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Recap and Preview

Previous Talk
Singular configurations and why people think they make control
difficult

Dynamics are globally as controllable as conservation of angular
momentum permits

Some care should be exercised when drawing conclusions in
practical situations

Two types of singular configurations: external and critically singular

This Talk
Do singular configurations affect

Local controllability?

Local stabilizability?
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Recap of Notation and Terminology

CMG angular momentum ν(θ) = ν1(θ1) + · · ·+ νq(θq)

CMG angular momentum magnitude defines a function
η(θ) = ‖ν(θ)‖2

CMG configuration θ is singular with singular direction v ∈ S2 if

vTν ′i(θi) = 0 ∀ i

A singular configuration θ with singular direction v ∈ S2 is
An external singularity if

vTνi(θi) > 0 ∀ i

Critically singular if
singular direction v and ν(θ) are linearly dependent
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Recap of the Dynamics

Ṙ = R[J−1(RTµ− ν(θ))]×

θ̇ = u

ẏ(t) = fµ(y(t))
︸ ︷︷ ︸

drift

+ g1(y(t))u1(t) + · · ·+ gq(y(t))uq(t)
︸ ︷︷ ︸

control

Set of uncontrolled equilibria

Eµ
def
= {x ∈ SO(3)× T

q : fµ(x) = 0}

= {(R, θ) ∈ SO(3)× T
q : RTµ = ν(θ)}
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Checking Controllability of the Linearization

ẏ = f (x) + g1(x)u1 + · · ·+ gq(x)uq

f (xe) = 0, U an open neighborhood of x, φ : U → R
n a chart, φ(xe) = 0

Dynamics expressed in coordinates: f̂ = φ∗f , ĝi = φ∗gi

Linearization: ˙̂x = Ax̂ + b1û1 + · · · , A =
∂ f̂
∂x̂

(0), bi = ĝi(0)

Abi =
∂ f̂
∂x̂

(0)ĝi(0) =
∂ f̂
∂x̂

(0)ĝi(0)−
∂ĝi

∂x̂
(0)f̂ (0) = −[f̂ , ĝi](0)

= −[φ∗f , φ∗gi](0) = −φ∗[f , g](φ(xe)) = −Txeφ([f , g](xe))

Similarly
A2bi = φ∗[f , [f , g]](φ(xe)) = Txeφ(ad2

f gi(xe))

rank [B,A2B, . . . ,An−1B] = dim span{adk
f gi(xe) : k = 0, 1, . . . , n − 1}
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Controllability of the Linearization

Lemma

Let µ ∈ R
3, θ ∈ C, and suppose p = (R, θ) ∈ Eµ. Then

span{adn
fµgi(p) : i, n ≥ 1} ⊆ span{(R(J−1w)×, 0) : w ∈ R

3,wTν(θ) = 0}

Result

Let µ ∈ R
3 and suppose p = (R, θ) ∈ Eµ. Then the linearization of the

dynamics at p is controllable if and only if θ is not a critically singular
configuration.

Corollary

If ‖µ‖2 is a regular value of the function η(·) = ‖ν(·)‖2, then the
dynamics have a controllable linearization at every equilibrium in Eµ
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Small-Time Local Controllability

Gimbal rates are measurable functions of time taking values in the
polydisk

Hρ
def
= {u ∈ R

q : |ui| ≤ ρi, ∀ i}, ρi > 0

Reachable set
RT(x) = set of states reached in time ≤ T by starting

from x ∈ SO(3)×T
q at time 0 and using gimbal

rates lying in Hρ

Dynamics are small-time locally controllable (STLC) if

x ∈ int RT(x) ∀ T > 0

R
T

(x)
R

T
(x)

STLC Not STLC

x

x
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STLC and Linearization

Linearization controllable =⇒ STLC

Result
Dynamics are STLC at an equilibrium if the CMG array at that
equilibrium is not in a critically singular configuration

Corollary

Dynamics are STLC at all equilibria on an angular momentum
level set corresponding to a regular value of the function η

Dynamics are STLC at all equilibria on almost all angular
momentum level sets (Sard’s theorem)
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Sufficient Conditions for STLC: A First Attempt

Assign nonnegative weights l0, l1, . . . , lq to fµ, g1, . . . , gq, resp.
A bracket B involving fµ, g1, . . . , gq

Is bad if it contains fµ an odd number of times and each gi an even
number of times
Is good otherwise
Has l-degree l0|B|0 + l1|B|1 + · · ·+ lq|B|q

STLC holds at an equilibrium xe if
Every bad bracket evaluated at xe is in the span of good brackets of
lower l-degree

Stronger than the Bianchini-Stefani condition

Fails to hold at equilibria involving certain critically singular
configurations
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Tutorial on the Bianchini-Stefani Condition: Free Lie Algebras

Lie(ξ) = free Lie algebra in indeterminates ξ = {ξ0, ξ1, . . . , ξq}

Containing real linear combinations of formal Lie brackets involving
{ξ0, ξ1, . . . , ξq} like

ξ0, ξ1, [ξ0, [ξ1, ξ2]], 3ξ3 + 2[ξ0, ξ1] + 1.43[ξ0, [ξ1, ξ2]]

Lie0(ξ) = subalgebra generated by elements of the form adk
ξ0

B,
B ∈ Lie(ξ)
Lie0(ξ) contains real linear combinations of elements like

[ξ0, ξ1], [ξ0,B], [adk
ξ0

B,C], B,C ∈ Lie(ξ)

Lie0(ξ) is the smallest Lie subalgebra of Lie(ξ) containing
{ξ1, . . . , ξq} and closed under brackets with ξ0
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Tutorial on the Bianchini-Stefani Condition: Weights and Degree

Admissible weight vector: l = [l0, l1, . . . , lq]T ∈ R
n such that

li ≥ l0 ≥ 0
Running example: q = 3, l0 = 1, l2 = 1.5, l1 = l3 = 2

|B|i = no. of times ξi appears in the bracket B ∈ Lie(ξ)
l-degree of bracket B equals l0|B|0 + · · ·+ lq|B|q

[ξ0, [ξ1, ξ2]] has l-degree 4.5, [[ξ0, ξ1], [ξ1, ξ2]] has l-degree 6.5

B ∈ Lie(ξ) is l-homogeneous if it is a combination of brackets
having the same l-degree

2.3[ξ0, [ξ1, ξ2]] + 6.31ad3
ξ0
ξ2 is l-homogeneous of degree 4.5

2.3[ξ0, [ξ1, ξ2]] + 6.31ad3
ξ0
ξ1 is not l-homogeneous

Vk = subspace of Lie0(ξ) generated by brackets having l-degree
≤ k

2.3[ξ0, [ξ1, ξ2]] + 6.31ad3
ξ0
ξ2 ∈ V4.5 ⊆ V5

2.3[ξ0, [ξ1, ξ2]] + 6.31ad3
ξ0
ξ1 /∈ V4.5, but ∈ V5
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Tutorial on the Bianchini-Stefani Condition: Bad Brackets

The bracket B ∈ Lie0(ξ) is bad if |B|0 is odd and |B|i is even for
each i > 0

[ξ2, [ξ0, ξ2]], [ξ1, ad3
ξ0
ξ1] are bad, [ξ1, [ξ0, ξ2]], [ξ1, ad2

ξ0
ξ1] are not

B = subspace of Lie0(ξ) generated by bad brackets
BS = subset of elements of B that remain unchanged whenever ξi
and ξj are interchanged for any pair i, j > 0 such that li = lj

[ξ0, ξ2] + a[ξ2, [ξ0, ξ1]] + b[ξ2, [ξ0, ξ3]] ∈ BS if a = b, /∈ BS otherwise
We can “symmetrize” any bad bracket to get an element of BS

Set B∗

S of l-obstructions is the smallest Lie algebra containing BS
and closed under Lie brackets with ξ0

B∗

S = Lie subalgebra generated by elements of the form adk
ξ0

B,
B ∈ BS
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Tutorial on the Bianchini-Stefani Condition: Neutralization

Given a bracket B ∈ Lie(ξ), p ∈ SO(3)× T
q and a set of vector

fields h = {h0, h1, . . . , hq} on SO(3)× T
q,

Evh(B) = vector field obtained by replacing ξi with hi

Evh
p(B) = tangent vector at p obtained by evaluating

Evh(B) at p
Vh

k (p) = {Evh
p(B) : B ∈ Vk}

An l-homogeneous element B ∈ B∗

S is h-l-neutralized at p if there
exists k < l-degree of B such that

Evh
p(B) ∈ Vh

k (p)

13 / 41



The Bianchini-Stefani Condition

The dynamics are STLC at p ∈ Eµ under the input constraint u ∈ Hρ if
there exist

1 a nonnegative k
2 an admissible weight vector l

such that
1 every l-homogeneous element of B∗

S of l-degree ≤ k is
h-l-neutralized at p and

2 Vh
k (p) equals the tangent space at p

for h = {fµ, g1, . . . , gq}

Condition does not involve the constraint parameters ρ
R. M. Bianchini and G. Stefani, “Controllability along a trajectory: a variational approach,” SIAM J. Contr. Optim., 1993

F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems, Springer, 2005
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Applying the Bianchini-Stefani Condition

Consider p = (R, θ) ∈ Eµ such that θ ∈ C and ‖ν(θ)‖(= ‖µ‖) = 0

Choose all weights = 1
Two lowest possible degrees for a bad bracket are 3 and 5

A bad bracket of degree 3 is necessarily of the form B = [ξi, [ξ0, ξi]]
Corresponding symmetrized element is BS =

∑q
i=1[ξi, [ξ0, ξi]]

Evh(B) = [gi, [fµ, gi]] = (−R(J−1νi)
×, 0)

∴ Evh
p(BS) = (−R(J−1ν(θ))×, 0) = 0

Similarly, bad brackets of degree 5 also vanish after symmetrization

Vh
5 (p) contains the 3 + q linearly independent tangent vectors gi(p)

and
[fµ, g1](p), [g1, [fµ, g1]]

︸ ︷︷ ︸

bad bracket

(p), [[g1, [fµ, g1]], [fµ, g1]](p)

STLC follows
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STLC at Critical Singularities

Main result

Let µ ∈ R
3, and suppose p = (R, θ) ∈ Eµ is such that θ ∈ C. If any one

of the following three conditions hold, then the dynamics are STLC at p
subject to u ∈ Hρ

ν(θ) = 0

min
i

ν(θ)Tνi(θi) < 0

min
i

ν(θ)Tνi(θi) = 0, dim span{ν ′i(θi) : i s.t. ν(θ)Tνi(θi) = 0} = 2

Second condition ⇐⇒ θ is not an external singularity

Cases not covered

min
i

ν(θ)Tνi(θi) > 0 (external singularity)

min
i

ν(θ)Tνi(θi) = 0, dim span{ν ′i(θi) : i s.t. ν(θ)Tνi(θi) = 0} = 1
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Stefani’s Necessary Condition for STLC

Suppose y : [0, T̂] → SO(3)×T
q is a solution of the uncontrolled system

and γ : [0, T̂] → T∗(SO(3)× T
q) is a solution of the adjoint system of the

uncontrolled system such that γ(t) ∈ T∗

y(t)N , t ∈ [0, T̂] and

1 γ(t)(adk
fµgi(y(t))) = 0, t ∈ [0, T̂], for every i, k

2 L ∈ R
q×q defined by Lij = γ(0) ([[fµ, gi], gj](y(0))) is positive definite

3 · · ·

Then there exists T ∈ (0, T̂] such that, for all t ∈ [0, T],
y(t) lies on the boundary of Rt(y(t))

Consequence of a sufficient condition for extremality

Idea: apply with y and γ constant solutions

G. Stefani, “A sufficient condition for extremality,” Analysis and Optimization of Systems, LNCIS # 111, Springer, 1988
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A Digression on Adjoint Systems

Coordinate-free description

The adjoint system of the vector field fµ is the Hamiltonian vector field
on T∗(SO(3)× T

q) having the Hamiltonian function defined by

H(Λ) = Λ(fµ(x)), Λ ∈ T∗(SO(3)× T
q), x = π∗(Λ)

Coordinate description

System: ẋ(t) = f (x(t)), f : Rn → R
n,

Adjoint: γ̇T(t) = −γT(t)∂f
∂x(x(t))

If x ≡ xe is a constant solution, then the adjoint solution γ(·)

Is constant iff it is a left-null vector of the system linearization at xe

Satisfies γ(t)(adk
fµgi(xe)) = 0 iff it lies in the left null space of the

controllability matrix of the system linearization at xe

Satisfies both of the above only if the linearization at xe has an
uncontrollable eigenvalue at 0
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STLC at Critically Singular External Singularity

Main result
Suppose µ 6= 0. Let θ ∈ C be such that

min{ν(θ)Tνi(θi) : i ∈ Iq} > 0, (external singularity)

and let p = (Re, θe) ∈ Eµ. Then the dynamics are not STLC at p.

γ ≡ (Re(Jν(θe))
×, 0) ∈ TRe(SO(3)× T

q) is an adjoint solution

Recall that

adn
fµgi(p) ∈ span{(Re(J

−1w)×, 0) : w ∈ R
3,wTν(θe) = 0}

Matrix L is diagonal with Lii = ν(θe)
Tνi(θe) > 0

Result follows from Stefani’s condition
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Easy Consequences

Dynamics are not STLC at p = (R, θ) ∈ Eµ if θ is a local maximizer
for η

Second-order necessary conditions for a local maximum =⇒
Hessian is nonnegative definite =⇒ ν(θ)Tνi(θi) > 0 for all i

In case of only one CMG, dynamics are STLC at no equilibrium
η is a constant function, and every configuration is a local maximizer

Can we identify small-time unreachable states?
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Symmetry

Isotropy group of µ (assumed 6= 0)

Iµ
def
= {S ∈ SO(3) : Sµ = µ} = {eαµ

×

: α ∈ R}

Iµ acts on SO(3)× T
q through the action

Φµ
S (x) = (SR, θ), x = (R, θ)

If (R(·), θ(·)) is a solution, then so is (SR(·), θ(·)) for each S ∈ Iµ
Dynamics on SO(3)× T

q are invariant under the action of Iµ
RT(Φ

µ
S (x)) = Φµ

S (RT(x))

Define “projection” φµ : SO(3)× T
q → S2 × T

q

φµ(x) = (‖µ‖−1RTµ, θ), x = (R, θ)

Fiber over xr ∈ S2 × θ is an orbit of Iµ
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Reduced Dynamics

Reduced state S2 × T
q ∋ (ξ, θ)

def
= xr = φµ(x) = (‖µ‖−1RTµ, θ)

Reduced dynamics

ξ̇ = ξ × [J−1{‖µ‖ξ − ν(θ)}], θ̇ = u

Easy consequences

Rr
T(φµ(x)) = φµ(RT(x)), φµ(Eµ) ⊆ E r

µ

STLC of reduced dynamics

Suppose µ 6= 0. If p ∈ Eµ, then the linearization of the reduced

dynamics at pr def
= φµ(p) are controllable. Consequently, the reduced

dynamics are STLC at pr.
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Implications for the Full Dynamics

Reduced state space

px

If all nearby points on the fiber can be reached in small time, then
the full dynamics must be STLC
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Implications for the Full Dynamics

Reduced state space

p

Fiber

x

x prr

If all nearby points on the fiber can be reached in small time, then
the full dynamics must be STLC
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Implications for the Full Dynamics

Reduced state space

p

Fiber

x

x prr

x’

If all nearby points on the fiber can be reached in small time, then
the full dynamics must be STLC
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Implications for the Full Dynamics

Reduced state space

p

Fiber

x

x prr

x’

p’

If all nearby points on the fiber can be reached in small time, then
the full dynamics must be STLC
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Implications for the Full Dynamics

Reduced state space
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Fiber

x

x prr

x’

p’
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Small-Time Unreachable States

Suppose µ 6= 0. Let θ be a critically singular external singularity, and
assume p = (R, θ) is an equilibrium point. Then there exist T > 0 and a
sequence of angles {αn}

∞

n=1 converging to 0 in (−π, π) such that

(exp(αnµ
×)R, θ) /∈ RT(p)

There exist arbitrarily small rotations about the inertial angular
momentum vector (equivalently, the singular direction) that cannot
be achieved in time less than T with zero net change in the gimbal
angles
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Stabilizability

Results
Suppose p = (Re, θe) ∈ Eµ.

1 If θe is not a critically singular configuration, then p is locally
asymptotically stabilizable (linearization is controllable)

2 If θe either yields a local maximum or a nonzero local minimum for
η, then p is not locally asymptotically stabilizable

Single CMG =⇒ no equilibrium is stabilizable

Choose neighborhood U of p such that

(RTµ)Tν(θe) > 0 < ν(θe)
Tν(θ) ∀ (R, θ) ∈ U

There exists (R, θ) ∈ U and ǫ < 0 such that RTµ− ν(θ) = ǫν(θe) =⇒

‖ν(θe)‖
2 − ‖ν(θ)‖2 = ‖RTµ‖2 − ‖ν(θ)‖2

= (RTµ+ ν(θ))T(RTµ− ν(θ)) = ǫ(RTµ+ ν(θ))ν(θe) < 0
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Configurations of a Pyramid Array: Example 1

X

Y

Z

A non-singular configuration

Linearization controllable

STLC and stabilizability hold

31 / 41



Configurations of a Pyramid Array: Example 2

X

Y

Z

A non-critically singular
configuration

ν(θ) 6= 0

Linearization controllable

STLC and stabilizability hold
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Configurations of a Pyramid Array: Example 3

X

Y

Z

A critically singular configuration
ν(θ) = 0

Linearization uncontrollable

STLC holds
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Configurations of a Pyramid Array: Example 4

X

Y

Z

A critically singular configuration
ν(θ) 6= 0

Internal singularity

Linearization uncontrollable

STLC holds
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Configurations of a Pyramid Array: Example 5

X

Y

Z

A critically singular external
singularity

θ is a local maximizer for η

STLC and stabilizability fail
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Summary

STLC and stabilizability depend on the nature of the singular
configuration

Non-critically singular configurations pose no problems for STLC,
stabilizability
Critically singular configurations that are not external singularities
pose no problems for STLC
Critically singular external singularities =⇒ no STLC

Small rotations about the singular direction not achievable in small
time
Includes local maximizers of CMG angular momentum magnitude as
special cases
Includes single CMG as a special case

Local maximizer of CMG angular momentum magnitude =⇒ no
stabilizability
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Thank You
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