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Why piecewise-smooth discontinuous maps?

Makes an appearance in various applications in electrical
engineering and physics

Examples include

Controlled buck converter

Boost converter in discontinuous mode

Impact oscillators
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1D linear piecewise smooth map

Linear piecewise smooth map

xn+1 = f (xn,a,b,µ, l) =
{

axn +µ for xn ≤ 0
bxn +µ + ` for xn > 0

The jump discontinuity is at x = 0

a and b are the slopes of the affine maps on either side of
discontinuity

` is the height of the “jump”

µ is the parameter to be varied
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Our interest

Do (periodic) orbits exist for such systems?

If yes, then can these orbits be characterized, classified · · ·
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Equilibrium point in the left half xL = µ

1−a

Equilibrium point in the right half xR = µ+`
1−b
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The settings
Assumption : Let 0 < a < 1 and 0 < b < 1
If the “jump” ` < 0, then
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The settings
Assumption : Let 0 < a < 1 and 0 < b < 1
If the “jump” ` < 0, then

b

xR

xn xn xn

xn+1 xn+1 xn+1

xL

−l > µ > 0µ < 0 µ > −l

xqxp

Orbits can exist if 0 < µ <−`
Set `=−1 and therefore 0 < µ < 1
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Some definitions

Let f be a map from R to R. p is a periodic point of order k if
f k(p) = p, where k is the smallest such positive integer.

A sequence of k distinct periodic points of order k, say p1, . . . ,pk,
where pi+1 = f i(p1), is called a periodic orbit of period k.

Let L := (−∞, 0] (the closed left half plane) and R := (0, ∞)
(the open right half plane)

Given a particular sequence of points {xn}n≥0 through which the
system evolves, one can code this sequence into a sequence of
L s and Rs

A periodic orbit has a string of L s and Rs that keeps repeating.
This repeating string is a pattern and denoted by σ
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Some more definitions
Length of the string σ is denoted by |σ | and gives the period of
the orbit

Pσ denotes the interval of parameter µ for which an orbit with
pattern σ exists
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Some more definitions
Length of the string σ is denoted by |σ | and gives the period of
the orbit

Pσ denotes the interval of parameter µ for which an orbit with
pattern σ exists

A pattern consisting of a string of L s followed by a string of Rs
is called a prime pattern

L nR is a L -prime pattern

L Rn is a R-prime pattern

A pattern made up of two or more prime patterns is a composite
pattern
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Prime patterns
Theorem
For a,b ∈ (0,1), L -prime and R-prime patterns of any length are
admissible

Consider the pattern L nR. The length of this pattern is n+1. From
the map, one gets the following inequalities:

x0 ≤ 0,

x1 = ax0 +µ ≤ 0,

x2 = ax1 +µ ≤ 0,

= a2x0 +(a+1)µ ≤ 0,
...

xn−1 = an−1x0 +µSa
n−2 ≤ 0,

xn = anx0 +µSa
n−1 > 0,

xn+1 = x0 = anbx0 +(bSa
n−1 +1)µ−1≤ 0.
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Prime patterns

Theorem
For a,b ∈ (0,1), L -prime and R-prime patterns of any length are
admissible

Therefore, x0 =
(bSa

n−1+1)µ−1
1−anb

Substituting this x0 into the inequalities give us inequalities that µ

should satisfy
Every L in the pattern gives an upper bound for µ

Every R in the pattern gives a lower bound for µ

PL nR =

(
an

Sa
n
,

an−1

an−1b+Sa
n−1

]
Showing that PL nR 6= /0 does the job
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Some more questions

Are L -prime patterns and R-prime patterns the only prime
patterns that are admissible?

Are prime patterns the only kind of patterns? For example, can
there be a pattern like L L L RRL L RL L L R?

Can we characterize all the possible types of admissible patterns?

For a given n, how many distinct patterns exist with period n?

Is there an algorithm that generates only the possible admissible
patterns of period n?
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Composite patterns

Theorem
For a,b ∈ (0,1), no admissible pattern can contain consecutive L s
and consecutive Rs simultaneously.

For µ < 1
b+1 , every R is immediately followed by L

For µ > a
a+1 , every L is immediately followed by R

For a,b ∈ (0,1), a
a+1 < 1

b+1
QED

Similar limits can be found for runs of n symbols
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Composite patterns

Lemma
For a,b ∈ (0,1), all the admissible composite patterns are made up of
either L -prime patterns or R-prime patterns but not both. Every
composite pattern is a combination of exactly two prime patterns of
successive lengths.

an

Sa
n

an−1

Sa
n−1

an−2

an−2b+Sa
n−2

an−1

an−1b+Sa
n−1

Composite Region

At least n
consecutive Ls

At most n
consecutive Ls

At most n− 1

consecutive Ls
At least n− 1

consecutive Ls

PLnR PLn−1R
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Composite patterns

Theorem
For a,b ∈ (0,1), and any n, there exists φ(n) distinct admissible
patterns of cardinality n, where φ is the Euler’s totient function.

φ(18) = 6 – 1,5,7,11,13,17

Thus there are patterns of length 18 with 1,5,7,11,13,17 L s in
them
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Calculation of Pσ

Given a pattern σ which is admissible, how to calculate the interval
Psigma

Consider the pattern
RL RL L RL L RL RL L RL RL L RL L
Substitute 0 for L and 1 for R

µ2

RLRLLRLRLLRLLRLRLLRLL
101001010010010100100

LLRLLRLRLLRLLRLRLLRLR

µ1

001001010010010100101
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Other cases
Assumption : Let 1 < a < ∞ and 1 < b < ∞
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Other cases
Assumption : Let 1 < a < ∞ and 1 < b < ∞

If the “jump” ` < 0, then

xn`1
xn`1 xn`1

xL

xR

xL

xR

µ ă 0

xn xnxn

´l ą µ ě 0 µ ě ´l

15 / 20



Introduction Preliminaries Phase 1 Results Phase 2 Results Phase 3 Results

Other cases
Assumption : Let 1 < a < ∞ and 1 < b < ∞

If the “jump” ` < 0, then

xn`1
xn`1 xn`1

xL

xR

xL

xR

µ ă 0

xn xnxn

´l ą µ ě 0 µ ě ´l

Orbits can exist if 0 < µ <−`
Set `=−1 and therefore 0 < µ < 1
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Other cases – results

Assumption: a,b > 1

Orbits are unstable

L -prime patterns and R-prime patterns always present

The pattern L L RR always present

If pattern L pRq is present, then L p1Rq1 is also present where
p1 < p and q1 < q

Co-existence of patterns, multiple orbits exist

Chaotic orbits exist !!
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Chaotic orbits
Assumption: a,b > 1
Why?

xn

xn`1

1´µ
b´1

´µ
a´1

µ

µ ´ 1

1 ą µ ě 0

1´µ
b

´µ
a
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Chaotic orbits
Assumption: a,b > 1
Capture range for µ is (a−1

a , 1
b)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

a

b

Region of a & b

 

 

Region of capture range

Only for values of a,b in blue – chaotic orbits
1 < b < a

a−1 and 1 < a < b
b−1
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Chaotic orbits
Assumption: a,b > 1
Some pictures
For a = 1.01, b = 1.01
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Chaotic orbits
Assumption: a,b > 1
Some pictures
For a = 1.1, b = 1.1
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Other cases – results
Assumption: 0 < a < 1 and b > 1
For ` < 0

xn

xn`1

µ ě 0

xn`1

xn

0 ą µ ě ´l

xn

xn`1

´l ą µ

xL
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Other cases – results
Assumption: 0 < a < 1 and b > 1
For ` < 0

xn

xn`1

µ ě 0

xn`1

xn

0 ą µ ě ´l

xn

xn`1

´l ą µ

xL

No orbits !!
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Other cases – results
Assumption: 0 < a < 1 and b > 1
For ` > 0

xn

xn`1

0 ą µ

xn

xn`1

´l ą µ ě 0

xn

xn`1

µ ě ´l

xR

xL

xR
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Other cases – results
Assumption: 0 < a < 1 and b > 1
For ` > 0

xn

xn`1

0 ą µ

xn

xn`1

´l ą µ ě 0

xn

xn`1

µ ě ´l

xR

xL

xR

Orbits possible...
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Other cases – results
Assumption: 0 < a < 1 and b > 1
Some pictures
For a = 0.1 and b = 1.1
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Other cases – results
Assumption: 0 < a < 1 and b > 1
Some pictures
For a = 0.5 and b = 1.1
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Other cases – results
Assumption: 0 < a < 1 and b > 1
Some pictures
For a = 0.9 and b = 1.1
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Other cases – results
Assumption: 0 < a < 1 and b > 1
Some pictures
For a = 0.5 and b = 8
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Boundary cases
By pictures
For a = 1 and b = 1.1
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Boundary cases
Some pictures
For a = 0.5 and b = 1
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Boundary cases
Some pictures
For a = 1 and b = 1
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Thank you very much
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