

Spacecraft Attitude Control using CMGs: Local Controllability and Stabilizability

Sanjay Bhat TCS Innovation Labs Hyderabad

International Workshop on Perspectives in Dynamical Systems and Control Victor Menezes Convention Center, IIT Bombay March 19, 2014

ΑΥΤΑΤΥ CONSULTANCY SERVICES

Previous Talk

- Singular configurations and why people think they make control difficult
- Dynamics are globally as controllable as conservation of angular momentum permits
- Some care should be exercised when drawing conclusions in practical situations
- Two types of singular configurations: external and critically singular

This Talk

- Do singular configurations affect
 - Local controllability?
 - Local stabilizability?

Recap of Notation and Terminology

- CMG angular momentum $\nu(\theta) = \nu_1(\theta_1) + \dots + \nu_q(\theta_q)$
- CMG angular momentum magnitude defines a function $\eta(\theta) = \|\nu(\theta)\|^2$
- CMG configuration θ is *singular* with *singular direction* $v \in S^2$ if

$$v^{\mathrm{T}}\nu_i'(\theta_i) = 0 \;\forall\; i$$

- A singular configuration θ with singular direction $v \in S^2$ is
 - An external singularity if

$$v^{\mathrm{T}}\nu_i(\theta_i) > 0 \;\forall\; i$$

• Critically singular if

singular direction v and $\nu(\theta)$ are linearly dependent

ΑΊ ΤΑΤΑ CONSULTANCY SERVICES

Recap of the Dynamics

$$\dot{R} = R[J^{-1}(R^{T}\mu - \nu(\theta))]^{\times}$$
$$\dot{\theta} = u$$
$$\dot{y}(t) = \underbrace{f_{\mu}(y(t))}_{\text{drift}} + \underbrace{g_{1}(y(t))u_{1}(t) + \dots + g_{q}(y(t))u_{q}(t)}_{\text{control}}$$

Set of uncontrolled equilibria

$$\begin{aligned} \mathcal{E}_{\mu} &\stackrel{\text{def}}{=} & \{x \in \mathrm{SO}(3) \times \mathbb{T}^q : f_{\mu}(x) = 0\} \\ & = & \{(R, \theta) \in \mathrm{SO}(3) \times \mathbb{T}^q : R^{\mathrm{T}} \mu = \nu(\theta)\} \end{aligned}$$

Checking Controllability of the Linearization

$$\dot{\mathbf{y}} = f(\mathbf{x}) + g_1(\mathbf{x})u_1 + \dots + g_q(\mathbf{x})u_q$$

$f(x_e) = 0$, *U* an open neighborhood of *x*, $\phi : U \to \mathbb{R}^n$ a chart, $\phi(x_e) = 0$ Dynamics expressed in coordinates: $\hat{f} = \phi_* f$, $\hat{g}_i = \phi_* g_i$

Linearization:
$$\dot{\hat{x}} = A\hat{x} + b_1\hat{u}_1 + \cdots, A = \frac{\partial f}{\partial \hat{x}}(0), b_i = \hat{g}_i(0)$$

$$Ab_i = \frac{\partial \hat{f}}{\partial \hat{x}}(0)\hat{g}_i(0) = \frac{\partial \hat{f}}{\partial \hat{x}}(0)\hat{g}_i(0) - \frac{\partial \hat{g}_i}{\partial \hat{x}}(0)\hat{f}(0) = -[\hat{f}, \hat{g}_i](0)$$

$$= -[\phi_*f, \phi_*g_i](0) = -\phi_*[f, g](\phi(x_e)) = -\mathbf{T}_{x_e}\phi([f, g](x_e))$$

Similarly

$$A^2b_i = \phi_*[f, [f, g]](\phi(x_e)) = \mathsf{T}_{x_e}\phi(\mathsf{ad}_f^2g_i(x_e))$$

rank
$$[B, A^2B, \dots, A^{n-1}B] = \dim \operatorname{span}\{\operatorname{ad}_f^k g_i(x_e) : k = 0, 1, \dots, n-1\}$$

Lemma

$$\operatorname{span}\{\operatorname{ad}_{f_{\mu}}^{n}g_{i}(p):i,n\geq1\}\subseteq\operatorname{span}\{(R(J^{-1}w)^{\times},0):w\in\mathbb{R}^{3},w^{\mathrm{T}}\nu(\theta)=0\}$$

Result

Let $\mu \in \mathbb{R}^3$ and suppose $p = (R, \theta) \in \mathcal{E}_{\mu}$. Then the linearization of the dynamics at p is controllable if and only if θ is not a critically singular configuration.

Corollary

If $\|\mu\|^2$ is a regular value of the function $\eta(\cdot) = \|\nu(\cdot)\|^2$, then the dynamics have a controllable linearization at every equilibrium in \mathcal{E}_{μ}

Small-Time Local Controllability

 Gimbal rates are measurable functions of time taking values in them polydisk

$$\mathcal{H}_{\rho} \stackrel{\text{def}}{=} \{ u \in \mathbb{R}^q : |u_i| \le \rho_i, \ \forall \ i \}, \ \rho_i > 0$$

Reachable set

- $\mathcal{R}_T(x) =$ set of states reached in time $\leq T$ by starting from $x \in SO(3) \times \mathbb{T}^q$ at time 0 and using gimbal rates lying in \mathcal{H}_ρ
- Dynamics are small-time locally controllable (STLC) if

$$x \in \operatorname{int} \mathcal{R}_T(x) \ \forall \ T > 0$$

Linearization controllable \Longrightarrow STLC

Result

Dynamics are STLC at an equilibrium if the CMG array at that equilibrium is not in a critically singular configuration

Corollary

- Dynamics are STLC at all equilibria on an angular momentum level set corresponding to a regular value of the function η
- Dynamics are STLC at all equilibria on almost all angular momentum level sets (Sard's theorem)

Sufficient Conditions for STLC: A First Attempt

- Assign nonnegative weights l_0, l_1, \ldots, l_q to $f_{\mu}, g_1, \ldots, g_q$, resp.
- A bracket *B* involving $f_{\mu}, g_1, \ldots, g_q$
 - Is bad if it contains f_μ an odd number of times and each g_i an even number of times
 - Is good otherwise
 - Has *l*-degree $l_0|B|_0 + l_1|B|_1 + \cdots + l_q|B|_q$
- STLC holds at an equilibrium *x*_e if
 - Every bad bracket evaluated at *x*_e is in the span of good brackets of lower *l*-degree
- Stronger than the Bianchini-Stefani condition
- Fails to hold at equilibria involving certain critically singular configurations

Tutorial on the Bianchini-Stefani Condition: Free Lie Algebras

- $\text{Lie}(\xi) = \text{free Lie algebra in indeterminates } \xi = \{\xi_0, \xi_1, \dots, \xi_q\}$
- Containing real linear combinations of formal Lie brackets involving $\{\xi_0, \xi_1, \dots, \xi_q\}$ like
 - $\xi_0, \xi_1, [\xi_0, [\xi_1, \xi_2]], 3\xi_3 + 2[\xi_0, \xi_1] + 1.43[\xi_0, [\xi_1, \xi_2]]$
- $\operatorname{Lie}_0(\xi) = \operatorname{subalgebra}$ generated by elements of the form $\operatorname{ad}_{\xi_0}^k B$, $B \in \operatorname{Lie}(\xi)$
- Lie₀(ξ) contains real linear combinations of elements like
 [ξ₀, ξ₁], [ξ₀, B], [ad^k_{ξ₀}B, C], B, C ∈ Lie(ξ)
- Lie₀(ξ) is the smallest Lie subalgebra of Lie(ξ) containing $\{\xi_1, \ldots, \xi_q\}$ and closed under brackets with ξ_0

Tutorial on the Bianchini-Stefani Condition: Weights and Degree

• Admissible weight vector: $l = [l_0, l_1, \dots, l_q]^T \in \mathbb{R}^n$ such that $l_i \ge l_0 \ge 0$

• Running example: q = 3, $l_0 = 1$, $l_2 = 1.5$, $l_1 = l_3 = 2$

- $|B|_i$ = no. of times ξ_i appears in the bracket $B \in \text{Lie}(\xi)$
- *l*-degree of bracket *B* equals $l_0|B|_0 + \cdots + l_q|B|_q$
 - $[\xi_0, [\xi_1, \xi_2]]$ has *l*-degree 4.5, $[[\xi_0, \xi_1], [\xi_1, \xi_2]]$ has *l*-degree 6.5
- B ∈ Lie(ξ) is *l*-homogeneous if it is a combination of brackets having the same *l*-degree
 - $2.3[\xi_0, [\xi_1, \xi_2]] + 6.31 ad_{\xi_0}^3 \xi_2$ is *l*-homogeneous of degree 4.5
 - 2.3[ξ₀, [ξ₁, ξ₂]] + 6.31ad³_{ξ₀}ξ₁ is not *l*-homogeneous
- V_k = subspace of Lie₀(ξ) generated by brackets having *l*-degree $\leq k$
 - $2.3[\xi_0, [\xi_1, \xi_2]] + 6.31ad_{\xi_0}^3\xi_2 \in \mathcal{V}_{4.5} \subseteq \mathcal{V}_5$
 - $2.3[\xi_0, [\xi_1, \xi_2]] + 6.31 ad_{\xi_0}^3 \xi_1 \notin \mathcal{V}_{4.5}$, but $\in \mathcal{V}_5$

Tutorial on the Bianchini-Stefani Condition: Bad Brackets

- The bracket B ∈ Lie₀(ξ) is bad if |B|₀ is odd and |B|_i is even for each i > 0
 - $[\xi_2, [\xi_0, \xi_2]], [\xi_1, ad_{\xi_0}^3 \xi_1]$ are bad, $[\xi_1, [\xi_0, \xi_2]], [\xi_1, ad_{\xi_0}^2 \xi_1]$ are not
- \mathcal{B} = subspace of Lie₀(ξ) generated by bad brackets
- B_S = subset of elements of B that remain unchanged whenever ξ_i and ξ_j are interchanged for any pair i, j > 0 such that l_i = l_j
 - $[\xi_0, \xi_2] + a[\xi_2, [\xi_0, \xi_1]] + b[\xi_2, [\xi_0, \xi_3]] \in \mathcal{B}_S$ if $a = b, \notin \mathcal{B}_S$ otherwise
 - We can "symmetrize" any bad bracket to get an element of \mathcal{B}_S
- Set B^{*}_S of *l*-obstructions is the smallest Lie algebra containing B_S and closed under Lie brackets with ξ₀
 - \mathcal{B}_{S}^{*} = Lie subalgebra generated by elements of the form $ad_{\xi_{0}}^{k}B$, $B \in \mathcal{B}_{S}$

Tutorial on the Bianchini-Stefani Condition: Neutralization

- Given a bracket $B \in \text{Lie}(\xi)$, $p \in \text{SO}(3) \times \mathbb{T}^q$ and a set of vector fields $\mathbf{h} = \{h_0, h_1, \dots, h_q\}$ on $\text{SO}(3) \times \mathbb{T}^q$,
 - $Ev^{h}(B) = vector field obtained by replacing <math>\xi_i$ with h_i
 - $\operatorname{Ev}_p^{\mathbf{h}}(B) = \operatorname{tangent} \operatorname{vector} \operatorname{at} p$ obtained by evaluating $\operatorname{Ev}^{\mathbf{h}}(B)$ at p

$$\mathcal{V}^{\mathbf{h}}_{k}(p) \hspace{.1in} = \hspace{.1in} \{ \mathrm{Ev}^{\mathbf{h}}_{p}(B) : B \in \mathcal{V}_{k} \}$$

An *l*-homogeneous element B ∈ B^{*}_S is h-*l*-neutralized at p if there exists k < *l*-degree of B such that

$$\operatorname{Ev}_p^{\mathbf{h}}(B) \in \mathcal{V}_k^{\mathbf{h}}(p)$$

ONSULTANCY SERVICES 13/41

The dynamics are STLC at $p \in \mathcal{E}_u$ under the input constraint $u \in \mathcal{H}_o$ if there exist

a nonnegative k

an admissible weight vector l

such that

- every *l*-homogeneous element of \mathcal{B}_{s}^{*} of *l*-degree $\leq k$ is h-l-neutralized at p and
- 2 $\mathcal{V}_{\iota}^{\mathbf{h}}(p)$ equals the tangent space at p

for **h** = { $f_{\mu}, g_1, \ldots, g_q$ }

Condition does not involve the constraint parameters p

R. M. Bianchini and G. Stefani, "Controllability along a trajectory: a variational approach," SIAM J. Contr. Optim., 1993

```
F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems, Springer, 2005
```

TATA CONSULTANCY SERVICES

Applying the Bianchini-Stefani Condition

- Consider $p = (R, \theta) \in \mathcal{E}_{\mu}$ such that $\theta \in \mathcal{C}$ and $\|\nu(\theta)\|(=\|\mu\|) = 0$
- Choose all weights = 1
- Two lowest possible degrees for a bad bracket are 3 and 5
 - A bad bracket of degree 3 is necessarily of the form $B = [\xi_i, [\xi_0, \xi_i]]$
 - Corresponding symmetrized element is $B_{\rm S} = \sum_{i=1}^{q} [\xi_i, [\xi_0, \xi_i]]$

$$\operatorname{Ev}^{\mathbf{h}}(B) = [g_i, [f_{\mu}, g_i]] = (-R(J^{-1}\nu_i)^{\times}, 0)$$

$$\therefore \operatorname{Ev}_p^{\mathbf{h}}(B_{\mathbf{S}}) = (-R(J^{-1}\nu(\theta))^{\times}, 0) = 0$$

Similarly, bad brackets of degree 5 also vanish after symmetrization

\$\mathcal{V}_5^h(p)\$ contains the 3 + q linearly independent tangent vectors g_i(p) and

$$[f_{\mu}, g_1](p), [g_1, [f_{\mu}, g_1]](p), [[g_1, [f_{\mu}, g_1]], [f_{\mu}, g_1]](p)$$

bad bracket

TATA CONSULTANCY SERVICES

STLC follows

STLC at Critical Singularities

Main result

Let $\mu \in \mathbb{R}^3$, and suppose $p = (R, \theta) \in \mathcal{E}_{\mu}$ is such that $\theta \in C$. If any one of the following three conditions hold, then the dynamics are STLC at p subject to $u \in \mathcal{H}_{\rho}$

u(heta) = 0 $\min_{i}
u(heta)^{\mathrm{T}}
u_{i}(heta_{i}) < 0$

 $\min_{i} \nu(\theta)^{\mathrm{T}} \nu_{i}(\theta_{i}) = 0, \text{ dim span}\{\nu_{i}'(\theta_{i}) : i \text{ s.t. } \nu(\theta)^{\mathrm{T}} \nu_{i}(\theta_{i}) = 0\} = 2$

- Second condition $\iff \theta$ is not an external singularity
- Cases not covered

 $\min_{i} \nu(\theta)^{\mathrm{T}} \nu_{i}(\theta_{i}) > 0$ (external singularity)

Suppose $y : [0, \hat{T}] \to SO(3) \times \mathbb{T}^q$ is a solution of the uncontrolled system and $\gamma : [0, \hat{T}] \to T^*(SO(3) \times \mathbb{T}^q)$ is a solution of the adjoint system of the uncontrolled system such that $\gamma(t) \in T^*_{y(t)}\mathcal{N}$, $t \in [0, \hat{T}]$ and

Then there exists $T \in (0, \hat{T}]$ such that, for all $t \in [0, T]$, y(t) lies on the boundary of $\mathcal{R}_t(y(t))$

Consequence of a sufficient condition for extremality
Idea: apply with *y* and *γ* constant solutions

G. Stefani, "A sufficient condition for extremality," Analysis and Optimization of Systems, LNCIS # 111, Springer, 1988

Coordinate-free description

The adjoint system of the vector field f_{μ} is the Hamiltonian vector field on $T^*(SO(3) \times \mathbb{T}^q)$ having the Hamiltonian function defined by

 $H(\Lambda) = \Lambda(f_{\mu}(x)), \ \Lambda \in \mathrm{T}^{*}(\mathrm{SO}(3) \times \mathbb{T}^{q}), \ x = \pi^{*}(\Lambda)$

Coordinate description

System:
$$\dot{x}(t) = f(x(t)), \qquad f: \mathbb{R}^n \to \mathbb{R}^n,$$

Adjoint: $\dot{\gamma}^{\mathrm{T}}(t) = -\gamma^{\mathrm{T}}(t)\frac{\partial f}{\partial x}(x(t))$

If $x \equiv x_e$ is a constant solution, then the adjoint solution $\gamma(\cdot)$

- Is constant iff it is a left-null vector of the system linearization at x_e
- Satisfies γ(t)(ad^k_{f_μ}g_i(x_e)) = 0 iff it lies in the left null space of the controllability matrix of the system linearization at x_e

 Satisfies both of the above only if the linearization at x_e has an uncontrollable eigenvalue at 0
 TATA CONSULTANCY SERVICES
 18/41

Main result

Suppose $\mu \neq 0$. Let $\theta \in C$ be such that

 $\min\{\nu(\theta)^{\mathrm{T}}\nu_{i}(\theta_{i}): i \in \mathbb{I}_{q}\} > 0$, (external singularity)

and let $p = (R_e, \theta_e) \in \mathcal{E}_{\mu}$. Then the dynamics are not STLC at p.

• $\gamma \equiv (R_e(J\nu(\theta_e))^{\times}, 0) \in T_{R_e}(SO(3) \times \mathbb{T}^q)$ is an adjoint solution

Recall that

 $\mathrm{ad}_{f_{\mu}}^{n}g_{i}(p)\in\mathrm{span}\{(R_{\mathrm{e}}(J^{-1}w)^{\times},0):w\in\mathbb{R}^{3},w^{\mathrm{T}}\nu(\theta_{\mathrm{e}})=0\}$

Matrix *L* is diagonal with $L_{ii} = \nu(\theta_e)^T \nu_i(\theta_e) > 0$

Result follows from Stefani's condition

- Dynamics are not STLC at p = (R, θ) ∈ E_μ if θ is a local maximizer for η
 - Second-order necessary conditions for a local maximum \implies Hessian is nonnegative definite $\implies \nu(\theta)^{T}\nu_{i}(\theta_{i}) > 0$ for all *i*
- In case of only one CMG, dynamics are STLC at no equilibrium
 - η is a constant function, and every configuration is a local maximizer
- Can we identify small-time unreachable states?

Symmetry

• Isotropy group of μ (assumed \neq 0)

$$\mathcal{I}_{\mu} \stackrel{\text{def}}{=} \{ S \in \mathbf{SO}(3) : S\mu = \mu \} = \{ e^{\alpha \mu^{\times}} : \alpha \in \mathbb{R} \}$$

• \mathcal{I}_{μ} acts on SO(3) $\times \mathbb{T}^{q}$ through the action

$$\Phi^{\mu}_{S}(x) = (SR, \theta), \ x = (R, \theta)$$

If (R(·), θ(·)) is a solution, then so is (SR(·), θ(·)) for each S ∈ I_μ
 Dynamics on SO(3) × T^q are invariant under the action of I_μ
 R_T(Φ^μ_S(x)) = Φ^μ_S(R_T(x))

• Define "projection" $\phi_{\mu} : SO(3) \times \mathbb{T}^q \to S^2 \times \mathbb{T}^q$

$$\phi_{\mu}(x) = (\|\mu\|^{-1} R^{\mathrm{T}} \mu, \theta), \ x = (R, \theta)$$

 $\begin{array}{c} \textbf{\textbf{Fiber over } x^{r} \in S^{2} \times \theta \text{ is an orbit of } \mathcal{I}_{\textbf{\textbf{K}}} \\ \textbf{\textbf{TATA CONSULTANCY SERVICES} \end{array}$

Reduced Dynamics

- Reduced state $S^2 \times \mathbb{T}^q \ni (\xi, \theta) \stackrel{\text{def}}{=} x^r = \phi_\mu(x) = (\|\mu\|^{-1} R^T \mu, \theta)$
- Reduced dynamics

$$\dot{\xi} = \xi \times [J^{-1}\{\|\mu\|\xi - \nu(\theta)\}], \ \dot{\theta} = u$$

Easy consequences

$$\mathcal{R}_T^{\mathrm{r}}(\phi_\mu(x)) = \phi_\mu(\mathcal{R}_T(x)), \ \phi_\mu(\mathcal{E}_\mu) \subseteq \mathcal{E}_\mu^{\mathrm{r}}$$

STLC of reduced dynamics

Suppose $\mu \neq 0$. If $p \in \mathcal{E}_{\mu}$, then the linearization of the reduced dynamics at $p^{r} \stackrel{\text{def}}{=} \phi_{\mu}(p)$ are controllable. Consequently, the reduced dynamics are STLC at p^{r} .

ΤΛΤΛ

TATA CONSULTANCY SERVICES

TATA CONSULTANCY SERVICES

TATA CONSULTANCY SERVICES

 If all nearby points on the fiber can be reached in small time, then the full dynamics must be STLC

Suppose $\mu \neq 0$. Let θ be a critically singular external singularity, and assume $p = (R, \theta)$ is an equilibrium point. Then there exist T > 0 and a sequence of angles $\{\alpha_n\}_{n=1}^{\infty}$ converging to 0 in $(-\pi, \pi)$ such that

 $(\exp(\alpha_n\mu^{\times})\mathbf{R},\theta)\notin \mathcal{R}_T(p)$

 There exist arbitrarily small rotations about the inertial angular momentum vector (equivalently, the singular direction) that cannot be achieved in time less than T with zero net change in the gimbal angles

Stabilizability

Results

Suppose $p = (R_e, \theta_e) \in \mathcal{E}_{\mu}$.

- If θ_e is not a critically singular configuration, then *p* is locally asymptotically stabilizable (linearization is controllable)
- 2 If θ_e either yields a local maximum or a nonzero local minimum for η , then *p* is not locally asymptotically stabilizable
 - Single CMG \Longrightarrow no equilibrium is stabilizable
 - Choose neighborhood U of p such that

$$(\mathbf{R}^{\mathrm{T}}\mu)^{\mathrm{T}}\nu(\theta_{\mathrm{e}}) > 0 < \nu(\theta_{\mathrm{e}})^{\mathrm{T}}\nu(\theta) \ \forall \ (\mathbf{R},\theta) \in U$$

• There exists $(R, \theta) \in U$ and $\epsilon < 0$ such that $R^{\mathrm{T}} \mu - \nu(\theta) = \epsilon \nu(\theta_{\mathrm{e}}) \Longrightarrow$

$$\|\nu(\theta_{e})\|^{2} - \|\nu(\theta)\|^{2} = \|R^{T}\mu\|^{2} - \|\nu(\theta)\|^{2}$$

$$(\Lambda_{1}, \Lambda_{2}, \Lambda_{2$$

- Linearization controllable
- STLC and stabilizability hold

A non-singular configuration

- Linearization controllable
- STLC and stabilizability hold

A non-critically singular configuration

 $\nu(\theta) \neq 0$

- Linearization uncontrollable
- STLC holds

A critically singular configuration $\nu(\theta)=0$

TATA CONSULTANCY SERVICES

- Internal singularity
- Linearization uncontrollable
- STLC holds

A critically singular configuration $\nu(\theta) \neq 0$

TATA CONSULTANCY SERVICES

- θ is a local maximizer for η
- STLC and stabilizability fail

A critically singular external singularity

- STLC and stabilizability depend on the nature of the singular configuration
 - Non-critically singular configurations pose no problems for STLC, stabilizability
 - Critically singular configurations that are not external singularities pose no problems for STLC
 - Critically singular external singularities \Longrightarrow no STLC
 - Small rotations about the singular direction not achievable in small time
 - Includes local maximizers of CMG angular momentum magnitude as special cases
 - Includes single CMG as a special case
 - Local maximizer of CMG angular momentum magnitude \Longrightarrow no stabilizability

Thank You

 $\overline{\mathcal{M}} = \overline{\mathcal{M}} = \overline{\mathcal{$

TATA CONSULTANCY SERVICES

37/41