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Recap and Preview

W

Previous Talk

@ Singular configurations and why people think they make control
difficult

@ Dynamics are globally as controllable as conservation of angular
momentum permits

@ Some care should be exercised when drawing conclusions in
practical situations

@ Two types of singular configurations: external and critically singular

Do singular configurations affect
@ Local controllability?
@ Local stabilizability?
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Recap of Notation and Terminology

W
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@ CMG angular momentum v(6) = v1(61) + - - - + v4(0q)

® CMG angular momentum magnitude defines a function
n(0) = v ()|

@ CMG configuration 6 is singular with singular direction v € S? if
VI () =0Vi

@ A singular configuration § with singular direction v € S is
@ An external singularity if
VTI/i(Hi) >0Vi
@ Critically singular if

singular direction v and () are linearly dependent
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Recap of the Dynamics
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= ROYRu—v(0)"

y(t) = fu(y(t) + ga(y(t))ur(t) + - - - + gq(y(t))ug(t)
drift coFﬁroI

@ Set of uncontrolled equilibria

£, ¥ {xes0(3)xT9:1,(x) =0}

{(R,6) € SO3) x T9: RTju = ()}
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Checking Controllability of the Linearization

aw
y="1(X) +gu(Xx)ur + -+ gg(X)tq TATA

f(xe) = 0, U an open neighborhood of x, ¢ : U — R" a chart, ¢(Xe) =
Dynamics expressed in coordinates: f = ¢.f, § = ¢.0;
Linearization: X = AX + byl + -+, A= g—;((O), b = 6i(0)
ot o L W
Ab = 5(006i(0) = 52 (0)6i(0) — 5 (0)f(0) = —[f, 6i}(0)
= —[:f,9.6](0) = —¢.[f, g(d(Xe)) = —Txd([f, 9] (%))

Similarly

At = o.[f, [, gl (6(%)) = Txd(adigi(Xe))

v rank [B,A%B, ..., A" 'B] = dim span{ad¥gi(xe) : k=0,1,...,n— 1} J
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Controllability of the Linearization

W

Let u € R3, 6 € C, and suppose p = (R, 0) € £,. Then

span{adf gi(p) : i,n > 1} C span{(RI~'w)*,0) : w € R®, w'w(f) = 0}

Result

Let u € R3 and suppose p = (R, 0) € £,. Then the linearization of the
dynamics at p is controllable if and only if  is not a critically singular
configuration.

| A

| A

Corollary

If || 4||? is a regular value of the function n(-) = ||v(-)||?, then the
dynamics have a controllable linearization at every equilibrium in £,
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Small-Time Local Controllability

9
@ Gimbal rates are measurable functions of time taking values in thera
polydisk
P ueRI:|u| < pi, Vil pi >0
@ Reachable set
Rt(x) = setof states reached in time < T by starting
from x € SO(3) xT9 at time 0 and using gimbal
rates lying in H,
@ Dynamics are small-time locally controllable (STLC) if

XeiNtRT(X)VT >0

R+ (%)

R+ (%)

STLC Not STLC
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STLC and Linearization
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Linearization controllable = STLC

Result
Dynamics are STLC at an equilibrium if the CMG array at that
equilibrium is not in a critically singular configuration

Corollary

@ Dynamics are STLC at all equilibria on an angular momentum
level set corresponding to a regular value of the function 7

@ Dynamics are STLC at all equilibria on almost all angular
momentum level sets (Sard’s theorem)
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Sufficient Conditions for STLC: A First Attempt
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@ Assign nonnegative weights lg, l1,...,lqto f,,01,...,0q, resp.
@ A bracket B involving f,,,01,...,0q
o Is bad if it contains f, an odd number of times and each g; an even
number of times
@ Is good otherwise
o Has |-degree lg|B|o + |1|B|1 + - - - + I4|Blq
@ STLC holds at an equilibrium xe if
o Every bad bracket evaluated at X, is in the span of good brackets of
lower |-degree
@ Stronger than the Bianchini-Stefani condition

@ Fails to hold at equilibria involving certain critically singular
configurations
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Tutorial on the Bianchini-Stefani Condition: Free Lie Algebras
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@ Lie(¢) = free Lie algebra in indeterminates § = {&o, &1, ..., &q}
@ Containing real linear combinations of formal Lie brackets involving

{0, &1,-.-,&q} like
° o, &1, (€0, [€1, &2l 33 + 2[8o, &1 + 1.43[So, [€1 &2
@ Lieyg(&) = subalgebra generated by elements of the form ad'goB,
B € Lie(¢)
@ Ligy(¢) contains real linear combinations of elements like
° (%], [, B, [adf,B, C], B,C € Lie(¢)
@ Ligy(¢) is the smallest Lie subalgebra of Lie(§) containing
{&,...,&} and closed under brackets with &
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Tutorial on the Bianchini-Stefani Condition: Weights and Degree

W
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@ Admissible weight vector: | = [lg,l1,...,lq]" € R" such that

li>1p>0
@ Running example: q=3,lg=1,1, =151, =13=2
@ |B|i = no. of times & appears in the bracket B € Lie(¢)
@ |-degree of bracket B equals lo|B|o + - - - + I4/Blq
@ [&o, [€1,&2]] has |-degree 4.5, [[&o, &1], [€1, &2]] has |-degree 6.5

@ B € Lie(¢) is I-homogeneous if it is a combination of brackets
having the same I-degree

o 2.3[&, [¢1,&2)] + 6.31ad§0§2 is I-homogeneous of degree 4.5
@ 2.3[%, [¢1, &]] + 6.31ad &1 is not I-homogeneous
@ Vi = subspace of Liey(§) generated by brackets having I-degree
<k
° 2.3[&, [61, &) + 6.31ad} & € Vas C Vs
o 2.3[&, [¢1, &) + 6.31ad &1 ¢ Vas, but € Vs
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Tutorial on the Bianchini-Stefani Condition: Bad Brackets
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@ The bracket B € Liey(¢) is bad if |B|g is odd and |B|; is even for
eachi >0
o [£2a [507 52]]7 [517 wgogl] are bad1 [&17 [50752”’ [gla adéoéﬂ are not
@ B = subspace of Lieg(£) generated by bad brackets
@ Bs = subset of elements of 1 that remain unchanged whenever &;
and & are interchanged for any pair i,j > 0 such that |; = |

o [&o, &) + al&, [€0, &a]] + D[&2, [0, &3] € Bsif a= b, ¢ Bs otherwise
@ We can “symmetrize” any bad bracket to get an element of Bs

@ Set Bg of I-obstructions is the smallest Lie algebra containing Bs
and closed under Lie brackets with &g
o B¢ = Lie subalgebra generated by elements of the form adZOB,
B e Bs

TATA CONSULTANCY SERVICES 1oran



Tutorial on the Bianchini-Stefani Condition: Neutralization

W

TATA

@ Given a bracket B € Lie(¢), p € SO(3) x T9 and a set of vector
fields h = {ho, hy, ..., hq} on SO(3) x T9,

EV'(B) = vector field obtained by replacing & with hy
EVB(B) = tangent vector at p obtained by evaluating
Ev'(B) at p
W(p) = {EVi(B):BeW}

@ An I-homogeneous element B € Bg is h-l-neutralized at p if there
exists k < |-degree of B such that

Ev

AN LA LAANLLAAN LEAAN LEAAN LLAAN LLAAN LZAN LAY

IF7ANY

h(B) € V(D)
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The Bianchini-Stefani Condition
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The dynamics are STLC at p € £, under the input constraintu € #,
there exist

@ anonnegative k
@ an admissible weight vector |
such that

@ every I-homogeneous element of B of I-degree < kiis
h-lI-neutralized at p and

@ V(p) equals the tangent space at p
for h - {fldnglu 000 7gq}

@ Condition does not involve the constraint parameters p
R. M. Bianchini and G. Stefani, “Controllability along a trajectory: a variational approach,” SIAM J. Contr. Optim., 1993

F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems, Springer, 2005
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Applying the Bianchini-Stefani Condition

a»
@ Consider p= (R ) € &, such that § € C and ||v(9)|(= ||ul|) = 0 ™™

@ Choose all weights = 1
@ Two lowest possible degrees for a bad bracket are 3 and 5

@ A bad bracket of degree 3 is necessarily of the form B = [¢;, [£o, &i]]
@ Corresponding symmetrized element is Bs = > ', [&, [0, &

EV'(B) = (91, [fu., 6]l = (-RI 1), 0)

. Evp(Bs) = (-R(I7'w(0))*,0) =0
o Similarly, bad brackets of degree 5 also vanish after symmetrization

o Vg(p) contains the 3 + g linearly independent tangent vectors g;(p)
and
[, 91)(P), [91, [Fur 9u]](P), [[92, [fur 9]l [fur ] (P)
——

bad bracket

@ STLC follows

TATA CONSULTANCY SERVICES o



STLC at Critical Singularities

Let 1 € R3, and suppose p = (R, 6) € &y issuchthat 6 € C. If any one
of the following three conditions hold, then the dynamics are STLC at p
subjecttou € H,

v(@) =0
miinV(H)TVi(Qi) <0

min v(0)Tvi(6;) = 0, dim span{/(6;) : i s.t. v(0)T4(6;) = 0} = 2

@ Second condition <= 6 is not an external singularity
@ Cases not covered

min v(0)T14(6,) > 0 (external singularity)

miinu(Q)Tui(Hi) =0, dim.span{u (6;) ;i St v (0) 124 (6;) =0} = 1
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Stefani’'s Necessary Condition for STLC
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Suppose y : [0, T] — SO(3) x T s a solution of the uncontrolled system
and ~ : [0, T] — T*(SO(3) x TY) is a solution of the adjoint system of the
uncontrolled system such that (t) € T;(t)N ,te[0,T] and

Q ~(t)(adk gi(y(1))) = O, t € [0,T], for every i, k

Q L € R¥™9 defined by Lij = v(0) ([[f., 9], gi](¥(0))) is positive definite
Q -

Then there exists T € (0, T] such that, for all t € [0, T],
y(t) lies on the boundary of R:(y(t))

@ Consequence of a sufficient condition for extremality
@ Idea: apply with y and ~ constant solutions

G. Stefani, “A sufficient condition for extremality,” Analysis and Optimization of Systems, LNCIS # 111, Springer, 1988
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A Digression on Adjoint Systems

Coordinate-free description

The adjoint system of the vector field f, is the Hamiltonian vector field
on T*(SO(3) x TY) having the Hamiltonian function defined by
H(A) = A(fu(X)), A € T*(SO(3) x T%), x = 7*(A)

v

Coordinate description

System:  x(t) = f(x(t)), f:R"— R",
Adjoint:  4T(t) = —4T()F(X(1))

If X = X is a constant solution, then the adjoint solution ~(-)
@ Is constant iff it is a left-null vector of the system linearization at x

@ Satisfies 7(t)(ad'f‘# gi(xe)) = Offf it lies in the left null space of the
controllability matrix of the system linearization at X

@ Satisfies both of the above only if the linearization at x, has an
uncontroltable eigenvalue at 0
TATA CONSULTANCY SERVICES .



STLC at Critically Singular External Singularity
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Suppose i # 0. Let § € C be such that

min{v(0) v (6)) : i € I4} > 0, (external singularity)

and let p = (Re, fe) € &,. Then the dynamics are not STLC at p.

0 v = (Re(Jv(be))™,0) € Tr,(SO(3) x TY) is an adjoint solution
@ Recall that

ad? gi(p) € span{(Re(J~*w)*,0) : w € R®, w'w/ () = O}

@ Matrix L is diagonal with Lij = v(6e) "vi(0e) > O
@ Result follows from Stefani’s condition
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Easy Consequences
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@ Dynamics are not STLC atp = (R, 0) € &, if 6 is a local maximizer
for n

@ Second-order necessary conditions for a local maximum —-
Hessian is nonnegative definite = v/(6)"14(6;) > 0 for all i

@ In case of only one CMG, dynamics are STLC at no equilibrium
@ 7 is a constant function, and every configuration is a local maximizer

@ Can we identify small-time unreachable states?
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@ Isotropy group of . (assumed # 0) RAER

7, ¥ (ses0(3): Su=p} = {e :acR}
@ 7, acts on SO(3) x T through the action
PL(x) = (R 0), x=(R )

@ If (R(-),0(-)) is a solution, then so is (SR(-), 6(-)) for each Se 7,
@ Dynamics on SO(3) x TY are invariant under the action of Z,,
Rr(®5(¥) = 5(Rr(X))

@ Define “projection” ¢,, : SO(3) x T — S? x T4
¢u(¥) = (lul "R, 0), x = (R,6)
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Reduced Dynamics
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@ Reduced state S x T9 > (¢,0) & x = 6u(X) = (| "R i, 0)

@ Reduced dynamics

= &Ex [ITHullg = v(@)}], b =u

@ Easy consequences

RE($u(X) = $u(R1(X), ¢u(€y) € &,

STLC of reduced dynamics

Suppose p # 0. If p € &, then the linearization of the reduced

dynamics at p' = ¢, (p) are controllable. Consequently, the reduced
- dynamics are STLC at p'.
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Implications for the Full Dynamics

W

TATA

Reduced state space
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Implications for the Full Dynamics

W
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Fiber
X e p
r r
X ep Reduced state space
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Implications for the Full Dynamics
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Fiber
X sp
.
X L/\ p' Reduced state space
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Implications for the Full Dynamics
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X Fiber

.
X L/\ p' Reduced state space
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Implications for the Full Dynamics

W

TATA

X - Fiber
X K p
P

.
X L/\ p' Reduced state space
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Implications for the Full Dynamics
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X Fiber

<
A
/
b, /
T. ©

X L/\ p' Reduced state space

@ If all nearby points on the fiber can be reached in small time, then
the full dynamics must be STLC
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Small-Time Unreachable States
W
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Suppose i # 0. Let 6 be a critically singular external singularity, and
assume p = (R 6) is an equilibrium point. Then there exist T > 0 and a
sequence of angles {an}:° ; converging to 0in (—m, 7) such that

(exp(anu™)R, 0) ¢ Rt (p)

@ There exist arbitrarily small rotations about the inertial angular
momentum vector (equivalently, the singular direction) that cannot

be achieved in time less than T with zero net change in the gimbal
angles
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Stabilizability
Suppose p = (Re, fe) € E,..
Q If 6 is not a critically singular configuration, then p is locally

asymptotically stabilizable (linearization is controllable)

Q If 9 either yields a local maximum or a nonzero local minimum for
n, then p is not locally asymptotically stabilizable

@ Single CMG = no equilibrium is stabilizable

@ Choose neighborhood U of p such that
(RT)Tw(fe) >0 < v(6e)"v(A) V (RO €U
@ There exists (R, #) € U and e < 0 such that Rju — v(0) = ev(fe) =

v (@e) 1 — [l @) = IR ull* — [l(6)]>
=0 (RTpk (O) (R e 1(6)) = 6RO o 18))14(0e) 1500
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Configurations of a Pyramid Array: Example 1
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@ Linearization controllable
@ STLC and stabilizability hold

A non-singular configuration
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Configurations of a Pyramid Array: Example 2
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@ Linearization controllable
@ STLC and stabilizability hold

A non-critically singular
configuration

v(0) #0
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Configurations of a Pyramid Array: Example 3
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@ Linearization uncontrollable
@ STLC holds

A critically singular configuration
v(0) =0
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Configurations of a Pyramid Array: Example 4

A critically singular configuration

v(0) #0

W
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@ Internal singularity
@ Linearization uncontrollable
@ STLC holds
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Configurations of a Pyramid Array: Example 5
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@ 6 is a local maximizer for n
@ STLC and stabilizability fail

A critically singular external
singularity
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@ STLC and stabilizability depend on the nature of the singular
configuration

]

"]

Non-critically singular configurations pose no problems for STLC,
stabilizability
Critically singular configurations that are not external singularities
pose no problems for STLC
Critically singular external singularities = no STLC
@ Small rotations about the singular direction not achievable in small
time
@ Includes local maximizers of CMG angular momentum magnitude as
special cases
@ Includes single CMG as a special case
Local maximizer of CMG angular momentum magnitude = no
stabilizability
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Thank You
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