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Why piecewise-smooth discontinuous maps?

@ Makes an appearance in various applications in electrical
engineering and physics

2/20



Introduction Preliminaries Phase 1 Results Phase 2 Results Phase 3 Results
000 o 000000 000

Why piecewise-smooth discontinuous maps?

@ Makes an appearance in various applications in electrical
engineering and physics
Examples include
@ Controlled buck converter
@ Boost converter in discontinuous mode

@ Impact oscillators
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ID linear piecewise smooth map

Linear piecewise smooth map

ax, + | for x, <0
bx,+u+4 for x,>0

Xn+1 Zf(xn,a,b,/,t,l) = {

@ The jump discontinuity is at x =0

@ a and b are the slopes of the affine maps on either side of
discontinuity

@ /is the height of the “jump”

@ U is the parameter to be varied
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Our interest

@ Do (periodic) orbits exist for such systems?
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Our interest

@ Do (periodic) orbits exist for such systems?

o If yes, then can these orbits be characterized, classified - - -
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The settings
Assumption : Let0<a<land0<b <1
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The settings
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Equilibrium point in the left half x; = %
Equilibrium point in the right half xz = %
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The settings

Assumption : Let0 <a<land0<b < 1
If the “jump” £ > 0, then

Tnst Tng1
a T T,

>0 0>p>—1 4 n<—l

No chance of a periodic orbit !!
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The settings

Assumption : Let0 <a<land0<b < 1
If the “jump” £ < 0, then

/ TL o s T

pn<0 =l>p>0 w>—l

Orbits can exist if 0 < y < —¢
Set { = —1 and therefore 0 < u < 1
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Some definitions

@ Letf be amap from R to R. p is a periodic point of order k if
f*(p) = p, where k is the smallest such positive integer.
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Some definitions

@ Letf be amap from R to R. p is a periodic point of order k if
f*(p) = p, where k is the smallest such positive integer.

@ A sequence of k distinct periodic points of order k, say py,...,Pk,
where p; 1 =fi(p1), is called a periodic orbit of period k.

@ Let £ := (—oo, 0] (the closed left half plane) and Z := (0, )
(the open right half plane)

e Given a particular sequence of points {x, },>0 through which the
system evolves, one can code this sequence into a sequence of

Ls and Xs

@ A periodic orbit has a string of .%’s and Z’s that keeps repeating.
This repeating string is a pattern and denoted by o
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Some more definitions

e Length of the string o is denoted by |o| and gives the period of
the orbit
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e Length of the string o is denoted by |o| and gives the period of
the orbit

@ P denotes the interval of parameter y for which an orbit with

pattern o exists

@ A pattern consisting of a string of .Z’s followed by a string of %s
is called a prime pattern
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e Length of the string o is denoted by |o| and gives the period of
the orbit

@ P denotes the interval of parameter y for which an orbit with
pattern o exists

@ A pattern consisting of a string of .Z’s followed by a string of %s
is called a prime pattern

o "% is a L -prime pattern
o LA" is a Z-prime pattern
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Some more definitions

e Length of the string o is denoted by |o| and gives the period of
the orbit

@ P denotes the interval of parameter y for which an orbit with
pattern o exists

@ A pattern consisting of a string of .Z’s followed by a string of %s
is called a prime pattern

o "% is a L -prime pattern
o LA" is a Z-prime pattern

@ A pattern made up of two or more prime patterns is a composite
pattern
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Prime patterns

For a,b € (0,1), Z-prime and Z-prime patterns of any length are
admissible
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Prime patterns

Theorem
For a,b € (0,1), Z-prime and Z-prime patterns of any length are
admissible
Consider the pattern .2".%. The length of this pattern is n+ 1. From
the map, one gets the following inequalities:

x0 <0,

xp=axo+p <0,

X2 =ax;+u <0,

=a*xo+ (a+1)u <0,

X1 =d" xg+uSe_, <0,
Xp=a"xo+uS,_; >0,
Xn1 =Xx0 =d"bxo+ (bSe_; + 1u—1<0.
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Prime patterns

Theorem

For a,b € (0,1), Z-prime and Z-prime patterns of any length are
admissible

(b3 + 1)1

Therefore, xy = T

9/20



Introduction Preliminaries Phase 1 Results Phase 2 Results Phase 3 Results
000 o ©00000 000

Prime patterns

Theorem

For a,b € (0,1), Z-prime and Z-prime patterns of any length are
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should satisfy
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Theorem

For a,b € (0,1), Z-prime and Z-prime patterns of any length are
admissible

bS_ +1)u—1
Therefore, xy = %

Substituting this x( into the inequalities give us inequalities that u
should satisfy

Every .Z in the pattern gives an upper bound for u

Every & in the pattern gives a lower bound for

n n—1

P o a a
AN\ S a8,
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Prime patterns

Theorem

For a,b € (0,1), Z-prime and Z-prime patterns of any length are
admissible

bS_ +1)u—1
Therefore, xy = %

Substituting this x( into the inequalities give us inequalities that u
should satisfy
Every .Z in the pattern gives an upper bound for u
Every & in the pattern gives a lower bound for
n n—1

P o a a
AN\ S a8,

Showing that P ¢ng # 0 does the job
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Some more questions

@ Are .Z-prime patterns and Z-prime patterns the only prime
patterns that are admissible?
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Some more questions

@ Are .Z-prime patterns and Z-prime patterns the only prime
patterns that are admissible?

@ Are prime patterns the only kind of patterns? For example, can

there be a pattern like L LRREL L RL L L R?
o Can we characterize all the possible types of admissible patterns?
o For a given n, how many distinct patterns exist with period n?

@ Is there an algorithm that generates only the possible admissible
patterns of period n?

10/20
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Composite patterns

For a,b € (0,1), no admissible pattern can contain consecutive .Z’s
and consecutive #s simultaneously.
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Composite patterns

For a,b € (0,1), no admissible pattern can contain consecutive .Z’s
and consecutive #s simultaneously.

@ For u < Wll’ every Z is immediately followed by ¥

@ For u > _%, every . is immediately followed by %

@ Fora,be (0,1), ;45 < h—il
QED
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Composite patterns

For a,b € (0,1), no admissible pattern can contain consecutive .Z’s
and consecutive #s simultaneously.

@ For u < Wll’ every Z is immediately followed by ¥
@ For u > _%, every . is immediately followed by %
@ Fora,be (0,1), ;45 < Wll

QED

@ Similar limits can be found for runs of #n symbols
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Lemma

For a,b € (0,1), all the admissible composite patterns are made up of
either .Z-prime patterns or Z-prime patterns but not both. Every
composite pattern is a combination of exactly two prime patterns of
successive lengths.
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Composite patterns

Lemma

For a,b € (0,1), all the admissible composite patterns are made up of
either .Z-prime patterns or Z-prime patterns but not both. Every
composite pattern is a combination of exactly two prime patterns of
successive lengths.

—_— —
At most n At most n — 1

consecutive Ls -——— consecutive Lse——
At least n At least n — 1
consecutive Ls consecutive Ls

° Py Py Py
I Composite Region I
a Prr ! ° at Prair
Sy Si
ant A=)
a1h+Si an2b+S5_,
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Composite patterns

For a,b € (0,1), and any n, there exists ¢(n) distinct admissible
patterns of cardinality n, where ¢ is the Euler’s totient function.
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Composite patterns

For a,b € (0,1), and any n, there exists ¢(n) distinct admissible
patterns of cardinality n, where ¢ is the Euler’s totient function.

o ¢(18)=6-1,5,7,11,13,17

13/20



Introduction Preliminaries Phase 1 Results Phase 2 Results Phase 3 Results
000 o 000000 000

Composite patterns

For a,b € (0,1), and any n, there exists ¢(n) distinct admissible
patterns of cardinality n, where ¢ is the Euler’s totient function.

o ¢(18)=6-1,5,7,11,13,17
@ Thus there are patterns of length 18 with 1,5,7,11,13,17 Zs in
them

13/20
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Calculation of Pgs

Given a pattern o which is admissible, how to calculate the interval

P sigma
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Given a pattern ¢ which is admissible, how to calculate the interval
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Consider the pattern
RBLRL LRL LRLRL LRELRL L RL L
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Given a pattern ¢ which is admissible, how to calculate the interval
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Consider the pattern
RBLRL LRL LRLRL LRELRL L RL L

Substitute 0 for .Z and 1 for #
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Calculation of Pgs

Given a pattern ¢ which is admissible, how to calculate the interval

P sigma
Consider the pattern
RBLRL LRL LRLRL LRELRL L RL L

Substitute 0 for .Z and 1 for #

RLRLLRLRLLRLLRLRLLRLL
101001010010010100100

H2

LLRLLRLRLLRLLRLRLLRLR
001001010010010100101

H1
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Other cases
Assumption : Let ] <a<oand 1 <b < oo
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>0 0>p>—1 s

15/20



Introduction Preliminaries Phase 1 Results Phase 2 Results Phase 3 Results
000 o 000000 000

Other cases

Assumption : Let ] <a <ecand 1 <b <o
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No chance of a periodic orbit !!
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Other cases

Assumption : Let 1 <a <ooand 1 <b <o
If the “jump” £ < 0, then
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pn<0 —l>p=0 =l
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Other cases

Assumption : Let ] <a <ecand 1 <b <o
If the “jump” £ < 0, then

T Tnt1 Tl
/ ry
n<0 > p=0 "’ nz—l

Orbits can exist if 0 < p < —¢
Set £ = —1 and therefore 0 < u < 1

15/20



Introduction Preliminaries Phase 1 Results Phase 2 Results
000 o] 000000 [ Jele}

Other cases — results

Assumption: a,b > 1

@ Orbits are unstable
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Other cases — results

Assumption: a,b > 1

@ Orbits are unstable

@ _Z-prime patterns and Z-prime patterns always present

@ The pattern .. L Z% always present

o If pattern P %1 is present, then .£P %! is also present where
pi1<pandq <gq

e Co-existence of patterns, multiple orbits exist

@ Chaotic orbits exist !!
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Chaotic orbits

Assumption: a,b > 1
Why?

Tnsl

n—1

1>p20

17/20



Phase 2 Results
°

Chaotic orbits
Assumption: a,b > 1
a—1

Capture range for p is (=, %)

Region of a & b

Region of capture range

Only for values of a,b in blue — chaotic orbits
l<b<_ “andl<a< g
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Chaotic orbits

Assumption: a,b > 1
Some pictures
Fora=1.01,b=1.01
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Chaotic orbits

Assumption: a,b > 1
Some pictures
Fora=1.1,b=1.1

L L L L L L |
0 0.1 0.2 03 0.4 05 0.6 0.7 08 0.9 1
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Other cases — results

Assumption: 0 <a<1landb > 1
For ¢ <0

Tps1 Tnt1
. Tn Ty
=0 0>p>—l —I>p
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Other cases — results

Assumption: 0 <a<1landb > 1
For ¢ <0

=0 0>p>—l —I>p

No orbits !!
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Other cases — results

Assumption: 0 <a<1landb > 1
For ¢ >0

Tnst / Tnsl

0>pn —l>pu=0 w=—l
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Other cases — results

Assumption: 0 <a<1landb > 1
For ¢ >0

Tnp1 b Tns1

0>p —1>p=0 I

Orbits possible...
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Other cases — results
Assumption: 0 <a<1land b > 1
Some pictures
Fora=0.1andb=1.1
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Other cases — results

Assumption: 0 <a<1land b > 1
Some pictures
Fora=09andb=1.1
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Other cases — results
Assumption: 0 <a<1land b > 1
Some pictures
Fora=0.5and b =8
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Boundary cases

By pictures

Fora=1andb=1.1
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Boundary cases

Some pictures
Fora=1landb=1
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