = 0. (13)
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Decomposition and Reduction of Kinetic Matching PDE's
By (9), eqns (10) — (13) are equivalent to

Sapy + Spra + Syap =0, (14)
Sapy + Apya + Syap =0, (15)
:S’\ab,y + A\bw + Zwb =0, (16)
Agpe + Apeq + Acar = 0. (17)

where

o~ el ~as —~ 87’7‘%8 8mtl 8m55
Sz'jk = mipqumplmq (mkrm = ( aq aq (9qt ) - [137 k]) .

1. Solve PDEs (14) for m,; where # of PDEs in (14)

= nl(nﬁé)(nlﬂ) < nlngﬁl) = # of orignal kinetic PDEs in (4). ( ‘=" holds

iff ny =n -1, i.e., underactuation degree 1)

Aijo = Sija from (9).

Aﬁva = Sam Svaﬁ and Amb = Abm = —%Sab7 from (15) and (16).
Choose any A,p.'s such that (17) holds. E.g. A =0.

Compute Cj;p, from (7).

(PDSC2014) 24 / 45
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Further “Reduction” of Total Matching PDEs

> Total ("1(”1+16)(n1+2) +ny) PDE’s for (n(”TH) +1) unknowns, 77;; and V:

S S S oV oV
Soég7 + Sﬁ'ya + S,yag = O; makmkl— - — = 0,

o¢t  Hq>

where

_ 1 (Om:s Omy Oy
Safy = Ma AplAqS( rATt_( >+ — 8)— [ 3 )
By = MapMpqT 10 Marlit g aq dq° o4t [1s,7]
» Let T = mm 'm, so that finding 7' <> finding M. The, matching PDEs
become

> Total (nl(n1+16)(n1+2) +n1) PDEs for (nl(%;nl“) +1) unknowns, T,,; and V:

20V oV

Japy + Jpratdhap=0i daim g g -5 0

0,

where

T 1~ sk aTaﬁ T i T
Jaﬁ,yzinysm (@qk —Tairﬁk—Tﬁi O{k)'
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Superiority of use of T to that of M

T

m

Japy + Tpya + Jrap =0,

0To 3 =
8qk

<

T _ 1/ sk
afy = 3 1ysm (

—_

o By =mapm5qfﬁplfﬁqs(m7w’ﬁrt[ls, t]—[Is, 'y])

S

Sapy + Spya +Syap =0

ni1(2n-ni1+1)

n(n+1)

5 unknowns 5 unknowns
Twi M
+1 . . +1 . .
%n first-order partials n(”é ), first-order partials
OTwp O ;
Oqgk oqF

(PDSC2014)
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lllustration: Superiority of T to i

~)
3)

)

g%>
Q’ﬂ>
i)
>
S
Q
=
S
Q
)
S
2

=)

b
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Energy Shaping for Systems with Underactuation Degree 1
2 Matching PDEs for Vand Th1,..., 1o (and T, 2<a,b< n).

T 'k 8T11 =~ i = il oV oV
lemj P QTM 1k | = O; Th;m 7 1 = 0.
dq dq°  0Oq
> Solve Matching PDEs for Energy Shaping -
Linearize Initial data
Energy-shape -
5t 3¢

Theorem (Energy Shaping)

Y. Is energy-shapable
<> its linearization X* is energy shapable

< 2% is controllable or its uncontrollable dynamics is oscillatory.
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Energy Shaping for Systems with Underactuation Degree 1

Solve Matching PDEs for Energy Shaping

Linearize Initial data

Energy-shape

ZE
Theorem (Energy Shaping)
>, Is energy-shapable

< its linearization ©* is energy shapable. (no hat here!)

< Y! is controllable or its uncontrollable dynamics is oscillatory.(no hat here!)

Theorem (Stabilization by Dissipation after Energy Shaping)
Energy-shaped Y is exp. stabilized. by any linear dissipative feedback of full rank

<> the linearization X° of the original system ¥ is controllable. (no hat here!)
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Example: PVTOL

Controlled Lagrangian dynamics of a planar vertical takeoff and landing
(PVTOL) aircraft

p— —

€T 0 1 0
il=1 o [+| o 1 [“1]
0 % sin 6 | _% cos % sin 6 |

. — .

where g,¢>0, €0, and ¢ = (z,v,0) € R®.
» Equilibria (x¢, e, 0).
» Degree of under-actuation = 1.
» Linearization at (e, y,0) is controllable.
» Therefore, it can be energy-shaped and then be exponentially
stabilized by any linear symmetric dissipative feedback force of full

rank.
(PDSC2014)
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More Examples

Linearization of each is controllable, so exponential stabilization by energy
shaping + dissipation is possible. See Ng, Chang and Song[2013] for
detailed computation.
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Quasi-Linearization of
Mechanical Systems
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Equations of Motion of Mechanical System

Lagrangian
1 o
L(x,%) = §gz~j9bzzi37 - Vi(x).

Equations of Motion:

i+ 127 3% + g0,V =0

or
d . .
—a?Z:ij
dt
d . i agak  ij
7 = -Ipa’a” - g~ o;V.

1 coordinate system in which Fék =0< R=0.

(PDSC2014)
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Quasilinearization
Linear transformation of velocity :

(', 5") — (z°, 0" = A;(af;)az]) (18)
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Quasilinearization

Linear transformation of velocity :
(z",3") = (2",0" = Aj(2)37) (18)
Equations of motion in (z,v) coordinates:
# = By,
o= (Op AL+ 0; A}, — 24T )il i* — ALg? 0,V

i - i i AT _ i
where Bj be the inverse of Aj, l.e., BjAk =0;..
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Quasilinearization
Linear transformation of velocity :

(z',3") = (¢',0" = Aj(2)37)
Equations of motion in (z,v) coordinates:
¥ = Biv?,
o= (Op AL +0; A}, - 2ATT )27 2% — ALg?* 0,V

where B;- be the inverse of A; l.e., B;Ai = 5,7;.
Equations of motion become

i’ = Bl
o' = ~ Alg*o,V,

if and only if | | |
O A+ 0; A}, — 24T, = 0.

(PDSC2014)
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Quasilinearizability in terms of Killing Vector Fields

A vector field X = X*0; on a Riemannian manifold (M, g) is called a
Killing (vector) field if it satisfies the Killing equation

LXg=0

or in coordinates
14
Oy + Djay — 2al;y = 0,
where oo = ¢* X = gijkdxj.

Theorem
Quasilinearizability: | . ,
O Al +0; Al - 24T, =0

< existence of n linearly independent Killing fields (iso(M,g), = 1T,M ).
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Sufficient Conditions for Quasilinearizability

Theorem
Let p be a point in (M, g).

1. Quasilinearization is possible around p € M if VR =0 in a neighborhood
of p (i.e., local symmetricity).

2. Suppose dim M = 2. Then, quasilinearization is possible around p € M if
and only if the scalar curvature Rg of g is constant in a neighborhood of p.

» Easy to verify by differentiation only (c.f. Venkatraman, Ortega,
Sarras, and van der Schaft [2010]).

> More general than the condition R =0 that was independently made
use of by Bedrossian [1992] and Spring [1992].

(PDSC2014) 37 / 45



Integrability Conditions of Killing Equation [Yano]

The Killing equation and all of its integrability conditions constitute the
following involutive system of PDEs:

( LXg=O

LxV =0

LxR=0,

\ Lx(V*R)=0, k=1,2,3,....

or
( g(VYX,Z) +g(Y, VzX) =0
(V2X)(Y,Z)+R(X,Y)Z =0
(VxR)(Y,Z)U~Vry,2yu X+R(Vy X, Z)U+R(Y,VzX)U+R(Y,Z)Vu X =0
Lx(VFR)=0, k=1,2,3,....
forall Y, Z, U € X(M).
The map X eiso(M,g) — (X|p, (VX)|p) is 1-1 and linear.
» VR=0=iso(M,q)(p) =T, M.
» Rg = const. < iso(M,qg)(p) =T, M for dim M = 2.
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Mechanical Meaning of Quasilinearizability
For a Lagrangian L = %g(w’,j;) ,

6kaj + ajozk — QOzgrgk =0

;' (t) = constant in t.

Namely, quasilinearizability is equivalent to the existence of n independent
first integrals that are linear in the velocity.

For example, angular momentum conservation in the free rigid body
dynamics implies quasilinearizability. Indeed,

R=R(I''R'7)"

7 = 03.
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Inverted Pendulum on a Cart

Y

Scalar curvature Rg = 0 = quasilinearizable.
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Mass and Beam

21

Scalar curvature Rg = ( is not constant = NOT quasilinearizable.

Mz2+1)2
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Pendubot

non-constant scalar curvature = NOT quasilinearizable.
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Furuta Pendululm

non-constant scalar curvature = NOT quasilinearizable.
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Spherical Pendulum on a puck

g .
l x E%‘ :
/ 3 ‘X, Y) >Y
(2. )
@ y

iso(M, g) is generated by

)

Xo= o

K x D00

Xa=¥ b= X0 (e + V)5 + (e X) 5

where € = £/m. iso(M, g)(p) has at most rank 3 at every point p, so the

dynamics are not quasilinearizable.
(PDSC2014) 44 | 45
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