

Spacecraft Attitude Control using CMGs: Singularities and Global Controllability

Sanjay Bhat TCS Innovation Labs Hyderabad

International Workshop on Perspectives in Dynamical Systems and Control Victor Menezes Convention Center, IIT Bombay March 17, 2014

Momentum Exchange Devices

Reaction wheel: gimbal stationary, rotor speed varies

- CMG: Rotor speed constant, gimbal moves
- Variable speed CMG: Rotor speed varies, gimbal moves

Single-gimbal CMG

- Assumption: Gimbal inertia negligible, gimbal rate small
- Consequence: CMG spin angular momentum directed along the rotor axis, fixed in magnitude, function only of gimbal angle

CMG angular momentum $\nu(\theta)$, actuation torque $-\nu'(\theta)\dot{\theta}$

CMG Arrays

 For control authority as well as redundancy, multiple CMGs are used in a collection called an *array*

A pyramid array

Schematic of a pyramid array

 $\overline{\mathcal{M}}$

CMG Arrays: Notation and Terminology

• Consider a CMG array comprising *q* single-gimbal CMGs

- CMG configuration $\theta = [\theta_1, \dots, \theta_q]^{\mathrm{T}} \in \mathbb{T}^q$
- Spin angular momentum of *i*th CMG $\nu_i : S^1 \rightarrow \mathbb{R}^3$
- Total spin angular momentum $\nu : \mathbb{T}^q \to \mathbb{R}^3$ given by

$$u(\theta) \stackrel{\text{def}}{=} \nu_1(\theta_1) + \dots + \nu_q(\theta_q)$$

• Actuation torque = $-\frac{\partial \nu}{\partial \theta}(\theta)\dot{\theta}$

Jacobian

$$\frac{\partial \nu}{\partial \theta}(\theta) = \left[\nu_1'(\theta_1), \dots, \nu_q'(\theta_q)\right]_{3 \times q}.$$

- Momentum volume $\mathcal{V} = \nu(\mathbb{T}^q) \subset \mathbb{R}^3$
- Momentum envelope = topological boundary of V

Momentum Envelope of a Pyramid Array

Taken from G. Margulies and J. N. Aubrun, "Geometric theory of single-gimbal control moment gyro systems," *Journal of the* Astronautical Sciences, vol. XXVI, 1978

Body components of total (spacecraft + CMG) angular momentum

$$H = J\omega + \nu(\theta)$$

- $U = 3 \times 3$ moment-of-inertia matrix
- $\omega = \text{body components of angular velocity of body frame relative to an inertial reference frame}$
- Euler's equations assuming no external torque

$$\dot{H} + \omega \times H = 0$$

Attitude dynamical equation

$$J\dot{\omega} = -\omega \times [J\omega + \nu(\theta)] - \underbrace{-\frac{\partial \nu}{\partial \theta}}_{-\frac{\partial \nu}{\partial \theta}}(\theta)\dot{\theta}$$

Attitude Control Using CMGs: Prevalent Approach

- First, find the actuation torque profile $\tau(\cdot)$ required to achieve the desired spacecraft behavior
- Next, solve

$$\tau(t) = -\frac{\partial\nu}{\partial\theta}(\theta(t))\dot{\theta}(t)$$

to find the gimbal rate profile $\dot{\theta}(\cdot)$ that yields the required actuation torque profile $\tau(\cdot)$

 Views the CMG array as only a torque-producing device Can we always do this?

ONSULTANCY SERVICES

Singular CMG Configurations

• A CMG configuration $\theta \in \mathbb{T}^q$ is a singular configuration if

A unit vector v ∈ S² is a singular direction corresponding to a singular configuration θ ∈ T^q if

$$v^{\mathrm{T}} rac{\partial
u}{\partial heta}(heta) = 0, ext{ that is, } v^{\mathrm{T}}
u'_i(heta_i) = 0 \ orall \ i$$

- All actuation torques possible at θ are confined to $\{v\}^{\perp}$
- Every singular configuration posseses a singular direction
- Every $v \in S^2$ is a singular direction for some θ

- Encounters difficulties at or near singular configurations
- Has led to
 - Detailed studies of geometric properties of singular configurations
 - Large body of work on steering algorithms for generating gimbal rate profiles that yield required torque profiles without running into singular configurations
- Steering algorithms
 - Are partly based on heuristics
 - Have been successful in practice
 - Lack theoretical guarantees

Is it important to avoid singularities?

- Maybe, if arbitrary torque profiles need to be generated
 For example, attitude trajectory tracking
- Maybe not
 - For example, asymptotic attitude stabilization, state-to-state steering

Is the local underactuation caused by singularities really a problem?

 Underactuation does not always present an obstacle to stabilization, controllability

Exactly which system-theoretic properties do singular configurations pose an obstruction for?

Consider the combined dynamics of the spacecraft and the CMG array

- Treat gimbal rates as inputs
- Apply control-theoretic tools to determine
 - Global controllability (subject of this talk)
 - S. P. Bhat and P. K. Tiwari, "Controllability of spacecraft attitude using control moment gyroscopes," *IEEE TAC*, Vol. 54, March 2009.
 - Local controllability and stabilizability (subject of the next talk)
 - S. P. Bhat and A. A. Paranjape, "Small-time local controllability and stabilizability of spacecraft attitude dynamics under CMG actuation," *SIAM Journal of Control and Optimization*, Vol. 52, March 2014.

• Attitude represented by $R \in SO(3) \stackrel{\text{def}}{=} \{S \in \mathbb{R}^{3 \times 3} : S^{T}S = I, \det S = 1\}$ such that $R \times$ body components = inertial components

SO(3) is a Lie group with Lie algebra

$$\mathrm{so}(3) = \{ G \in \mathbb{R}^{3 \times 3} : G = -G^{\mathrm{T}} \}$$

The usual cross product on ℝ³ gives rise to a Lie algebra isomorphism (·)[×] : ℝ³ → so(3) given by

$$a^{ imes} = \left[egin{array}{cccc} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{array}
ight], \ a \in \mathbb{R}^3$$

$$\dot{R} = R\omega^{2}$$

Inertial components of the total angular momentum are constant

$$R[J\omega(t) + \nu(\theta(t))] = \mu \stackrel{\text{def}}{=} R[J\omega(0) + \nu(\theta(0))]$$

- Dynamics not controllable on $TSO(3) \times \mathbb{T}^q$
- Only need to consider dynamics on an angular momentum level set
 - Level set is diffeomorphic to $\mathrm{SO}(3)\times \mathbb{R}^3$ for each $\mu\in \mathbb{R}^3$

$$\omega = J^{-1}[R^{\mathrm{T}}\mu - \nu(\theta)]$$

Combined Dynamics

$$\dot{R} = R[J^{-1}(R^{\mathrm{T}}\mu - \nu(\theta))]^{\times}$$

$$\dot{\theta} = u$$

• Defines a family of input-affine control systems parametrized by $\mu \in \mathbb{R}^3$ with

- State $(R, \theta) \in SO(3) \times \mathbb{T}^q$
- Input = gimbal rate vector $u \in \mathbb{R}^q$
- Drift vector field $f_{\mu}(R, \theta) = (R[J^{-1}(R^{T}\mu \nu(\theta))]^{\times}, 0)$
- Control vector field $g_i(R, \theta) = (0, e_i)$
- Fixing μ is same as restricting to an angular momentum level set
- No reduction applied so far

Reachable Sets and Controllability

$\mathcal{R}(x,t)$	=	set of states reached at time t by starting from
		$x \in \operatorname{SO}(3) imes \mathbb{T}^q$ at time 0
$U_{t>0}\mathcal{R}(x,t)$	=	set of states that can be reached in finite time
		by starting from $x \in SO(3) \times \mathbb{T}^q$ at time 0

Dynamics are

- strongly accessible if R(x, t) has nonempty interior in SO(3) × T^q for every x and t > 0
- *accessible* if $\bigcup_{t\geq 0} \mathcal{R}(x,t)$ has nonempty interior in SO(3) $\times \mathbb{T}^q$ for every x
- controllable if $\cup_{t\geq 0} \mathcal{R}(x,t) = \mathrm{SO}(3) \times \mathbb{T}^q$

Strong Accessibility

$$\begin{aligned} \xi_1(R,\theta) &\stackrel{\text{def}}{=} [g_1, f_\mu](R,\theta) &= (-R(J^{-1}\nu_1')^{\times}, 0) \\ \xi_2(R,\theta) &\stackrel{\text{def}}{=} [g_1, \xi_1](R,\theta) &= (-R(J^{-1}\nu_1)^{\times}, 0) \\ \xi_3(R,\theta) &\stackrel{\text{def}}{=} [\xi_1, \xi_2](R,\theta) &= (-R(J^{-1}\nu_1 \times J^{-1}\nu_1')^{\times}, 0) \end{aligned}$$

- ν_1 , ν'_1 are linearly indpendent at every θ
- $J^{-1}\nu_1, J^{-1}\nu'_1$ and $J^{-1}\nu_1 \times J^{-1}\nu'_1$ are linearly independent at every θ
- The vector fields ξ₁, ξ₂, ξ₃, g₁, ..., g_q span the tangent space to SO(3) × T^q at every (R, θ)

The dynamics are strongly accessible and accessible on $\mathrm{SO}(3)\times \mathbb{R}^3$ for every choice of μ

TA CONSULTANCY SERVICES

19/28

The vector field *f* is WPPS if, for every open set *U* and every T > 0, there exists t > T such that $\phi_t^f(U) \cap U \neq \emptyset$

WPPS of the Attitude Dynamics

 Since θ does not change along f_μ, it suffices to consider only the "R" part of f_μ. Hence, fix θ and let

$$h(\mathbf{R}) = \mathbf{R}[J^{-1}(\mathbf{R}^{\mathrm{T}}\boldsymbol{\mu} - \boldsymbol{\nu}(\boldsymbol{\theta}))]^{\times}$$

• Define a volume form Ω on SO(3) by

$$\Omega_R(Rv_1^{\times}, Rv_2^{\times}, Rv_3^{\times}) = v_1^{\mathrm{T}}(v_2 \times v_3)$$

Flow of h conserves the volume form Ω

$$L_h\Omega\equiv 0$$

• Poincare's recurrence theorem $\implies h$ is WPPS on SO(3)

The drift vector field f_{μ} is WPPS on SO(3) $\times \mathbb{T}^{q}$ for each μ

$\label{eq:accessibility} \mathsf{Accessibility} + \mathsf{WPPS} \Longrightarrow \text{(global) controllability}$

• Dynamics are globally controllable on $SO(3) \times \mathbb{T}^q$ for each μ

- Given any two states having the same inertial angular momentum components, there exist gimbal angles that steer the spacecraft from one to the other
- Controllability not affected by singular CMG configurations
- Controllability independent of the number and arrangement of CMGs

What we have got:

Steer $(R_i, \omega_i, \theta_i)$ to $(R_f, *, \theta_f)$

What we want:

Steer $(R_i, \omega_i, \theta_i)$ to $(R_f, \omega_f, *)$

Given

• An initial $(R_i, \omega_i, \theta_i)$ and a desired final rotational state (R_f, ω_f) ,

Does there exist

- A corresponding final CMG configuration θ_f such that
- (*R*_i, ω_i, θ_i) and (*R*_f, ω_f, θ_f) lie on the same angular momentum level set?
- The answer depends on the structure of angular momentum level set, and hence on the CMG array

• Suppose the total inertial angular momentum equals $\mu \in \mathbb{R}^3$

If (*R*, θ) ∈ SO(3) × T^q is a rest state on this angular momentum level set, then

$$R^{\mathrm{T}}\mu = \nu(\theta), \ \|\mu\| = \|\nu(\theta)\|$$

• The level set contains no rest state if

$$\|\mu\| > \max\{\|\nu(\theta)\| : \theta \in \mathbb{T}^q\} = \max\{\|\nu\| : \nu \in \mathcal{V}\}\$$

- CMG array gets saturated before rest state is achieved
- No rest state possible inspite of controllability
- Spacecraft can be brought to rest in all desired attitudes if

 \mathcal{V} contains a sphere of radius $\|\mu\|$

- Dynamics controllable on an angular momentum level set
 - The reachable set from any state is the angular momentum level set containing that state
- The result holds irrespective of singular CMG configurations or the construction of the CMG array
- Ability to steer the spacecraft to practically useful final states may still depend on the CMG array

External Singularities

- Let S = set of singular configurations
- Given v ∈ S², let S_v = set of singular configurations with singular direction v

$$= \{ \theta \in \mathbb{T}^q : v^{\mathrm{T}} \nu_i'(\theta_i) = 0, \ \forall \ i \}$$

• $\theta \in S$ is an *external singularity* if $\theta \in S_v$ for some $v \in S^2$ and

$$\min_{i} v^{\mathrm{T}} \nu_{i}(\theta_{i}) > 0$$

- An external singularity is a strict global maximizer of $\theta \mapsto v^T \nu(\theta)$ for some $\nu \in S^2$
- $\nu(\theta)$ lies on the momentum envelope

Critically Singular Configurations

- Consider the function $\eta : \mathbb{T}^q \to \mathbb{R}$ given by $\eta(\theta) = \|\nu(\theta)\|^2$
- $\theta \in \mathbb{T}^q$ is a critically singular configuration if
 - $\theta \in \mathcal{S}$
 - θ is a critical point of η
- Denote C = set of critically singular configurations
 - If $\nu(\theta) = 0$ and $\theta \in S$, then $\theta \in C$
 - If $\nu(\theta) \neq 0$, then $\theta \in C$ if and only if

•
$$\nu(\theta)^{\mathrm{T}}\nu_i'(\theta_i) = 0 \ \forall \ i$$

- That is, the singular direction and $\nu(\theta)$ are linearly dependent
- A critically singular configuration may or may not be an external singularity
- Likewise, an external singularity may or may not be a critically singular configuration

A non-singular configuration

- $\nu(\theta) = 0$
 - θ is a critical point of η
- $\theta \notin S$
- Therefore $\theta \notin C$

- All CMG torques in *XY*-plane
 - Singular direction along Z-axis
- Therefore $\theta \in S$
- θ is an internal singularity
- $\nu(\theta)$ not along *X*-axis
 - Therefore $\theta \notin C$

A non-critically singular configuration

A critically singular configuration $u(\theta) = 0$

- $\nu(\theta) = 0$
 - $\bullet~\theta$ is a critical point of η

•
$$\theta \in \mathcal{S}$$

- All CMG torques in XY-plane
- Therefore $\theta \in \mathcal{C}$
- θ is an internal singularity

A critically singular configuration $\nu(\theta) \neq 0$

- $\nu(\theta)$ along *X*-axis
- All CMG torques in YZ-plane
 - Singular direction along X-axis
- Therefore $\theta \in \mathcal{C}$
- θ is an internal singularity

A critically singular external singularity

- $\nu(\theta)$ along Z-axis
- All CMG torques in XY-plane
 - Singular direction along Z-axis
- Therefore $\theta \in \mathcal{C}$
- θ is an external singularity
- θ is a local maximizer for η

Thank You

 $\overline{\mathcal{M}}(\mathcal{M}) = \overline{\mathcal{M}}(\mathcal{M}) = \overline{\mathcal{M}}(\mathcal{M}$

TATA CONSULTANCY SERVICES

32/28