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Geometric ideas enter the investigation of collective behavior from multiple
vantage points: the structure of configuration space; the synthesis of control
strategies; the role of symmetry and reduction in closed loop dynamics; and the
analysis of empirical data from biology. In this lecture we will present an overview
of recent progress in these directions. We will consider methods to assimilate
sampled observations of predator-prey encounters and bird flocking events into
generative models based on differential equations with inputs and outputs. The
purpose of such assimilation is to evaluate hypotheses of interest, based on
correlations, delays, and mechanisms of interaction between elementary units of
the observed population. Initial ideas on the development of control strategies
were strongly influenced by studies in the laboratory (with Cynthia Moss and her
students), on the prey-capture behavior of echolocating bats. Strategies found in
these studies serve as building blocks for rules of collective behavior. Analysis of
trajectory data (provided by Andrea Cavagna) on large flocks of starlings demands
efficient reconstruction techniques. Again the data on prey-capture behavior of bats
is a testing ground for our methods of reconstruction. We will discuss some robotics
experiments guided by these studies.
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Views of collectives

Branta canadensis

Sturnus vulgaris




Starling Flock Movie — courtesy of Andrea Cavagna, Institute for
Complex Systems, Rome.




Driving Questions about collectives

What natural algorithms govern collectives?
What building blocks (dyadic interactions)?
What purpose?

What collective strategies (from dyadic ...)?
* How do we infer mechanisms from data?

Focus on animals with well-developed sensory
modalities (vision, audition, olfaction, ...), and well-
developed freedom of movement in 3D

(animals with free will)

By natural algorithms we mean sensory-motor feedback laws that are involved in the
behavior of natural collectives (flocks of birds, schools of fish, swarms of insects,...)

Dyadic interactions are pairwise interactions such as pursuit of one animal by another (in
prey capture, mating, aggressive territorial battles, ...)

Purpose may be — colony formation e.g. honeybees, foraging for food e.g. honeybees
seeking nectar sources, avoiding predation e.g. wildebeest avoiding lions, cooperative
herding of prey e.g. dolphins herding

Collective strategies of note — polarized flock movement, milling, boundary following,
helical spiraling

The inference of feedback laws from sampled trajectory data is an ill-posed problem.
Progress is made by regularization.

Starlings fit into the category of “animals with free will”. We should not ignore the insights
from behavior of dragonflies in territorial battles associated with very sophisticated visual
processing. They are highly efficient and voracious eaters of fruit-flies.



Outline

* Models of Individual agents (self-steering particles,
particles in matrix manifolds)

* Dyadic Interactions (pursuit, escape, boundary
following)

* Models of Collectives (graphs, collective strategies,
dynamics)

» Configuration Space Methods (shape space,
ensemble moment of inertia, energy splitting)

» Data Assimilation (optimal data fitting, cross-
validation, extraction of rules for natural collectives).

Models of individual agents are constructed as self-steering particles in 2D (or 3D) with
curvatures as controls. A natural frame representation of a curve is interpreted as a control
system representation on a matrix Lie group SE(2) (or SE(3)).

Classic dyadic interactions of agents are associated with biological activities such as pursuit,
avoidance, boundary following and landmark following. These specify constraints on joint
state spaces of one or more particles. A strategy is a specification of a constraint. Contrast
functions measure departure from a strategy. Sensorimotor feedback laws execute
strategies.

A collective of self-steering particles is specified by a graph of interactions between agents
(who is attending to whom), dyadic strategies in operation, feedback laws that execute the
strategies and the dynamics of attention. Taken together these elements capture the
dynamics of a collective.

A top-down view of a such a collective may be derived from mechanics principles — start
with configuration space, describe characteristics of configuration space and Riemannian
metrics (kinetic energy quadratic forms). Analysis of data from the perspective of certain
natural decompositions of velocity spaces can be revealing.

Extracting rules from sampled observations of collectives needs principled approaches to
ill-posed problems. Regularization and cross-validation fit into optimal control theoretic
algorithms for data assimilation.






Models of Individual Agents




Self-Steering Particles
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Basic model in 3 dimensions of a self-steering particle. It defines a left-invariant system.
Geometric view — definition of Euclidean invariants (curvatures); Control theoretic view —
definition of control inputs (curvatures).



Modeling Interactions in 3D

The natural curvatures are controls. The speeds are time functions dictated by
propulsive/lift mechanisms.
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The flight behavior of a bat or a bird, or an insect, is the end result of interaction between
(visual, auditory, olfactory, somatosensory, and inertial) sensing, and actuation of a
complex network of muscles, mediated by the rapid and learned responses of the neural
control substrate. The overwhelming richness of detail present in this feedback loop and in
the physics of a multiple-degrees-of-freedom animal needs to be abstracted to the right
level in seeking answers to questions such as: What individual behaviors govern collective
cohesion? What is the structure of interaction between individuals within a collective?
What organizations within a flock enable effective transmission of information across a
flock? Based on the results of our prior work on 3D trajectory modeling and analysis of
motion camouflage and echolocating bats (Justh and Krishnaprasad 2005; Reddy et. al.
2006, 2007; Reddy 2007; Wei et. al. 2009), we argue that a description with the right level
of complexity for modeling an individual in a flock or a swarm is the Newtonian particle
model.

The figure presents two particle trajectories as curves with frames, one for the
evader/target (denoted as e) and one for the pursuer (denoted as p). The curvatures u and
v are controls. The speeds denoted by Greek letter nu are decided by propulsive/Iift
considerations.

This representation of individual trajectory dynamics is known as the natural frame
representation, made better known through a well-known paper of R. L. Bishop (1975).
Instead of writing Newton’s equations as “ma = f” , we are making explicit the role of
curvature/steering controls as inputs.



Dyadic Interactions
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Gaze Heuristic

Gerd Gigerenzer (2007)
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Strategies as constraint manifolds
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Contrast functions

We define a control strategy as the specification of a constraint manifold in the joint state
space of the pursuer (p) and the target (e). We suggest some typical pursuit strategies.
Classical pursuit is the constraint of heading straight for the target.
Constant bearing pursuit is heading for the target with a fixed lead or lag (angle alpha).
In 3D we need a cone condition.

Motion camouflage (with respect to infinity) is a stealthy pursuit, nulling motion parallax,
suggested by the trajectories of dragonflies.
Motion camouflage with respect to infinity is the same as a strategy adopted by bats in
pursuit of insects. In that context, we refer to it as the constant absolute target direction
strategy (CATD).
A pursuer executes a feedback law that (approximately) fulfills the specification -

Pursuer reaches an epsilon neighborhood of a constraint manifold in finite time;

Pursuer converges to constraint manifold asymptotically.
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Modeling Planar Motion Camouflage (1)

" X, Fp = XP
. Xp = Yp¥p
J ; (1)
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Here we specialize the models of interaction to the plane. The speed
ratio is given by v, assumed constant and less than 1 in what follows.

The MC model — pursuit model; speed ratio is given by nu.
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Modeling Motion Camouflage (2)

Motion camouflage with respect to a point at infinity is given by

A =
r & r,—r, = Ar, 6

Where 7, is afixed unit vector and A is a time-dependent scalar.
Infinitesimally, motion camouflage with respect to « is equivalent to

YR A B ol
F (lrl 4 )r| ()
e

= 0 T
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? ]

w

w denotes the transverse relative velocity.
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Contrast Function

let T 2 [;|r|]/dr
= (6
- LR
el

well-defined on non-collision states.

Observe -1<T<1l , l-v< |7 £l+v
2
and 1-T? = |w]
|7

Driving T to +] corresponds to reducing distance to motion
camouflage manifold

As | | baseline lengthening
As | R | baseline shortening
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Finding a Feedback Law (1)

Compute " (asa function of u,, u, etc.)

P’

Find law for u,to make [ negative (in a suitable region).

Consider

e

]

u, —M[L-ﬁ Vu
l—V(xp-xe)

| 7]

Forany 4 >0 there exists 7> 0 such that under (7),

<0, Virpn

But, second term in (7) asks for too much information.
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Finding a Feedback Law (2)

Consider keeping first term only in (7), but add hypothesis that| #, | is bounded.
Thus

_ _r_ 1 (8)
Mp = IH(FI.F J

For the pursuit-evader system (1), (2) with " defined by (6), we say that motion
camouflage is accessible in finite time if for any & > 0, there exists a time 4 >0
such that

Definition

Ty a e

E.W. Justh and P. S. Krishnaprasad (2006), Proc. R. Soc. A, 462:3629-3643.

PV. Reddy, E.W. Justh and P. S. Krishnaprasad (2006), 45" IEEE CDC, pp.3327-3332.
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High Gain Feedback

Proposition 1: For system (1)(2), ["as in (6) and control law (8), with the
following hypotheses:

(A1) O<v<l (andV is constant)
(A2) u, iscontinuous and |u, | is bounded
(A3) |r(0)[>0 and

(A8) T, = rO)<l

Then motion camouflage is accessible in finite time using high-gain feedback
(i.e., choosing £ > Osufficiently large).
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Diagnostics on Contrast Function
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Initial fast transient for random evader case

The green curves correspond to lower gain values; the blue curves correspond to higher
gain values. In the panel on lower right the time scale is stretched to see the initial
transient of Gamma decreasing down to nearly -1.



Stochasticity and Accessibility

Proposition 2 (Galloway-Justh-K, 2007):

Consider the system (1) - (2), with control

law (8), andT defined by (6), with the following hypotheses:
(A1) 0 <v <1 (and is constant),

(A2)u, is a stochastic process with piecewise continuous
sample paths and bounded first and second moments

(A3)u, is of a form such that the matrix X = [X.  ¥.] evolves on SO(2),
(A4) Initial conditions are generic;

Then motion camouflage is accessible in the mean in finite time using
high-gain feedback (i.e., by choosing p > 0 sufficiently large.)
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Contrast Function Excursions
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3 state run-and-tumble evader — mean straight durations 40 times longer than turn
durations
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Biological Data

Data from the Batlab (courtesy of Prof. Cynthia
Moss); strategies of insect prey capture (CATD -
constant absolute target direction strategy same
as MC)
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Biological Data

Movie of echolocating bat E. fuscus tracking and
capturing free-flying praying mantis P. agrionina
(courtesy of Prof. Cynthia F. Moss, University of
Maryland) — CATD/MC strategy at work
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Prey Capture Movie (Ghose & Moss)
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Figure 2. Bat Chasing a Flying Insect
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Ghose K, Horiuchi TK, Krishnaprasad PS, Moss CF (2008) Echolocating Bats Use a Nearly Time-Optimal Strategy to Intercept Prey.

PLoS Biol 4(5): €108. doi:10.137 1/journal pbio.0040108
http:/Awww. plosbiology.org/article/info:doi/10.137 1/journal.pbio.0040108

@.PLOS | BIOLOGY
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Summarizing the Data

From mariners avoiding collision courses, to baseball
outfielders catching flyballs, the constant bearing (CB) strategy
has been known as an effective strategy.

Here we see bats executing a different strategy — keeping
constant absolute target direction (CATD), geometrically
indistinguishable from what we referred to earlier as motion
camouflage with respect to infinity.

K. Ghose and C.F. Moss (2006), J. Neuroscience, 26(6):1704-1710.
K. Ghose, T.K. Horiuchi, P.S. Krishnaprasad and C.F. Moss (2006), PLoS Biology, 4(5), 865-873, e108.

BUT context influences strategy — see next.
Confirmed by a re-analysis by Biswadip Dey using refined data assimilation techniques
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Biological Data — Competing Bats

The Journal of Experimental Biology 213, 3348-3356
©2010. Published by The Company of Biologists Ltd
doi:10.1242]6b.044818

Effects of competitive prey capture on flight behavior and sonar beam pattern in
paired big brown bats, Eptesicus fuscus

Chen Chiu'?*, Puduru Viswanadha Reddy®, Wei Xian', Perinkulam S. Krishnaprasad®* and Cynthia F. Moss'?
Department of Psychology, University of Maryland, College Park, MD 20742, USA, 2Institute for Systems Research, University of
Maryland, College Park, MD 20742, USA, *Department of Econometrics and Operations Research, K519, Tilburg University,
PO Box 90153, 5000 LE Tilburg, Netherlands and 4Depa\rtmenl of Electrical and Computer Engineering, University of Maryland,
College Park, MD 20742, USA

*Author for correspondence (chiuchen@gmail.com)

Accepted 16 June 2010

SUMMARY

Foraging and flight behavior of echolocating bats were quantitatively analyzed in this study. Paired big brown bats, Eptesicus
fuscus, competed for a single food item in a large laboratory flight room. Their sonar beam patterns and flight paths were
recorded by a microphone array and two high-speed cameras, respectively. Bats often ined in nearly classical pursuit (CP)
states when one bat is following another bat. A follower can detect and anticipate the movement of the leader, while the leader
has the advantage of gaining access to the prey first. Bats in the trailing position throughout the trial were more successful in
accessing the prey. In this study, bats also used their sonar beam to monitor the conspecific’'s movement and to track the prey.
Each bat tended to use its sonar beam to track the prey when it was closer to the worm than to another bat. The trailing bat often
directed its sonar beam toward the leading bat in following flight. When two bats flew towards each other, they tended to direct
their sonar beam axes away from each other, presumably to avoid signal jamming. This study provides a new perspective on how
echolocating bats use their biosonar system to coordinate their flight with conspecifics in a group and how they compete for the
same food source with conspecifics.

27



Figure 1. Time-Optimal Strategies to Intercept a Target

a b
VA

Ghose K, Horiuchi TK, Krishnaprasad PS, Moss CF (2006) Echolocating Bats Use a Nearly Time-Optimal Strategy to Intercept Prey.
PLoS Biol 4(5): e108. doi:10.1371/journal.pbio.0040108
http://www. plosbiology.org/article/info:doi/10.137 1/journal pbio.0040108
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Figure 5.
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Ghose K, Horiuchi TK, Krishnaprasad PS, Moss CF (2006) Echelocating Bats Use a Nearly Time-Optimal Strategy to Intercept Prey.

PLoS Biol 4(5): €108. doi: 10.1371/journal pbio.0040108
http://www.plosbiology.org/article/info:doi/10.137 1/journal. pbio.0040108
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We define for every instant ¢,

¢ (1) = $(1) = bope(1)

the difference between the actual bearing to the target, ¢(?),

and the optimum bearing, ¢,,(t), given by Equation 1.

(2) P (u) (1)

up

May 2006 | Volume 4 | Issue 5 | e108

To determine if the bat’s flight behavior was better
described by the CB strategy or the CATD strategy, we
analyzed 30 successful insect captures by eight bats. Of these,
15 trials were of the bat capturing free-flying insects, and 15
trials were of the bat capturing tethered insects (Figure 5). In
each case the bat was observed to maneuver to approach the
optimum bearing in both horizontal and vertical planes
(Figure 5A and 5D). As can be seen from the plots of dd/dt
against ¢, in Figure 5B and 5E, the bat maneuvered to reduce
&, to zero during pursuit. We were able to model the ¢, data
well by a delay-differential equation

@ PLoS Biology | www.plosbiology.org

dg, (1)
dt

= k(1 - 7) (5)

with a negative gain parameter k and a delay . The delay, 1, in
the model is most likely due to a combination of delays in
different parts of the system, including sensorimotor pro-
cessing time and delay due to the acrodynamics of the bat. It
follows from the theory of delay differential equations [18]
that solutions to Equation 5 are well-posed and unique given
any initial condition, $*““(¢), over a time interval of length t.
Moreover, if the gain k is negative and the product kt of the
gain and time delay is greater than —n/2, each solution is a
weighted infinite sum of decaying exponentials, and the decay
rate of each term in the sum is given by the roots of the
characteristic exponential polynomial s — ke ™ associated with
the delay differential equation (Equation 5) (see Theorems 4.1
and 13.8 in [18], a result due to Hayes [19]. This stability
constraint on the parameters of the model is met by the
estimates of & and t in Figures 5B and 5E.
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Delayed scatter plot of data from 30 trials, involving insect
capture lends support for sensorimotor feedback law with
delay of 112 msec

Numerical curvatures of bat
trajectory

Bat Fiajectofy

“Insset t-fajectory

1 ﬁ/,(t—fS)——[{fxi}zh]
¢ ; A : M (1-8)
: i H 3

Hogq = 046166 | r=0B0145 ‘ . r
1 B T | b =8)= || x|,
: : I 3 |F| .
I L (1-8)

|

|

0

s 0 é . 5
[4,-5). %,(-5)]

!

Theoretical curvatures of bat trajectories determined up
to s¢aling by delayed feedback law (Reddy 2007)

S
n
S
-
o
3
~N
o
¥
[
~
it
o
&
2

s P

FEUX, -0,

d = delay

This figure summarizes the outcome of a statistical examination of the hypothesis that in
insect pursuit, a bat uses a delayed feedback law that is linear in the rate of rotation of the
baseline from the bat to the insect. Video data from two infra-red cameras in the flight
room was used to obtain trajectory data for insect and bat at a sampling rate of once every
4 msec. Using an optimization method for regularization of ill-conditioned problems, we
obtained numerically the instant-by-instant trajectory curvatures of the bat, from the
sampled trajectories. These numerical curvatures are plotted above against a delayed
version of the hypothetical feedback law, where the delay accounts for the overall latency
in the response of the bat to changes in the flight of the insect, including sensorimotor
neural computation, biomechanical delay and aerodynamics. A range of delays was
considered, and the best delay (in the sense of maximum correlation, here 0.80145),
turned out to be about 112 msec. This best delay is consistent with other known estimates
in the literature. The results show the effectiveness of the pursuit strategy employed by the
bat, based on directional and target range cues obtained by biosonar even in the presence
of delay. The technological implications of similar sensorimotor strategies in robotic assist
systems for humans are being explored through experiments in the Computational
Sensorimotor Systems Laboratory, and the Intelligent Servosystems Laboratory, of the
University of Maryland.
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Statistical Evaluation
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Accessibility with Delay

Theorem: Consider the planar pursuit system with speed ratio v
high gain control law with gain #, and feedback delay .
Suppose the following hypotheses hold:

(A1) O<v<l

(A2) u,is continuous and u |<u,,

(A3) I,=I(0)<I-¢

(Ad) [r(0)]>0
Let O<r, <|r(0)| and T ="GE2
6 =max (0,5(455) In (X))

Let ¢, —y(p:—u) il E g e V2 (4 Yt

o (1-vy

(1+v)

Suppose 4> {5 and ¢, =c,~£le, + aule, + (22) (u+ 52)|> 6

Then there exists a finite time ¢, for which (¢, )<—1+¢.

Reddy-Justh-K, 2007

This theorem gives conditions for the existence of a nonempty region of delay-gain pairs
which allow finite time accessibility of the motion camouflage manifold. Reddy et. al.
(2007).



Gain-Delay Tradeoff via Peak Deviation
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Figure 4.7: Peak deviation from motion camouflage (¢) is plotted as a function of
increasing feedback gain in the presence of various delays.
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Gain-Delay Tradeoff via Peak Deviation
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Figure 4.8: Peak deviation from motion camouflage (¢) is plotted as a function of
increasing delay for various feedback gains. The dark dashed line corresponds to
Tmaz(€), an upper bound on the delay that can be introduced into the system for a
given €.




Remarks

* Gain versus Delay tradeoffs can be carried to
the finite time behavior settings

* The resulting tradeoff curves are markedly
different from what we expect in linear setting
of asymptotic stability analysis

* Related tradeoffs incorporating stochasticity
would be of interest
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Models of Collectives

Movie of flocking event of European starling Sturnus vulgaris over
Rome (courtesy of Dr. Andrea Cavagna)
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1. Introduction

Coometrkc 1dma entor the investigaon of colloctive

behaviour from multipic vantage polnts. In this paper,

we spoctfy and analyse models that capture the geomtry

o

Recent research in collective behavior demonstrates the power of geometric thinking
(symmetries, shapes, model reduction and nonlinear dynamics) in elucidating collective
behaviors observed in nature and realizable in the laboratory. On the left you see figures
corresponding to a 3 body problem modeling interactions via constant bearing pursuit with
a fixed cycle graph of attention. For chosen parameter values, periodic solutions arise in a
two dimensional phase space producing quasi-periodic motions in physical space (shown).
Some related work is being used to explore data on starling flocks.
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Collectives —a model problem

symmetries of the n particle constant bearing
(CB) cyclic pursuit problem (including time re-
scaling or self-similarity); the n= 3 symmetric
case and phase portraits; physical space
animations of periodic orbits for the case alpha

= pi/2
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X, I \_J
¥, M state-
X r; = X,
Y, r X.i = Yiu;,
Vi — Rl 0= 132005 .,00
Assumptions:
Iy
5y 1. constant (unit) speed

2. r; # ripq (ie. “no sequential
colocation”)

Be clear that the dynamics do not enforce the collision prohibition
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Mstate/SE(2):

Ki = —t; + i [Sin(f{i) + Sin(g-prl)] 5

i

0; = —u; + [sin(k;—1) + sin(6;)],

Pi—1

pi = —cos(r;) —cos(@iy1), i=1,2,...,n

Modeling Pursuit

2) Pursuit graph: Cyclic graph ‘

Constraints: ep; >0,1=1,2,...,n
e R( i (m+ ki —0;))=1

° > PR (Zj,-:](w + K — Bj)) =0

—i%

=i
1 P r.

e

I'p

1) Pursuit strategy: Constant Bearing (CB) *»
o,

3) Feedback (pul’ﬁ‘uil‘) law: UCB(ay) = Mi sin(r; — ;) + pl [sin(k;) + sin(fi11)]

)

E. Wei, E.W. Justh and P.S. Krishnaprasad “Pursuit and an evolutionary game,” Proc. R. Soc. 4, Vol. 465, pp. 1539-1559, 2009.

Need to make it clear up front that I’'m permitting alpha to take values in [0,2pi]

41



CB Pursuit Manifold MOB(a):
JM-CB(a) = {("'71,91191: cevs Ens O, pn) € Mstare/ SE(2) l

A,;é—cos(m—a,‘,):—l,i:1,2,...,n},

Reduced shape dynamics on Mcp(q):

b — sin(e;—1) +sin(6;)  sin(a;) + sin(fi41)
’ Pi—1 Pi

pi = —cos(a;) —cos(f;11), i =1,2,...,m

b

Constraints: e p; >0, ¢=1,2,...,n
s R (m+a;—0;))=1

o >R (Z;:l(?r +a; — Bj)) =0

CB manifold is an attracting invariant manifold; invariant in the sense that the closed-loop
vector field when restricted to the manifold is tangential to the manifold.

Lead in to next slide: we want to separate the scale dynamics from the dynamics of the
“pure shape”, the shape up to similarity.
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= e)‘p%{P [ (sm(m) + sin(fz) ) — sin(as ]

1
T el P

)
—sin(fa — o —ag) —e blﬂ(az)}y
{P [e’\ (cos ay) + cos(6) ) — cos(az) }

+ cos(@z — g — a3) —e 008(03)}-,

p1 = —cos(ay) — cos(fs)
Three-particle P2 \[e2 —2¢Mcos(fy — ) + 1,
case (n = 3) _
Time- A

t
1
£ —_————d
scaling [0 eMa)py (o) P (o) 7

Pure 0, =P [e"‘ (sin(al) + sin(Gg)) - sin(az)] —sin(fy — as — az) — e*sin(az)
shape ,
dynamics A=P [e’\ (cos(al) + cos(Gg)) — cos(ag)] + cos(fy — ag — a3) — e cos(as)

py = —e*p1 P [cos(ay) + cos(6s)]
Let oy = g = a = 7 + ag, for some « € [0, 27)

This reduction is possible for arbitrary n
Absorb the constraints
P

Time-scaling

In this case, it yields two-dimensional dynamics, which can be analyzed by phase portraits
Parametrized by the three CB parameters alpha_1, alpha_2, alpha_3

Need to mention something about other cases for alpha (maybe a brief reference to
my previous CDC paper on relative equilibria)



o+

Note:

\nn\(:\,'x
B\ 1

Pure shape dynamics

0y = P [eA (sin(a) + Sin(é?g)) — sin(af)]
— sin(f2 — 2a + 7) + e sin(a)

A=P [e)‘ (cos(a) + cos(ﬂg)) — cos(a)}

+ cos(fa — 2a) + e cos(a)

3
l.ag=as=a;a3 =7+« “+Wé)\

The next slides will illustrate the alpha-dependence in a graphical way
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—¢ 2 Pure shape dynamics

j ¢ =P [e’\ (sin(a) — sin(¢ + oa)) — sin(oa)}

A=l (f’_f) ‘1.5\ — sin(¢ — ) + e*sin(a),

L IN=p [e)‘ (cos(a) — cos(¢ + a)) - cos(a)}
+ cos(¢p — ) + e* cos(a).

a4
Note:
<
l.ag=as=a;a3=7+a AN NG
2. Qbégg—égzeg—ﬂ—a \“‘\(
N2
3. ¢ = 0 <= rectilinear equilibrium by =T+ woa
4. (¢, ) = (m,0) = colocation (i.e. excluded point) ’\ 1

A family of two-dimensional dynamics (phase portraits) parametrized by a € [0, 2)

The next slides will illustrate the alpha-dependence in a graphical way
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P B e e e it
: N A P
¢ T > < > > a — 0
2 i 1
TN, Ty
r=m(g) ;\‘
o A
:ji\“’ﬁ

Need to point out:

- This is an unwrapped cylinder

- Continuum of rectilinear equilibria
- Itis punctured

I’ll depict a series of phase portraits corresponding to values of alpha around the unit circle,
starting with alpha=0
Briefly state the proposition concerning convergence to rectilinear equilibria
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Briefly state the proposition concerning convergence to rectilinear equilibria
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I"ll skip pi/2 for the moment, and consider alpha just greater than pi/2

These are unstable

Trajectories spiral in to the excluded point (i.e. collision)
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We'll take a closer look at the pi/2 phase portrait, as well as the corresponding trajectories

in the real space, in the next slide
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Theorem: Let M £ S'xR—{m,0}, and My = {(p,\) € M|¢ # 0}.
Every trajectory of the system
¢ =P [e)‘ (1 - cos(é)) - 1} + cos(¢) + e,
A = sin(¢) (Pe* +1)
which starts on the set M — Mj is periodic.

27

3

b

¢ -

Sketch of proof:

1) Show that the dynamics are F-reversible with reverser F/(¢, A) = (—¢, A),
ie. Fu(p,\)=—(d,\);

| sketch the main ideas of the proof; make it clear that there’s a good bit of analysis in the
underlying steps to characterize the regions of the phase portrait, etc.
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Theorem: Let M £ S'xR—{m,0}, and My = {(p,\) € M|¢ # 0}.
Every trajectory of the system

¢ =P [e)‘ (1 - cos(é)) - 1} + cos(¢) + e,
X = sin(¢)(Pe* +1)

which starts on the set M — Mj is periodic.
2 e 1

Sketch of proof:

2) Demonstrate that any trajectory which intersects the fixed-point set of
F (Xp={(¢ ) : ¢ =m}) at one point must intersect X p at another point;
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Theorem: Let M £ S'xR—{m,0}, and My = {(p,\) € M|¢ # 0}.
Every trajectory of the system

¢ =P [e)‘ (1 - cos(é)) - 1} + cos(¢) + e,
X = sin(¢)(Pe* +1)

which starts on the set M — Mj is periodic.

itssage—— e
L NRARY
o LN
AL ) )
)
| \‘:—‘\-\i“k - —;’/,{/ ’// -
O — e B s —

Sketch of proof:

3) Invoke Birkhoff Theorem to establish that every trajectory which starts
on the set M-M, is periodic.

G.D. Birkhoff, “The restricted problem of three bodies,” Rendi. Circ. Mat. Palermo, Vol. 39, pp. 264-334, 1915.
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Summary of reduction steps

Mstate/SE(2) MCB(a)
Dimension: 3n — 3 Dimension: 2n — 3
Variables: 3n Variables: 2n — 3
Mstate MCB(Q) MCB(Q)
Dimension: 3n Dimension: 2n — 3 Dimension: 2n — 4
Variables: 6n Variables: 2n Variables: 2n — 4
Xy ; . X
2 i .K,r? ‘nrzu
r| Y L P2 ylj P2 ’i ’j
T .-"];.j‘ 3
s P, A )

D 5 5 e

Reduction by Geometry of CB “Closure” Reduction to
SE(2) strategy constraints pure shape
Symmetry (invariant manifold)

Reduction to two-dimensional dynamics permits phase portrait analysis
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Configuration Space Methods
(saved as back-up for talk)
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Data Assimilation
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Inverse Problem

Reconstructing collectives from sampled
data

The problem of data smoothing and
regularized inversion of input data
(curvatures, speed, lateral acceleration, jerk)

The SE(2) setting vs. the linear-quadratic
optimal control problem for determining jerk.
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Regularization of Inverse Problem

Given a time series of observed positions {r;}¥ , in three dimensional space, our primary
objective is to generate a smooth trajectory to fit these data points.
o A penalty term is introduced to assure smoothness of the reconstructed trajectory.

N
Z r(t;) — rif|* 4 A / (Suitable Path Cost)dt
[ 4

i=0

> axis eBUT the relative importance of the fit
i error with respect to the penalty term is not
known a priori.

’\\'713‘“‘1 Points gm0 optimal value of the regularization

parameter ()) is chosen using ordinary

y-axis cross validation, and the optimal value
depends on the signal-to-noise ratio in the
data.

T-axis
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Generative Models

GENERATIVE MODEL I

F vT
T v (k1 My + k2 M)
M, viy T @)
.‘nfg I’L'_vT
® Penalty Term to ensure smoothness:
In s LY Py
] (A'; + k3 4 z':*)rir

MODEL I -+ MODEL II

v=vT
a = vT + vk My + 12 kaMs
u= (7 — 3k + k3))T

+ (3uwky + vk )M,

t (Buvrks + VP ka) Mo

GENERATIVE MODEL 11

F v
2 : 2)
a u
o Penalty Term to ensure smoothness:
(u" u) dt
k Ji
MoODEL II -+ MODEL I

v v|

= v

P e
5

.1
T=—(a—(a-T)T)
v
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Algorithm

RECONSTRUCTION THROUGH ERROR MINIMIZATION

Approximation by piecewise constant
speed and curvature, transforms the prob-
lem into a non-convex numerical optimiza-
tion problem [2].

MATLAB routine: fminunc.

The algorithm is capable of estimating
curvature with higher resolution, but the
process is time consuming,.

odel II (Linear

o Path-independence lemmas and Riccatti equa-
tion ensure global optimality of the solu-
tion and the solution is semi-analytic [1].
o Reconstructed positions can be expressed
as linear combinations of raw data, but the
linear weights vary across data points.

o This method is orders of magnitude faster
than the nonlinear version of the story.

B. Dey and P. S. Krishnaprasad (2012), Trajectory smoothing as a linear optimal
control problem, in Proc. 50" Allerton Conference on Communications, Control and
Computing, pp. 1490-1497 (http://dx.doi.org/10.1109/Allerton.2012.6483395 ).

http://www.isr.umd.edu/Labs/ISL/SMOOTHING/ for documentation and code
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Performance

RESULTS (BAT-MANTIS PURSUIT EVENT)

r-Craaxa

e-Ormten (m)

T I
H i
Speed (Bat) Speed (Insect)
== =]
: . N
P U
y-Orection (m)

Curvature (Bat)

[ Avg. Fit Error ||

Model 1

Model II

Bat

2.2401 x 10~7

7.6142 x 10~°

Mantis

1.2066 x 101

2.3913 x 102

Curvature (Insect)
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Final Remarks

« Geometric viewpoint can be effective in
modeling, control, data assimilation and
inference of sensorimotor strategies from
behavior

* \While much of the theoretical discussion
here has been focused on 2D, the results
for 3D are available
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Reference for general framework for collectives
(graphs, strategies, feedback laws)

K. S. Galloway, E. W. Justh and P. S. Krishnaprasad (2013), Symmetry and
reduction in collectives: cyclic pursuit strategies, Proc. R. Soc. A 2013 469
(http://dx.doi.org/10.1098/rspa.2013.0264 ).

This work is built on additional references in the following pages
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