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What 1s to be explained and what tools will help?

Today’s communication networks require precise synchronization.
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Possible First Question

Let Q = Q' > 0 and consider
T+ Qx = f(z, 1)

what is the simplest, physically
plausable, choice of f

that results in synchronization?



Possible Second (Better) Question

Let Q = Q' > 0 and consider
i+ Qx=f(z); 2=yg(z,2)
what is the simplest, physically
plausable, choice of f and g

that results in synchronization?



Properties of Huygens “Synchronization™

1. Independent of coupling strength (unmodeled)
2. Seems to equalize the originally unknown periods

3. Does not fix the relative amplitudes



Uncertain Plant; Integral Control

. With system unknown, it fixes the steady state
value precisely.

. Drives the error to zero but time constants can

be large.




Uncertain Plant; Integral Control
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Problem Statement

Let X C R"™ be a asymptotically stable submanifold
for £ = f(x). By the submanifold stabilization problem
for & = f(x) + ) gi(x)u;, we understand the problem
of finding a control law u(x) such that a given submanifold
X1 C X is attracting.

There are many such stabilization questions that find use in

control some quite interesting from a mathematical point of view.
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A Stabilization Theorem: Background

Consider

= f(x)+> gi(x)u; ; x € R™ Let X C R™ be a compact, invariant submanifold
for £ = f(x) and assume that X is asymptotically stable. Let X; C X also be
invariant under the flow defined by # = f(z). Then if {g;} span the normal
bundle of X; in a tubular neighborhood of X; then there exists a control law
u = u(x) that makes X; asymptotically stable.

Proof: Because X is assumed to be asymptotically stable we can limit
our attention to initial conditions in X. For z in a neighborhood of X; let
d(z) denote the euclidean distance to X;. Pick the u; so that (Vd, g;u;) < 0
Because collectively, the g; span X7, we see that along trajectories the distance
is monotone decreasing and vanishes only when d = 0 X1
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Background: The Schur-Horn Theorem

Consider the real symmetric matrix () with

eigenvalues A1, Ao, -+, Ay,
s Dk
A9 A1
and and n! — 2 more - - -

e

An

An

I'he Schur-Horn theorem says the possible diagonals

of () are just the convex combinations of these vectors.

10



In Pictures: Eigenvalues to Diagonals to Eigenvalues
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Polytope of Q Locations of Q+Z

In particular, by adding a skew-symmetric matrix
we can make all eigenvalues real and equal.



What is involved in proving that any such
diagonal can be realized?

One approach to the proof is to look for the orthogonal
matrix © such that ||©7 QO — D|| is minimized and then
show that the minimum is zero under the Schur-Horn
conditions. Because there are many local minima, arriving
at a decisive conclusion requires a somewhat tedious second
derivative calculation.
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A New Variation on the Schur-Horn Theorem
(An eigenvalue placement with multiplicity)

Given @Q = Q1 with eigenvalues {\1, A2, ..., A\n },
and given any vector [u1,uso, ..., ft,] in the
Schur-Horn polytope defined by the eigenvalues of
Q, there exists Z = —Z1 such that the eigenvalues
of Q + Z are |u1,us, ..., in|. Moreover, if the
eigenvalues of () + Z are real, they must lie

in this polytope and if they lie on the boundary

of the polytope between two distinct eigenvalues
of () they must be associated with an elementary
divisor of degree two or higher.
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In Pictures: Eigenvalues to Diagonals to Eigenvalues

Q A Q+Z
d Us
)\1 | ’ / >\:1

P P >\n ®

L
; * * U,
e 2
I m/
Schur-Horn Possible eigenvalue

Polytope of Q Locations of Q+Z

In particular, by adding a skew-symmetric matrix
we can make all eigenvalues real and equal. |,



However if the eigenvalues are to be equal.....

Working out the Jordan normal form when
@ + () is two-by-two with repeated
eigenvalues one sees that that either {2 =0
or () + €2 has a one-chain. The general
result follows.
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How to prove this?

By Schur-Horn we can find © such that the
diagonals of ©1' Q0O are the desired eigenvalues. To
the matrix ©7' Q0O add a skew-symmetric matrix
Z such that the sum is either upper or lower triangular.
Then revert to the original coordinate system to get
() + ©Z0 which has the desired eigenvalues. We
are not claiming anything about the geometric
multiplicity of the eigenvalues of () + {2 which will
be greater than one in some cases.
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An 1mportant refinement

Because eigenvalue placement involves n
parameters if () is n-by-n one can
consider restricting ). Of interest

in this context is minimizing its rank.

Can one place eigenvalues with )
of rank 27
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How are we to use this fact?

Consider an n-dimensional second linear system of the form
P4+ Qr=0with@Q=0Q" >0

The frequencies are the square roots of the eigenvalues

of (). We would like to find the simplest way to alter this
equation in such a way as to obtain synchronization.

Simplest means lowest order terms in Taylor series.
We have observed that () + Z can be made to have
equal, real, eigenvalues. Thus we look at & + (Q + Z)x = 0

What type of coupling can work?
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Towards nonlinear integral control:
what second order terms are available?

We do not want to make unnecessary assumptions
on the clock mechanism. For example, if we model
the escapement mechanism as a dynamical

system the system is at least fourth order, etc.
However, we will stick to linear models. Thus,

we want to identify the full set of linearly
independent quadratic integrals for such models
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Characterizing the resources in terms of the number of
systems (clocks) and their degrees of freedom.

This is actually a longer story. The problem

can be reduced to a discussion of quadratic
forms in m variables and their derivatives

with respect to time For example q(x, T, v, v, i)
In this case certain integrals such as zy + yx are
“exact” where others such as xy — yx are not.

The exact terms do not offer interesting possibilities
beyond those already present in x and dx/dt.
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Controllability with Linear and Quadratic Drift

We associate with the system
t=Arxr+Bu; w;=x'Dyx:i=1,2,---p
a vector-matrix system
&= Az + Bu: W = zaT
which we call the covering system. The name is
sugegested by the fact that the evolution of w
can be viewed as a projection whereby W
is mapped to w with w; = (D;, W).
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Controllability with Linear and Quadratic Drift

Let D4p be the linear span of the reachable
quadratic terms and let (A, B) be a controllable
pair with BT B nonsingular. Then D 4p has
dimension nm — m(m — 1) /2,

Of these, n are monotone increasing where n is
the dimension of A. Thus if n =2 and m = 2
there are three that are “phase sensitive” and
are not so constrained.
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Corrective Signal; the Lissajous figure in n-dimensions

The n(n — 1)/2 proj

ected areas

Z =1 [ (xi" — &aT) dt

2

y4

Positive area

Negative area

When x 1s 2-dimensional

and sinusoidal
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Corrective signal; relative phase

Suppose

2 (t) = . sint | . - cost
- sin(t+¢) | - cos(t+¢) |

so that za#! — 2! is determined by

sint cos(t + ¢) = sint(cost cos ¢ + sintsin(¢))
whose average value is (sin ¢)/2, thus providing
an error signal for nulling the phase difference.
Note that if ¢(t) =(we — w1 )t + 6 then this is
sin((A,t + 6)
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Potential models for frequency equalization

Direct Adjustment
P+ef(z)+x+e2(Q+xxl —iaxl) =0  Not Huygens-like
No integration

Integral Action

T+ef(2)+x+e@Q+Z)xr=0 Strength of interaction
7 =il — g7 not important

Numerical studies suggest that for small € there is
synchronization and mode locking but with a small irregular
motion which averages out; the phase difference between the
various oscillators is determined by () but subject to a small
jitter. One of our main points is that there is no solution

to the averaging equations ordinarily used to establish periodic

solutions. N



A Numerical Example

An example
T1 + 2(%% —+ ZE% — 1):131 + 1.1x71 — 23229 = 0
To + 2(:13% —+ :C% — 1)332 + 929 + 301 = 0

T3 + 10023 + 10x3 = 5(x142 — x211) overdamped DC gain =1/2

Observe that for x3 = .1 the eigenvalues of the matrix

1.1 —a
Q:[ a .9]

are are both 1.
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Showing numerical convergence to synchronization with phase offset
1.5 : . ,
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Undamped oscillators coupled by an over
damped back plane. Nonlinearities “rectify” out-
of-phase oscillations producing a corrective

signal.

Coupling through over damped backplane

Oscillator #1 Oscillator #2
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Is the solution truly periodic?

Let () be a symmetric detuning matrix with zero trace.
T+eD(x,2)t+x+€e(@+ Z)r =0

7 =—aZ +xiT — ixT

The averaging equations relating to a possible periodic
solution, demand that

z(t) = asinwt +bcoswt ; Z = Zy; ala+bl'b=1, etc.

The column vectors a and b, must satisfy

(Q+Z2)a=0; (Q+2)b=0; Zy=2(abl — bal)

These equations have no real solutions because the null space
of () + Z is one dimensional so that a = ~b
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To Disarm Potential Defenders of
Huygens (1629 — 1695)

It is true that many other, quite different, coupling laws may
be in effect here. However, it is part of the story that

the coupling is weak and weak means low order terms in the
Taylor series expansion. No linear coupling will work. Our
terms are second order but, as we have presented it, not the
most general second order term. However the most general
second order terms consist of ours plus terms that are
dominated by the first order terms given.

For reference: Newton 1642 — 1727 y



For further details, see

Roger Brockett, (2013) “Synchronization without
Periodicity”,

Festschrift in Honor of Uwe Helmke
http://users.cecs.anu.edu.au/~trumpf/UH60Festschrift. pdf

Roger Brockett, (2013) *“ Controllability with quadratic drift”,
MATHEMATICAL CONTROL AND RELATED FIELDS
Volume 3, Number 4, December 2013
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Abstract Version of the theorem on
eigenvalue adjustment

A Given a Zs graded Lie algebra L we have
the Ly sub algebra and the corresponding
Lie group Gg. Consider the Kostant version

of Schur-Horn and the possible spectra of
Ly + Ly.
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Conclusions

We have given a result on eigenvalue placement for
symmetric matrices perturbed by skew-symmetric matrices.

We have given an argument that Huygens synchronization
involves a type of integral control, albeit a nonlinear form.

We have described how the “first bracket” controllable
integrals can provide the necessary integral control.

We suggest that because averaging theory shows there 1s no
periodic solution for the obvious model, whereas numerical
simulation shows apparent synchronization, in fact, Huygens
synchronization 1s not actually synchronization but highly

confined near periodic irregular motion.
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