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Almost global stabilization

Our aim is to stabilize the rigid body attitude at a given orientation.

The configuration space of a free rigid body is the set of proper
orthogonal matrices, SO(3). This is a compact manifold.

The phase space is SO(3) × R3. There exists no continuous
time-invariant vector field on SO(3) × R3 which has a globally
asymptotically stable equilibrium. 1

Therefore we cannot design time-invariant feedback control laws
which can globally stabilize any given attitude.

The next best thing is to look for almost global stabilization.

1Bhat and Bernstein, Syst. and Cntrl. Let., 2000
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Definition

For almost global stability, we demand that only the required
equilibrium is stable and all the others are unstable.

Definition
An equilibrium point x ∈M of a vector field X on M is almost

globally asymptotically stable (AGAS) if

x is locally asymptotically stable,

X has finite number of equilibrium points and the stable
manifold of every equilibrium point other than x is a lower
dimensional submanifold of M ,

all points in M \ U , where U is the union of stable manifolds of
the equilibrium points other than x, converge to x.
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Energy methods: Motivation

Consider the double integrator model ẍ = u.

The feedback u(x, ẋ) = −cẋ− kx, where c > 0, k > 0 stabilizes x at 0.

The proportional part up(x) = −kx is derivable from a potential
energy function. That is, up(x) = −dV/dx, where V (x) = 1/2kx2.

The stability can be attributed to the fact that the function V has a
minimum at x = 0; that is, dV/dx(0) = 0.

x

V
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where C > 0 and π : T ∗SO(3) −→ R3 is an appropriate map, to
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AGAS with external torques

Equations of motion

Ṙ = RΩ̂,

IΩ̇ = IΩ × Ω + uext.

We shall look for a feedback torque in the lines of the double
integrator:

uext(R,Ω) = CΩ + π(dV (R)),

where C > 0 and π : T ∗SO(3) −→ R3 is an appropriate map, to
achieve AGAS at Rd ∈ SO(3).

Notice that the equilibria of the closed loop system are points (Rc, 0)
where Rc is a critical point, that is, dV (Rc) = 0.
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However, there is no smooth potential function on SO(3) with a
single critical point.
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AGAS with external torques (Contd...)

However, there is no smooth potential function on SO(3) with a
single critical point.

Suppose V : SO(3) −→ R is such that

V has isolated critical points,

the Hessian of V is positive definite only at a single critical point
Rd, and non-singular at the other critical points.

In other words, V has minimum only at Rd and has nice properties at
the other undesired equilibria.

Then the feedback torque uext(R,Ω) = CΩ + π(dV (R)) achieves
AGAS at Rd.

The proof makes use of the fact that the closed loop system can be
derived from a Riemannian structure on SO(3) and linearization
using these ideas.2

2Bullo and Lewis, Geometric Control of Mech. Systems, 2005
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Θ̇ = Ωr.
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Internal actuation with reaction wheels

Equations of motion

Ṙ = RΩ̂b,

ILΩ̇b + IrΩ̇r = (ILΩb + IrΩr) × Ωb,

IrΩ̇b + IrΩ̇r = uint,

Θ̇ = Ωr.

Reaction wheels as ‘torque producing devices’

The equations can be rearranged

Ṙ = RΩ̂b

IsΩ̇b = IsΩb × Ωb + ueq,

where
ueq = −uint − Ωb × h.
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Using the conservation of angular momentum, the equations of
motion can be written as

Ṙ = RΩ̂b

IsΩ̇b = RTµ× Ωb − uint,

where µ ∈ R3 is the conserved value of the angular momentum.
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The intrinsic approach

Using the conservation of angular momentum, the equations of
motion can be written as

Ṙ = RΩ̂b

IsΩ̇b = RTµ× Ωb − uint,

where µ ∈ R3 is the conserved value of the angular momentum.

Similarity with external actuation
Compare this with equations of external actuation

Ṙ = RΩ̂,

IΩ̇ = IΩ × Ω + uext.
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Does uint = −uext achieve AGAS?

A natural question to ask is whether

uint(R,Ωb) = −CΩb − π(dV (R))

can yield AGAS.

Notice that the equilibria are the same as those of external actuation.

Recall that the case of external actuation was analyzed by linearizing
the Riemannian structure.

However, for the closed loop system with internal actuation

Ṙ = RΩ̂b

IsΩ̇b = RTµ× Ωb + CΩb + π(dV (R)),

it is not clear how to provide such a structure.
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Suppose ψ : Rn −→M is a local parameterization of M around x0

(ψ(0) = x0). Define
Y := ψ∗X,

the pull back of X on Rn. Stability of X can be studied by studying
Y .
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Linearization on a manifold

Suppose X is a vector field on a manifold M with X(x0) = 0. How to
determine stability of x0 by linearizing?

Suppose ψ : Rn −→M is a local parameterization of M around x0

(ψ(0) = x0). Define
Y := ψ∗X,

the pull back of X on Rn. Stability of X can be studied by studying
Y .

Linearization of Y

The linearization of Y at 0 can be obtained as follows:

DY (0) γ :=
d

dt

∣∣∣∣
t=0

Y (tγ).

This is equivalent to linearizing X at x0.
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We define the parameterization from ψ : R3 × R3 −→ SO(3) × R3 as
ψ = (exp , id), where exp is the usual matrix exponential map.
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We define the parameterization from ψ : R3 × R3 −→ SO(3) × R3 as
ψ = (exp , id), where exp is the usual matrix exponential map.

For checking AGAS, we linearize at every equilibrium point, to get a
linear gyroscopic system with damping

Isη̈ +
(
C − R̂T

c µ
)
η̇ + δ2Ṽ (0)η = 0.
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Linearization

The exponential coordinates for SO(3)
We define the parameterization from ψ : R3 × R3 −→ SO(3) × R3 as
ψ = (exp , id), where exp is the usual matrix exponential map.

For checking AGAS, we linearize at every equilibrium point, to get a
linear gyroscopic system with damping

Isη̈ +
(
C − R̂T

c µ
)
η̇ + δ2Ṽ (0)η = 0.

Similarity with external actuation
If we linearize using a similar procedure the external actuation case,
we get

Iη̈ + Cη̇ + δ2Ṽ (0)η = 0.
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When C > 0, the stability of both of these systems depends identically
on δ2Ṽ (0) and the behaviour is hyperbolic at every equilibrium point.
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When C > 0, the stability of both of these systems depends identically
on δ2Ṽ (0) and the behaviour is hyperbolic at every equilibrium point.

Theorem
Suppose V : SO(3) −→ R satisfies the previous assumption. Then,

The control law of the form

uext(R,Π) = CI−1Π + π (dV (R))

almost globally stabilizes the equilibrium point (Rd, 0) for the

externally actuated system.
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Comparison of external and internal

actuation

When C > 0, the stability of both of these systems depends identically
on δ2Ṽ (0) and the behaviour is hyperbolic at every equilibrium point.

Theorem
Suppose V : SO(3) −→ R satisfies the previous assumption. Then,

The control law of the form

uext(R,Π) = CI−1Π + π (dV (R))

almost globally stabilizes the equilibrium point (Rd, 0) for the

externally actuated system.

The control law of the form

uint(R,Π) = −CI−1

s Π − π (dV (R))

almost globally stabilizes the equilibrium point (Rd, 0) for the

internally actuated system.
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Not the end of the story...

Warning
The above result applies only to a class of control torques.

A ‘counterexample’
Examples of control laws which do not fall to this class exist which do
not achieve AGAS with a change of sign:

u(R) = CΩ − k1 ×RT k2 − k2 ×RT k3 − k3 ×RT k1.

locally stabilizes around the identity with internal actuation, but not
so for external actuation.
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Construction of V

We are on the lookout for a function V that satisfies the required
conditions of AGAS.

The function trace : SO(3) −→ R

Has been used widely in the attitude stabilization literature,
mostly for local studies.

However, has a continuum of critical points hence not suitable for
AGAS.

The modified trace function trmP : SO(3) −→ R

trmP (R) = trace(PR),

where P is a symmetric matrix.3

3Chillingworth et al., Arch. for Rat. Mech. Anal., 1982
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Modified trace functions (MTFs)

Lemma
If P is a symmetric 3 × 3 matrix with distinct eigenvalues π1, π2, π3

and if

(π1 + π2)(π2 + π3)(π3 + π1) 6= 0,

then there are exactly four regular critical points of trmP .

4Koditschek, Contemp. Math, 1989.
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Modified trace functions (MTFs)

Lemma
If P is a symmetric 3 × 3 matrix with distinct eigenvalues π1, π2, π3

and if

(π1 + π2)(π2 + π3)(π3 + π1) 6= 0,

then there are exactly four regular critical points of trmP .

It turns out that MTFs are tailor-made for AGAS.

They have been used for almost global stabilization using external
actuation by Koditschek.4

4Koditschek, Contemp. Math, 1989.
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The potential energy due to gravity of a spinning top can be
expressed as

Vg(R) = ce3 ·R
T e3,

where c > 0 and e3 is the third canonical basis vector in R3.
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The spinning top potential

The potential energy due to gravity of a spinning top can be
expressed as

Vg(R) = ce3 ·R
T e3,

where c > 0 and e3 is the third canonical basis vector in R3.

It is known that under certain conditions, this function stabilizes the
vertical upright spinning of the top.

However, this function also has a continuum of critical points and
hence not suitable for AGAS.

We augment Vg as follows

Ṽ (R) = ce3 ·R
T e3 + e1 ·R

T e1.
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It turns out that
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If c 6= 1, the above MTF satisfies all the conditions for AGAS.
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The spinning top potential (Contd...)

It turns out that
Ṽ (R) = trmP (R),

where P = diag(1, 0, c).

If c 6= 1, the above MTF satisfies all the conditions for AGAS.

The control torque due to the above potential is

π(dV (R)) = −e1 ×RT e1 − ce3 ×RT e3.
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The terms RT e1 and RT e3 in the feedback torque refer to an observed
values of e1 and e3 in the rigid body frame.
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Vector observations

The terms RT e1 and RT e3 in the feedback torque refer to an observed
values of e1 and e3 in the rigid body frame.

body frame

e1

Figure: Initial configuration
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Vector observations

The terms RT e1 and RT e3 in the feedback torque refer to an observed
values of e1 and e3 in the rigid body frame.

body frame

e1

Figure: Initial configuration

body frame

RT e1

Figure: Present configuration
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Vector observations

The main advantage is that the attitude matrix need not be explicitly
determined.

In a practical set-up, we cannot expect two objects available for
observation to be orthogonal.

If k1, k2 are any unit vectors (not orthogonal), the function

V (R) = k1 ·R
Tk1 + k2 ·R

T k2,

is a MTF satisfying the conditions for AGAS at e.

AGAS at arbitrary Rd

The above function can be modified to

VRd
(R) = RT

d k1 ·R
T k1 +RT

d k2 ·R
T k2,

satisfies the conditions for AGAS at any Rd ∈ SO(3).
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A pitfall

More may not be better
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A pitfall

More may not be better
Previous arguments show that AGAS can be achieved with two vector
observations.

It is tempting to add more vectors to the function for a ‘better
performance’:

V (R) =

m∑

i=1

ciki ·R
Tki.

It turns out that the above function is an MTF too.

But it may not satisfy the conditions for AGAS. Presence of multiple
kis makes the analytical verification difficult.
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Summary

There exist a class of control laws which stabilize a rigid body with
internal or external actuation with only a change of sign.

It is possible to construct such control laws using only the vector
observations, without having to determine the attitude matrix
explicitly.
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