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PLAN OF THE PRESENTATION

• Poisson reduction

• Lie-Poisson reduction

• Hamilton’s variational principle

• Euler-Poincaré reduction

• The free top (Euler top)

• Affine Euler-Poincaré reduction
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• The heavy top

• Continuum mechanics setting

• Fixed boundary barotropic fluids

• Elasticity

• Symmetric representation of the free rigid body

equations

• Clebsch optimal control
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POISSON REDUCTION

φ : G × P → P Lie group acting canonically on a Poisson manifold
(P, { , }P ):

{F ◦Φg, H ◦Φg}P = {F,H}P ◦Φg, ∀g ∈ G, F,H ∈ C∞(P ).

Assume that the orbit space P/G is a smooth manifold and the quo-
tient projection π : P → P/G a surjective submersion (e.g., G-action
is proper and free, or proper with all isotropy groups conjugate).
Then there exists a unique Poisson bracket {·, ·}P/G on P/G relative
to which π is a Poisson map. The Poisson bracket on P/G is given
in the following way. If F̂ , Ĥ ∈ F(P/G), then F̂ ◦π, Ĥ◦π ∈ F(P ) are G-
invariant functions and, due to the fact that the action is canonical,
their Poisson bracket {F̂ ◦ π, Ĥ ◦ π}P is also G-invariant. Therefore,
this function descends to a smooth function on the quotient P/G;
this is, by definition, {F̂ , Ĥ}P/G and we have, by construction,

{F̂ ◦ π, Ĥ ◦ π}P = {F̂ , Ĥ}P/G ◦ π.
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LIE-POISSON REDUCTION
P = T ∗G and the G-action the lift of left translation. Then JR :

αg 7→ T ∗eLg (αg) ∈ g∗ drops to a diffeomorphism (T ∗G)/G
∼−→ g∗ and

the quotient bracket pushes forward to the Lie-Poisson bracket

{f, h}(µ) = −
〈
µ,

[
δf

δµ
,
δh

δµ

]〉
.

If H : T ∗G→ R is a left G-invariant function its restriction h := H|g∗
satisfies H = h ◦ JR. The flow Ft of XH on T ∗G and the flow, FLt
of Xh on g∗− are related by JR ◦ Ft = FLt ◦ JR.

For the right action use JL : αg ∈ T ∗G 7→ T ∗eRg (αg) ∈ g∗ and + in
front of the Lie-Poisson bracket.

This is the basic example of a dual pair.

Find Ft: First solve µ̇ = ad∗δh
δµ

µ, µ(0) given, then ġ = gδhδµ, g(0) = e
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HAMILTON’S PRINCIPLE
Q a manifold, called configuration space

τQ : TQ→ Q its tangent bundle, called state space

Recall the “physics definition” of the tangent bundle:
t ∈ [0,1]

C∞7−→ qi(t) ∈ Q, i = 1,2, equivalent def⇐⇒ q1(0) = q2(0) = q,
q̇1(0) = q̇2(0) in a local chart (hence all local charts) at q.
An equivalence class is, by definition, a tangent vector vq ≡ (q, q̇) to
Q at q. All such tangent vectors form the tangent space TqQ. Then
one proves: TqQ is a vector space of dimension equal to dimQ and
τQ : TQ := ∪q∈QTqQ 3 vq 7→ q ∈ Q is a vector bundle.

L : TQ → R a smooth function, called the Lagrangian. It is given
by physical considerations. For classical mechanical systems, Q
is a Riemannian manifold, L(vq) = 1

2‖vq‖
2 − V (q), 1

2‖vq‖
2 is the ki-

netic energy, V : Q→ R is the potential energy.
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The action S(L) : Ω(Q; q0, q1)→ R

S(L)(q(·)) :=
∫ t1
t0
L(q(t), q̇(t)) dt

of the Lagrangian L : TQ → R is defined on the space of paths
with fixed endpoints

Ω(Q; q0, q1) := {q(·) ∈ C1([t0, t1], Q) | q(t0) = q0, q(t1) = q1}.

Here one has to specify regularity of the path - formally it is C1.

q(t, λ), (t, λ) ∈ [t0, t1]×[−ε, ε] is a deformation of q(t) ∈ Ω(Q; q0, q1)

if q(·, λ) ∈ Ω(Q; q0, q1), for all λ ∈ [−ε, ε] (so q(ti, λ) = qi, i = 0,1)
and q(t,0) = q(t).

δq(t) :=
∂

∂λ

∣∣∣∣
λ=0

q(t, λ) ∈ Tq(t)Q, δq : [t0, t1]→ TQ

is the variation of the deformation q(t, λ); note δq(ti) = 0 for i =

0,1.
PDSC, Indian Institute of Technology, Mumbai, March 17–21, 2014
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Under good regularity conditions on the curves q : [t0, t1] → Q,
Ω(Q; q0, q1) is a smooth manifold, so one can ask what are the
critical points of the action S(L).

Hamilton’s Principle: dS(L)(q(·)) = 0⇐⇒ d
dt
∂L
∂q̇i

(q, q̇) = ∂L
∂qi

(q, q̇)

dS(L)(q(·)) · δq(·) :=
d

dλ
S(L) (q(·, λ))

∣∣∣∣
λ=0

.

Remark: This has intrinsic sense if one introduces the second order
tangent bundle T (2)Q → Q := J2

0(R, Q), the 2-jets of curves from
R→ Q based at 0 ∈ R (Bourbaki). Explanation of this concept:

t ∈ [0,1]
C∞7−→ qi(t) ∈ Q, i = 1,2, are equivalent def⇐⇒ q1(0) = q2(0) =

q, q̇1(0) = q̇2(0) ∈ TqQ, and q̈1(0) = q̈2(0) in a local chart (hence
all local charts) at q.

Equivalence classes, denoted by (q, q̇, q̈), are called second order
jets at q ∈ Q; all such jets is denoted by T (2)

q Q. Define

T (2)Q := ∪q∈QT
(2)
q Q
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τ
(2)
Q : T (2)Q 3 (q, q̇, q̈) 7→ q ∈ Q is a fiber (not a vector) bundle.

Global version of Hamilton’s Principle: ∃! EL(L) : T (2)Q→ T ∗Q
bundle map over Q, the Euler–Lagrange operator, such that, for
any deformation q(t, λ), keeping the endpoints fixed, we have

dS(L)(q(·)) · δq(·) =
∫ t1
t0

EL(L)(q(t), q̇(t), q̈(t)) · δq(t)dt,

In standard local coordinates, EL(L) : T (2)Q→ T ∗Q has the form

EL(L)i(q, q̇, q̈) dq
i =

(
∂L

∂qi
(q, q̇)−

d

dt

∂L

∂q̇i
(q, q̇)

)
dqi.

Convention: In second term on the right hand side formally apply
the chain rule then replace dq/dt by q̇ and dq̇/dt by q̈.

So dS(L)(q(·)) = 0⇐⇒ the Euler-Lagrange equations hold:

d

dt

∂L

∂q̇i
(q, q̇) =

∂L

∂qi
(q, q̇)
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Symmetries induce conserved quantities, the momentum maps.
This enables one to eliminate variables. The best situation is when
one has dimQ functions that Poisson commute on T ∗Q and are
functionally independent, i.e., their differentials are linearly inde-
pendent almost everywhere. Then the system is completely inte-
grable and can be solved, in many cases explicitly (algebraic geome-
try methods if applicable, or finding explicit action-angle variables).

QUESTION: What happens if symmetries are present? Clearly
there is a problem since (TQ)/G is not a tangent bundle.

There is a general answer: (TQ)/G ∼=A T (Q/G) ⊕ AdQ (Cendra,
Marsden, Ratiu, Memoirs of the AMS 2001).

There is no time to do the full theory, so we shall do only the
case Q = a Lie group and G = certain subgroups various forms
associated to it. Then we shall discuss many concrete applications.
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EULER-POINCARÉ REDUCTION
Poincaré 1901: Left (right) invariant Lagrangian L : TG → R,
l := L|g : g→ R. For g(t) ∈ G, let ξ(t) = g(t)−1ġ(t)

(
ġ(t)g(t)−1 ∈ g

)
.

Equivalences:

(i) EL(L)(g(t), ġ(t), g̈(t)) = 0.

(ii) The variational principle

δ
∫ t1
t0
L(g(t), ġ(t))dt = 0

holds, for variations with fixed endpoints.

(iii) The Euler-Poincaré equations hold: d
dt
δl
δξ = ±ad∗ξ

δl
δξ .

(iv) The Euler-Poincaré variational principle

δ
∫ t1
t0
l(ξ(t))dt = 0

holds on g, for variations δξ = η̇ ± [ξ, η], where η(t) is an arbitrary
path in g that vanishes at the endpoints, i.e η(t0) = η(t1) = 0.

PDSC, Indian Institute of Technology, Mumbai, March 17–21, 2014
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There is a unique map EP : g⊕g→ g∗ such that for any deformation
ξ(t, λ) = g(t, λ)−1ġ(t, λ) ∈ g induced by a deformation g(t, λ) ∈ G
of the curve g(t) keeping the endpoints fixed, thus δg(ti) = 0 for
i = 1,2, we have

δ
∫ t1
t0
l(ξ(t))dt =

∫ t1
t0

〈
EP(l)(ξ(t), ξ̇(t)), η(t)

〉
dt

for δξ(t) := ∂ξ(t,λ
∂λ

∣∣∣
λ=0

= η̇(t)± [ξ(t), η(t)] EP(l) is the

Euler-Poincaré operator:

EP(l)(ξ, ξ̇) = ad∗ξ
δl

δξ
∓
d

dt

δl

δξ

where on the right hand side the time derivative is taken formally
using the chain rule and dξ/dt is replaced at the end of the compu-
tation everywhere by ξ̇.

Legendre transformation: g 3 ξ 7→ µ := δl/δξ ∈ g∗. If invert-
ibile define the Hamiltonian h(µ) = 〈µ, ξ〉 − l(ξ) on g∗ and then
the Euler-Poincaré equations become the Lie-Poisson equations
dµ
dt = ± ad∗δh/δµ µ.
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12



Geometry has been replaced by analysis! Extend the method of the
Calculus of Variations to such variational principles. I am not aware
of any serious analysis results for such variational principles.

Reconstruction

Solve the Euler-Lagrange equations for a left (right) invariant L :
TG→ R knowing the solution of the EP equations.

• Form l := L|g : g→ R

• Solve the Euler-Poincaré equations: d
dt
δl
δξ = ±ad∗ξ

δl
δξ , ξ(0) = ξ0

• Solve linear equation with time dependent coefficients (quadra-
ture): ġ(t) = g(t)ξ(t) (ġ(t) = ξ(t)g(t)), g(0) = e

• Given g0 ∈ G the solution of the Euler-Lagrange equations is
V (t) = g0g(t)ξ(t) (V (t) = ξ(t)g(t)g0), initial condition V (0) = g0ξ0
(V (0) = ξ0g0).

PDSC, Indian Institute of Technology, Mumbai, March 17–21, 2014
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Proof of Euler-Poincaré theorem

(i) and (ii) are equivalent by classical mechanics.

To show that (iii) and (iv) are equivalent, need to compute vari-
ations δξ(t) ∈ g induced on ξ(t) = g(t)−1ġ(t) ∈ g by a variation
g(t, λ) ∈ G of g(t), i.e., g(t, λ)|λ=0 = g(t). Do the computation for
left translation.

So, need to differentiate g−1(t, λ)ġ(t, λ) ∈ g in the direction δg(t) :=
d
dλ

∣∣∣
λ=0

g(t, λ) ∈ Tg(t)G. Define η(t) := g(t)−1δg(t) ∈ g. We have

δξ =
d

dλ

(
g−1 d

dt
g

)∣∣∣∣
λ=0

= −
(
g−1 δg g−1

)
ġ + g−1 ∂2g

∂λ∂t

∣∣∣∣∣
λ=0

η̇ =
d

dt

(
g−1 d

dλ
g

)∣∣∣∣
λ=0

= −
(
g−1 ġ g−1

)
δg + g−1 ∂2g

∂t∂λ

∣∣∣∣∣
λ=0

=⇒ δξ − η̇ = [ξ, η]

This proof is for matrix groups. Can be done totally abstractly.
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Proof that (iii) and (iv) are equivalent:

δ
∫ t1
t0
l(ξ) =

∫ t1
t0

〈
δl

δξ
, δξ

〉
dt =

∫ t1
t0

〈
δl

δξ
, η̇ + adξ η

〉
dt

=
∫ t1
t0

〈
−
d

dt

(
δl

δξ

)
+ ad∗ξ

δl

δξ
, η̇

〉
dt

for all smooth curves t 7→ η(t) in g. This is equivalent to the Euler-
Poincaré equations

d

dt

(
δl

δξ

)
= ad∗ξ

δl

δξ

Comments on the proof: 1.) The constrained variations can
deduced for any Lie group. G Lie group, g its Lie algebra. Adopt
the standard convention wherein the Lie bracket of g is taken to
be the Jacobi-Lie bracket of left invariant vector fields. The left
(right) Maurer-Cartan forms Ω1(G; g) are

vg 7→TL−1
g · vg := g−1vg, vg ∈ TgG, left

vg 7→TR−1
g · vg := vgg

−1, vg ∈ TgG, right.

PDSC, Indian Institute of Technology, Mumbai, March 17–21, 2014
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Let U ⊂ R2 be an open set and let g : U → G be an embedding. Let
(t, λ) be coordinates on U and ∂λ and ∂t the corresponding vector
fields in X(U). Define ġ := Tg ◦ ∂t and δg := Tg ◦ ∂λ. Finally, if
ξ := g−1ġ (= ġg−1) and η := g−1δg (= δg g−1), then

∂λξ = ∂tη ± [ξ, η]

2.) Concretely, g(t, λ) appears as a deformation of a given smooth
curve g(t). These deformations are always assumed to be at least
immersions, which are locally embeddings around a point in G.

3.) The usual bracket of vector fields is the right Lie algebra
bracket, yet the formulas from Lie theory always use the left Lie
algebra bracket. Of course [ξ, η]L = −[ξ, η]R. So, for the right Lie
algebra, the above proposition states ∂sξ = ∂tη − [η, ξ]R.

PDSC, Indian Institute of Technology, Mumbai, March 17–21, 2014
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4.) In continuum mechanicis applications, the group is Diff(vol)(D)
whose left Lie algebra is X(div,)||(D) endowed with minus the stan-
dard Jacobi-Lie bracket of vector fields. Often one takes various
subgroups of Diff(D): volume preserving diffeomorphisms for in-
compressible hydrodynamics, symplectic diffeomorphisms for plasma
physics, gauge groups for field theory, etc.

If ϕ : U ⊂ R2 → Diff(D) is an embedding and ϕ̇ = Tϕ ◦ ∂t, δϕ =
Tϕ ◦ ∂s, u(s, t) = ϕ̇(s, t) ◦ ϕ(s, t)−1, and v(s, t) = δϕ(s, t) ◦ ϕ(s, t)−1,
we have

∂

∂s
u =

∂

∂t
v − [v, u]Jacobi−Lie.

There is minus in front of the bracket precisely because there is a
+ in the abstract theorem!

These are the Lin constraints (discovered by C.C. Lin in the 50s).
We will come back to these constraints when studying various con-
tinuum mechanics examples later.

PDSC, Indian Institute of Technology, Mumbai, March 17–21, 2014
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THE FREE TOP
The Lie algebra so(3) and its dual

Underlying Lie group is the proper rotation group SO(3).

(so(3), [·, ·]) ∼= (R3,×) by the isomorphism

u := (u1, u2, u3) ∈ R3 7→ û :=

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 ∈ so(3).

Equivalently, this isomorphism is given by

ûv = u× v for all u,v ∈ R3.

Properties: for u,v,w ∈ R3:

(u× v)ˆ = [û, v̂] =: adû v̂

[û, v̂]w = (u× v)×w

u · v = −
1

2
trace(ûv̂).

PDSC, Indian Institute of Technology, Mumbai, March 17–21, 2014
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If A ∈ SO(3), û ∈ so(3) let AdA û := AûA−1. Then

(Au)ˆ = AdA û := AûAT

A(u× v) = Au×Av

for any u,v ∈ R3 and A ∈ SO(3). This relation is not valid if A
is just an orthogonal matrix; if A is not in the component of the
identity matrix, then one gets a minus sign on the right hand side.

The dual so(3)∗ is identified with R3 by the isomorphism Π ∈ R3 7→
Π̃ ∈ so(3)∗ given by Π̃(û) := Π·u for any u ∈ R3. Then the coadjoint
action of SO(3) on so(3)∗ is given by

Ad∗
A−1 Π̃ = ÃΠ.

The coadjoint action of so(3) on so(3)∗ is given by

ad∗û Π̃ = Π̃× u.

PDSC, Indian Institute of Technology, Mumbai, March 17–21, 2014
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Continuum mechanical setup

Reference configuration: B ⊂ R3 = {X = (X1, X2, X3)}; E1,E2,E3

Spatial configuration: S = R3 = {x = (x1, x2, x3)}; e1, e2, e3

Configuration: orientation preserving embedding B→ S

Motion: x(X, t) time dependent family of configurations

For the rigid body moving about a fixed point, the motions are
rotations: x(X, t) := A(t)X, where A(t) ∈ SO(3).

Time dependent orthonormal basis anchored in the body moving
together with it: ξi := A(t)Ei, i = 1,2,3. Body or convected
coordinates: coordinates relative to ξ1, ξ2, ξ3.

PDSC, Indian Institute of Technology, Mumbai, March 17–21, 2014
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X

ϕ

E1

E2

E3

e1

e2

e3

x

ξ1

ξ2

ξ3

A body fixed frame
A space fixed frame
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Note that the components of a vector V relative to the basis
E1,E2,E3 are the same as the components of the vector A(t)V

relative to the basis ξ1, ξ2, ξ3. In particular, the body coordinates
of x(X, t) = A(t)X are X1, X2, X3.

Euler angles: encode the passage from the spatial basis e1, e2, e3

to the body basis ξ1, ξ2, ξ3 by means of three consecutive coun-
terclockwise rotations performed in a specific order: first rotate
around the axis e3 by the angle ϕ and denote the resulting position
of e1 by ON (line of nodes), then rotate about ON by the angle
θ and denote the resulting position of e3 by ξ3, and finally rotate
about ξ3 by the angle ψ.

By construction: 0 ≤ ϕ,ψ < 2π, 0 ≤ θ < π. Bijection between
(ϕ,ψ, θ) and SO(3). Not a chart since its differential vanishes at
ϕ = ψ = θ = 0. So for 0 < ϕ,ψ < 2π, 0 < θ < π the Euler angles
(ϕ,ψ, θ) form a chart.

PDSC, Indian Institute of Technology, Mumbai, March 17–21, 2014
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x

y

z

3

1

2

ϕ ψ

θ

N

O
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The resulting linear map performing the motion x(X, t) = A(t)X

has the matrix relative to the bases ξ1, ξ2, ξ3 and e1, e2, e3 equal to

A = cosψ cosϕ− cos θ sinϕ sinψ cosψ sinϕ+ cos θ cosϕ sinψ sin θ sinψ
− sinψ cosϕ− cos θ sinϕ cosψ − sinψ sinϕ+ cos θ cosϕ cosψ sin θ cosψ

sin θ sinϕ − sin θ cosϕ cos θ



The material or Lagrangian velocity is defined by

V(X, t) :=
∂x(X, t)

∂t
= Ȧ(t)X.

The spatial or Eulerian velocity is defined by

v(x, t) := V(X, t) = Ȧ(t)X = Ȧ(t)A(t)−1x.

The body or convective velocity is defined by

V(X, t) : = −
∂X(x, t)

∂t
= A(t)−1Ȧ(t)A(t)−1x

= A(t)−1V(X, t) = A(t)−1v(x, t).

PDSC, Indian Institute of Technology, Mumbai, March 17–21, 2014
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X

R(t)

E1

E2

E3

e1

e2

e3

x

V(X, t) = v(x, t)

V(X, t) = R(t)—1v(x, t)
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Kinetic energy

ρ0 density in the reference configuration. The kinetic energy at
time t in material, spatial, and convective representation:

K(t) =
1

2

∫
B
ρ0(X)‖V(X, t)‖2d3X

=
1

2

∫
A(t)B

ρ0(A(t)−1x)‖v(x, t)‖2d3x

=
1

2

∫
B
ρ0(X)‖V(X, t)‖2d3X.

Define ω̂(t) := Ȧ(t)A(t)−1, Ω̂(t) := A(t)−1Ȧ(t), then

v(x, t) = ω(t)× x, V(X, t) = Ω(t)×X,

so ω and Ω are the spatial and body angular velocities. The
expressions of ω and Ω in Euler angles are

ω =

 θ̇ cosϕ+ ψ̇ sinϕ sin θ
θ̇ sinϕ− ψ̇ cosϕ sin θ

ϕ̇+ ψ̇ cos θ

 Ω =

 θ̇ cosψ + ϕ̇ sinψ sin θ
−θ̇ sinψ + ϕ̇ cosψ sin θ

ϕ̇ cos θ + ψ̇

 .
26



So K(t) =
1

2

∫
B
ρ0(X)‖Ω(t)×X‖2d3X =:

1

2
〈〈Ω(t),Ω(t)〉〉

which is the quadratic form of the bilinear symmetric map on R3

〈〈a,b〉〉 :=
∫
B
ρ0(X)(a×X) · (b×X)d3X = Ia · b,

where I : R3 → R3 is the symmetric isomorphism (relative to the
dot product) whose components are Iij := IEj · Ei = 〈〈Ej,Ei〉〉, i.e.,

Iij = −
∫
B
ρ0(X)XiXjd3X if i 6= j

Iii =
∫
B
ρ0(X)

(
‖X‖2 − (Xi)2

)
d3X.

So I is the moment of inertia tensor. The basis in which it is
diagonal is called the principal axis body frame and the diagonal
elements I1, I2, I3 of I in this basis are called the principal moments
of inertia of the top. From now on, we choose the basis E1,E2,E3

to be a principal axis body frame. Hence the kinetic energy is

PDSC, Indian Institute of Technology, Mumbai, March 17–21, 2014
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K(Ω) =
1

2
Ω · IΩ = −

1

4
trace

(
Ω̂ ̂(IΩ)

)
= −

1

4
trace

(
Ω̂(Ω̂Λ + ΛΩ̂)

)
=

1

2

[
I1(ϕ̇ sinψ sin θ + θ̇ cosψ)2

+ I2(ϕ̇ cosψ sin θ − θ̇ sinψ)2 + I3(ϕ̇ cos θ + ψ̇)2
]

where Λ = diag(Λ1,Λ2,Λ3), Λ1 = (−I1 + I2 + I3)/2, Λ2 = (I1− I2 +

I3)/2, and Λ3 = (I1 + I2 − I3)/2, or I1 = Λ2 + Λ3, I2 = Λ3 + Λ1,
and I3 = Λ1 + Λ2. So, intrinsically, the kinetic energy on TSO(3)

K(A, Ȧ) = −
1

4
trace((ΛA−1Ȧ+A−1ȦΛ)A−1Ȧ)

is left invariant (action is B · (A, Ȧ) := (BA,BȦ)). It is the kinetic
energy of the left invariant Riemannian metric on SO(3) obtained
by left translating the inner product 〈〈·, ·〉〉. So the solutions of the
free rigid body motion project to geodesics on SO(3) relative to
the left invariant metric whose value at the identity is 〈〈·, ·〉〉.

PDSC, Indian Institute of Technology, Mumbai, March 17–21, 2014
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Identify 〈〈Ω, ·〉〉 ∈ (R3)∗ with the vector Π := IΩ ∈ R3, so

Π =

 I1(ϕ̇ sinψ sin θ + θ̇ cosψ)
I2(ϕ̇ cosψ sin θ − θ̇ sinψ)

I3(ϕ̇ cos θ + ψ̇)

 .
Define the conjugate variables by the Legendre transformation

pϕ :=
∂K

∂ϕ̇
, pψ :=

∂K

∂ψ̇
, pθ :=

∂K

∂θ̇
, so

K(Π) =
1

2
Π · I−1Π =

1

2

(
Π2

1

I1
+

Π2
2

I2
+

Π2
3

I3

)

=
1

2

[
[(pϕ − pψ cos θ) sinψ + pθ sin θ cosψ]2

I1 sin2 θ

+
[(pϕ − pψ cos θ) cosψ − pθ sin θ sinψ]2

I2 sin2 θ
+
p2
ψ

I3

 .

PDSC, Indian Institute of Technology, Mumbai, March 17–21, 2014

29



The equations of motion

Chart on T ∗SO(3), Euler angles and conjugate momenta

ϕ̇ = ∂K
∂pϕ

, ψ̇ = ∂K
∂pψ

, θ̇ = ∂K
∂pθ

ṗϕ = −∂K∂ϕ , ṗψ = −∂K∂ψ , ṗθ = −∂K∂θ .

JR : (ϕ,ψ, θ, pϕ, pψ, pθ) 7→ Π

A lengthy direct computation shows that these equations imply the
Euler equations Π̇ = Π×Ω. Can be obtained in two ways.

(i) Canonical Poisson bracket of two functions f, h : T ∗SO(3) → R
in a chart given by the Euler angles and their conjugate momenta

{f, h} =
∂f

∂ϕ

∂h

∂pϕ
−
∂f

∂pϕ

∂h

∂ϕ
+
∂f

∂ψ

∂h

∂pψ
−

∂f

∂pψ

∂h

∂ψ
+
∂f

∂θ

∂h

∂pθ
−
∂f

∂pθ

∂h

∂θ
.

A direct long computation shows that if F,H : R3 × R3 → R, then

{F ◦JR, H ◦JR} = {F,H}− ◦JR, where
PDSC, Indian Institute of Technology, Mumbai, March 17–21, 2014
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{F,H}−(Π) = −Π · (∇F ×∇H)

is the Lie-Poisson bracket on so(3)∗ ∼= R3. Of course, one can
cite the Lie-Poisson reduction theorem avoiding all computations!
The equation Ḟ = {F,H} for any F : R3 → R is equivalent to the
Euler equations obtained by Lie-Poisson reduction.

{F,Φ(‖Π‖2)} = 0, ∀F ∈ C∞(R3), so ‖Π‖2 is the Casimir function
of the Lie-Poisson structure on so(3)∗. So the body angular mo-
mentum Π evolves on concentric spheres. On the sphere of radius
‖Π‖, the Euler equation is Hamiltonian relative to the symplectic
form ω−(Π) = − 1

‖Π‖da, where da(Π)
(
u×Π,v×Π

)
= ‖Π‖Π · (u×v).

The solutions of the Euler equation Π̇ = Π × Ω are therefore ob-
tained by intersecting concentric spheres {Π | ‖Π‖ = R} with the
family of ellipsoids {Π | Π · I−1Π = C} for any constants R,C ≥ 0.

Stability Theorem: There are six equilibria, four of them stable
and two of them unstable. The stable ones correspond to rotations
about the short and long axes of the moment of inertia and the
unstable one corresponds to rotations about the middle axis.
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How do you solve the geodesic equations?

1.) Solve Π̇ = Π×Ω, Π = IΩ; done with Jacobi elliptic functions

2.) Solve Ȧ = AΩ̂, A(0) = I; time-ordered integral; quadrature

3.) Solutions t 7→ A(t) are the geodesics on SO(3). Π̇ = Π × Ω,
Ȧ = AΩ̂ is the geodesic spray when T SO(3) ∼=left SO(3)× R3.
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(ii) Do Euler-Poincaré reduction by hand. Given is the Lagrangian
L(Ω) := K(Ω) = 1

2IΩ ·Ω and consider the variational principle:

δ
∫ b
a
L(Ω)dt = 0

but only subject to the restricted variations of the form

δΩ := Σ̇ + Ω×Σ

where Σ(t) ∈ R3 is arbitrary such that Σ(a) = Σ(b) = 0.
This is equivalent to the Euler equations. In fluids: Lin constraints.
Proof: From ∇L(Ω) = IΩ = Π, we get

0 = δ
∫ b
a
L(Ω)dt =

∫ b
a
∇L(Ω) · δΩdt =

∫ b
a

Π · δΩdt

=
∫ b
a

Π · (Σ̇ + Ω×Σ)dt = −
∫ b
a

Π̇ ·Σdt+
∫ b
a

Π · (Ω×Σ)dt

=
∫ b
a

(
−Π̇ + Π×Ω

)
·Σdt.

The arbitrariness of Σ yields the Euler equations. �
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Left action induces a R3-valued conservation law. What is it?

Note that AΠ = AIΩ = (AIA−1)(AΩ) = (AIA−1)ω and since AIA−1 =:
Ispat is the moment of inertia in space, it follows that π := AΠ is
the angular momentum in space.

π̇ = ȦΠ +AΠ̇ = (ȦA−1)(AΠ) +A(Π×Ω)

= ω̂π + (AΠ)× (AΩ) = ω × π + π × ω = 0

so the angular momentum in space is conserved. Could have com-
puted this directly as a momentum map. We will come back to this
equation later – it has an important significance.

Note: The Euler top has too many conserved quantities. It is a
non-commutatively integrable system and the motion takes place
on 2-tori even though one would have expected it to be on 3-tori.

Note: k = 1
2Ω · IΩ = 1

2ω · Ispatω, so in space we have a NEW VARI-
ABLE, the spatial moment of inertia tensor! The theory developed
so far does not apply to this – come back later.
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Historically, Π̇ = Π ×Ω was not understood: not canonical Hamil-
tonian because the equations are in R3. Not Lagrangian because it
is first order. Yet, it comes from a classical system. Try to write it
as a classical Hamiltonian system on a vector space.

Natural action of SU(2) on C2. Since this action is by isometries of
the Hermitian inner product, it is automatically symplectic since the
symplectic form is minus the imaginary part of the inner product.
Hence, the equivariant momentum map J : C2 → su(2)∗ is

〈J(z, w), ξ〉 =
1

2
ω(ξ(z, w)T, (z, w)), z, w ∈ C, ξ ∈ su(2).

su(2) consists of 2×2 skew Hermitian matrices of trace zero. su(2)
is isomorphic to so(3) and hence to (R3,×) by

x = (x1, x2, x3) ∈ R3 ∼7−→

x̃ :=
1

2

[
−ix3 −ix1 − x2

−ix1 + x2 ix3

]
∈ su(2);

[x̃, ỹ] = (x× y)˜, ∀x,y ∈ R3.
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Other useful formulas are

det(2x̃) = ‖x‖2 and trace(x̃ỹ) = −
1

2
x · y.

su(2)∗ ∼= R3 by the map µ ∈ su(2)∗ 7→ µ̌ ∈ R3 defined by

µ̌ · x := −2〈µ, x̃〉, ∀x ∈ R3.

So J̌ : C2 → R3 is given by: for any x ∈ R3 we have

J̌(z, w) · x = −2〈J(z, w), x̃〉

=
1

2
Im

([
−ix3 −ix1 − x2

−ix1 + x2 ix3

] [
z
w

]
·
[
z
w

])

= −
1

2
(2 Re(wz),2 Im(wz), |z|2 − |w|2) · x, so

J̌(z, w) = −
1

2
(2wz, |z|2 − |w|2) ∈ R3.

The momentum map J̌ : (C2,− Im 〈〈 , 〉〉)→ R3
+ is Poisson and hence

−J̌ : (C2,− Im 〈〈 , 〉〉)→ R3
− is Poisson.
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Hamilton’s equations in (z, w) ∈ C2 for H◦(−J̌) : C2 → R (collective
Hamiltonian) push forward by −J̌ to Π̇ = Π× I−1Π. (z, w) are the
Cayley-Klein parameters. They represent a first attempt to un-
derstand the rigid body equations as a Hamiltonian system, before
the introduction of Poisson manifolds. In quantum mechanics, the
same variables are called the Kustaanheimo-Stiefel coordinates.
Similar construction in fluid dynamics: Clebsch variables for the
Euler equations.

Try to understand the map −J̌(z, w) = 1
2(2wz, |z|2 − |w|2) better.

If (z, w) ∈ S3 :=
{

(z, w) ∈ C2 | |z|2 + |w|2 = 1
}
, then ‖ − J̌(z, w)‖ =

1/2, so that −J̌|S3 : S3 → S2
1/2 ⊂ R3 sphere of radius 1/2.
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−J̌|S3 is surjective and its fibers are circles. Indeed, given (x1, x2, x3) =

(x1 + ix2, x3) = (reiψ, x3) ∈ S2
1/2,

− J̌−1(reiψ, x3) =
eiθ

√
1

2
+ x3, eiϕ

√
1

2
− x3

 ∈ S3
∣∣∣∣ ei(θ−ϕ+ψ) = 1

 .
so −J̌|S3 : S3 → S2

1/2 is the Hopf fibration. Hence:

The momentum map of the SU(2)-action on C2, the Cayley-Klein
parameters, the Kustaanheimo-Stiefel coordinates, and the family
of Hopf fibrations on concentric three-spheres in C2 are the same
map.

For interesting applications, we need a vastly enlarged version of
the Euler-Poincaré reduction theorem. We state it only. The proof,
follows the pattern given above.
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AFFINE EULER-POINCARÉ REDUCTION

Right G-representation on V , (v, g) ∈ V ×G 7→ vg ∈ V , induces:

• right G-representation on V ∗: (a, g) ∈ V ∗ ×G 7→ ag ∈ V ∗

• right g-representation on V : (v, ξ) ∈ V × g 7→ vξ ∈ V

• right g-representation on V ∗: (a, ξ) ∈ V ∗ × g 7→ aξ ∈ V ∗

Duality pairings: 〈 , 〉g : g∗ × g→ R and 〈 , 〉V : V ∗ × V → R
Recall −〈aξ, v〉V = 〈a, vξ〉V

Affine right representation: θg(a) = ag+ c(g), where c ∈ F(G,V ∗) is
a right group one-cocycle, i.e., c(fg) = c(f)g+ c(g), ∀f, g ∈ G. This
implies that c(e) = 0 and c(g−1) = −c(g)g−1. Note that

d

dt

∣∣∣∣
t=0

θexp(tξ)(a) = aξ + dc(ξ), ξ ∈ g, a ∈ V ∗,

where dc : g→ V ∗ is defined by dc(ξ) := Tec(ξ). Useful to introduce:
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• dcT : V → g∗ by 〈dcT(v), ξ〉g := 〈dc(ξ), v〉V , for ξ ∈ g, v ∈ V

• � : V × V ∗ → g∗ by 〈v � a, ξ〉g := −〈aξ, v〉V , for ξ ∈ g, v ∈ V , a ∈ V ∗

• then: 〈aξ + dc(ξ), v〉V = 〈dcT(v)− v � a, ξ〉g

• the semidirect product S = GsV with group multiplication

(g1, v1)(g2, v2) := (g1g2, v2 + v1g2), gi ∈ G, vi ∈ V

• its Lie algebra s = gsV with bracket

ad(ξ1,v1)(ξ2, v2) := [(ξ1, v1), (ξ2, v2)] = ([ξ1, ξ2], v1ξ2 − v2ξ1)

• then for (ξ, v) ∈ s and (µ, a) ∈ s∗ = g∗ × V ∗ we have

ad∗(ξ,v)(µ, a) = (ad∗ξ µ+ v � a, aξ)

In a physical problem (like liquid crystals) we are given:
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• L : TG× V ∗ → R right G-invariant under the action
(vh, a) ∈ ThG× V ∗

g7−→ (vhg, θg(a)) = (vhg, ag + c(g)) ∈ ThgG× V ∗.

• So, if a0 ∈ V ∗, define La0 : TG→ R by La0(vg) := L(vg, a0). Then
La0 is right invariant under the lift to TG of right translation of Gca0
on G, where Gca0

is the θ-isotropy group of a0.

• Right G-invariance of L permits us to define l : g× V ∗ → R by

l(vgg
−1, θg−1(a0)) = L(vg, a0).

• Curve g(t) ∈ G, let ξ(t) := ġ(t)g(t)−1 ∈ g, a(t) = θg(t)−1(a0) ∈ V ∗
Then a(t) as the unique solution of the following affine differen-
tial equation with time dependent coefficients and initial condition
a(0) = a0 ∈ V ∗

ȧ(t) = −a(t)ξ(t)− dc(ξ(t)),

The following are equivalent:
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(i) With a0 held fixed, Hamilton’s variational principle

δ
∫ t2
t1
La0(g(t), ġ(t))dt = 0,

holds, for variations δg(t) of g(t) vanishing at the endpoints.
(ii) g(t) satisfies the Euler-Lagrange equations for La0 on G.
(iii) The constrained variational principle

δ
∫ t2
t1
l(ξ(t), a(t))dt = 0,

holds on g× V ∗, upon using variations of the form

δξ =
dη

dt
− [ξ, η], δa = −aη − dc(η),

for all smooth curves t 7→ η(t) ∈ g vanishes at the endpoints.
(iv) The affine Euler-Poincaré equations hold on g× V ∗:

d

dt

δl

δξ
= − ad∗ξ

δl

δξ
+
δl

δa
� a− dcT

(
δl

δa

)
.
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Example: Euler top

Want to write equations of motion in spatial representation, i.e.,
using spatial angular momentum ω = ȦA−1, one has to implement
reduction relative to the right translation by SO(3). Such a sym-
metry can be obtained only by introducing a NEW VARIABLE, the
spatial inertial tensor Ispat = AIA−1. In this case, the associated
reduction process yields the Lagrangian

k = `spat(ω, Ispat) =
1

2
Ispatω ·ω = −

1

4
trace((ΛA−1Ȧ+A−1ȦΛ)A−1Ȧ).

Euler-Poincaré: variations δω = ϕ̇−ω ×ϕ, δIspat = [ϕ, Ispat], where
ϕ is a arbitrary curve in R3 vanishing at the endpoints,

δ
∫ t1
t0
`(ω, Ispat)dt = 0,

is equivalent to (recall π = Ispatω)

d

dt
π =

d

dt
(Ispatω) = 0,

d

dt
Ispat = [ω, Ispat].

The first equation is the conservation of the angular momentum in
space. We have seen this before. 3 + 6 = 9 equations.
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THE HEAVY TOP

Same kinetic energy.

The potential energy U is determined by the height of the center
of mass over the horizontal plane in the spatial representation.
• ` length of segment from fixed point to center of mass
• χ unit vector from origin on this segment
• M =

∫
B ρ0(X)d3X total mass of the body

• g magnitude of gravitational acceleration
• Γ(t) := Mg`A(t)−1e3, spatial Oz unit vector viewed in body de-
scription
• λ(t) := Mg`A(t)χ, unit vector on the line connecting the origin
with the center of mass viewed in the spatial description

U = Mg`e3 ·A(t)χ material/Lagrangian

= e3 · λ spatial/Eulerian

= Γ · χ body/convective
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New complications appear: There are new variables, depending
on the representation; λ in the spatial and Γ in the body
representation

QUESTION: L = K − U : T ∗SO(3) → R3. The parameters are
e3,χ ∈ R3, I ∈ Sym2, Mg` ∈ R. So dual of representation space:
V ∗ = R3 × R3 × Sym2. Since the particles do not have a separate
dynamics, there is no cocycle, so c = 0.

L(A, Ȧ, e3, I,χ) =
1

2

(
IA−1Ȧ

)
·
(
A−1Ȧ

)
−Mg`e3 ·Aχ material

Heavy top in body representation. Left SO(3)-representation:
B · (e3, I,χ) := (Be3, I,χ), ∀B ∈ SO(3). Since

L(BA,BȦ,Be3, I,χ) = L(A, Ȧ, e3, I,χ), ∀B ∈ SO(3),

general theory says that we have Euler-Poincaré equations and as-
sociated variational principles for the body Lagrangian

LB(Ω,Γ, I,χ) := L(I, A−1Ȧ, A−1e3, I,χ) =
1

2
Ω · IΩ− Γ · χ body
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Since δLB
δΩ = IΩ = Π and δLB

δΓ = −χ, the abstract Euler-Poincaré
equations become the standard Euler-Poisson equations

Π̇ = Π×Ω + Γ× χ, Γ̇ = Γ×Ω, İ = 0, χ̇ = 0.

Heavy top in spatial representation. Right SO(3)-representation:
(e3, I,χ) ·B := (e3, B

−1IB,B−1χ), ∀B ∈ SO(3). Since

L(AB, ȦB, e3, B
−1IB,B−1χ) = L(A, Ȧ, e3, I,χ), ∀B ∈ SO(3),

general theory says that we have Euler-Poincaré equations and as-
sociated variational principles for the spatial Lagrangian

LS(ω, e3, IS,λ) := L(I, ȦA−1, e3, AIA−1, Aχ) =
1

2
ω · Ispatω − e3 · λ

Since δLS
δω = Ispatω = π, δLSδλ = −e3,

δLS
δIspat = ω ⊗ ω, we get

π̇ = e3 × λ, ė3 = 0, İspat =
[
Ispat, ω̂

]
, λ̇ = ω × λ
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Remark: In body representation, we have equations on se(3)∗ =
R3 × R3. Four dimensional generic orbits; Casimirs are Π · Γ, ‖Γ‖2.

In spatial representation, equations are on the dual of the semidi-
rect product so(3)s (Sym2×R3). This is 12 dimensional. It has 6
Casimirs: the three invariants of Ispat, ‖λ‖2, (Ispatλ) · λ, ‖Ispatλ‖2.
The generic coadjoint orbit is symplectomorphic to (T ∗SO(3), can).
One more integral: π · e3. Reduce and get to 4 dimensions
(TS2,magnetic).

Remark: There is a Hamiltonian version of this theorem, the
semidirect product reduction theorem with cocycles. It pro-
duces a Poisson bracket, symplectic leaves which are orbits of the
coadjoint action augmented by a cocycle, explicit expression of the
symplectic form on these orbits, Hamilton’s equations.

Before doing fluids and elasticity, let’s recall the standard contin-
uum mechanics setup.
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CONTINUUM MECHANICS SETTING

Reference configuration: (B,G) oriented Riemannian manifold
Usually B ⊂ R3 = {X = (X1, X2, X3)}; E1,E2,E3 orthonormal

Spatial configuration: (S, g) oriented Riemannian manifold
Usually S = R3 = {x = (x1, x2, x3)}; e1, e2, e3 orthonormal

Configuration: orientation preserving embedding ϕ : B→ S, so the
configuration space is Emb+(B, S)

Motion: ϕt(X) = x(X, t) time dependent family of configurations

Time dependent basis anchored in the body moving together with
it: ξi := ϕt(Ei), i = 1,2,3. Body or convected coordinates:
coordinates relative to ξ1, ξ2, ξ3.
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The material or Lagrangian velocity is defined by

V(X, t) :=
∂x(X, t)

∂t
=

∂

∂t
ϕt(X).

The spatial or Eulerian velocity is defined by

v(x, t) := V(X, t)⇐⇒ vt ◦ ϕt = Vt.

The body or convective velocity is defined by

V(X, t) := −
∂X(x, t)

∂t
= −

∂

∂t
ϕ−1
t (x)⇐⇒ Vt = Tϕ−1

t ◦Vt = ϕ∗tvt

The particle relabeling group Diff(B) acts on the right on
Emb+(B, S). The material frame indifference group Diff(S)

acts on the left on Emb+(B, S).

In continuum mechanics it is important to keep all options open and
always have three descriptions available. They serve different pur-
poses and the interactions between them gives interesting physical
insight.
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FIXED BOUNDARY BAROTROPIC FLUIDS

D := B = S oriented Riemannian manifold, ∂D smooth, G = g =: g,
G = Diff(D), g = X(D), V = S2(D), V ∗ = S2(D)⊗ |Ωn(D)|

L(%̄,g)(Vη) =
1

2

∫
D
g(η(X))(Vη(X), Vη(X))%̄(X)

−
∫
D
E(%̄( ), g(η( )), T η)(X)%̄(X), material

`spat(v, ρ̄, g) =
1

2

∫
D
g(x)(v(x),v(x))ρ̄(x)−

∫
D
e(ρ)(x)ρ̄(x), spatial

`conv(V, %̄, C) =
1

2

∫
D
C(X)(V(X),V(X))%̄(X)−

∫
D
E(%̄, C)(X)%̄(X), body

• %̄(X) =: %(X)µ(g)(X) := (η∗ρ̄) (X), ρ̄(x) := ρ(x)µ(g)(x)

mass density
• C := η∗g Cauchy-Green tensor
• E(%̄( ), g(η( )), T η) := e

(
%̄

µ(η∗g)

)
= e(ρ) ◦ η,

E(%̄, C) := e
(

%̄
µ(C)

)
= e(ρ) ◦ η internal energy density
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L is right-invariant under the action of ϕ ∈ Diff(D) given by

(Vη, %̄, g) 7→ (Vη ◦ ϕ,ϕ∗%̄, g)

and the reduction map

(Vη, %̄, g) 7→ (v, ρ̄, g) := (Vη ◦ η−1, η∗%̄, g)

induces the spatial Lagrangian `spat(v, ρ, g) because

E(%̄, g ◦ η, Tη) 7→ E(ϕ∗%̄, g ◦ η ◦ ϕ, Tη ◦ Tϕ) = E(%̄, g ◦ η, Tη) ◦ ϕ

when (η, %̄) 7→ (η ◦ ϕ,ϕ∗%̄). g is not acted on by Diff(D).
L is left-invariant under the action of ψ ∈ Diff(D) given by

(Vη, %̄, g) 7→ (Tψ ◦ Vη, %̄, ψ∗g).

and the reduction map

(Vη, %̄, g) 7→ (V, %̄, C) := (Tη−1 ◦ Vη, %̄, η∗g),

induces the convective Lagrangian `conv(V, %̄, C) because

E(%̄, g ◦ η, Tη) 7→ E(%̄, ψ∗g ◦ (ψ ◦ η), Tψ ◦ Tη) = E(%̄, g ◦ η, Tη)

when (η, g) 7→ (ψ ◦ η, ψ∗g). %̄ is not acted on by Diff(D).
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General semidirect product reduction gives spatial equations ∂tv +∇vv = −
1

ρ
gradg p, p = ρ2∂e

∂ρ

∂tρ+ divg(ρv) = 0, v‖∂D,
and convective equations %̄ (∂tV +∇VV) = 2 DivC

(
∂E

∂C
%̄

)
∂tC −£VC = 0, V‖∂B,

right hand side is related to the spatial pressure p by the formula

2
∂E

∂C
%̄ = −(p ◦ η)µ(C)C], so 2 DivC

(
∂E

∂C
%̄

)
= −gradC(p ◦ η)µ(C),

C] ∈ S2(D) is the cometric, gradC is the gradient relative to C.

Important special case: ideal homogeneous incompressible
fluid. Group is Diffµ(g)(D) := {η ∈ Diff(D) | η∗µ(g) = µ(g)}, dual
of representation space is V ∗ = S2(D).
Lagrangian in spatial and convective rep. (suppose H1(D,R) = 0):
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So, this is the study of L2-geodesics in spatial representation.

`spat(v, g) =
1

2

∫
D
g(x)(v(x),v(x))µ(g)(x)

`conv(V, %̄, C) =
1

2

∫
D
C(X)(V(X),V(X))µ(g)(X)

In spatial representation: if Xdiv,‖(D)∗ = Xdiv,‖(D) =⇒

∂tv +∇vv = −grad p Euler equations

if Xdiv,‖(D)∗ = dΩ1
δ,‖(D) := {dv[g | v ∈ Xdiv,‖(D)} = Ω2

ex(D) =⇒

∂tω + £vω = 0, where ω := dv[g vorticity vorticity advection

In convective representation: if Xdiv,‖(D)∗ = Ω1
δ,‖(D) =⇒

∂tP
(
V[C

)
= 0 and ∂tC −£VC = 0.

P : Ω1(D)→ Ω1
δ,‖(D) orthogonal Hodge projector for the metric g

if Xdiv,‖(D)∗ = Ω2
ex(D) =⇒

∂tΩ = 0 and ∂tC −£VC = 0.

where Ω := dV[C is the convective vorticity.
PDSC, Indian Institute of Technology, Mumbai, March 17–21, 2014

53



Go back to spatial representation.

The geodesic t 7→ ηt ∈ Diffµ(g)(D) is given by solving the equation
∂ηt/∂t = vt ◦ ηt with the velocity t 7→ vt found after solving
• either the Euler equations for v

• or the vorticity advection equation for ω and then inverting the
relation ω = dv[g with boundary condition g(v,n) = 0 on ∂D.

Coadjoint action of η ∈ Diffµ(g)(D) on ω ∈ dΩ1(D): Ad∗
η−1 ω = η∗ω.

Coadjoint orbit: Oω =
{
η∗ω | η ∈ Diffµ(g)(D)

}
, i.e., all smooth rear-

rangements of initial ω.

Coadjoint action of Xdiv,||(M) on dΩ1(M) ∼= Xdiv,||(M)∗ is hence
given by ad∗v ω = £vω.

The following statements are true and equivalent to each other:
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(i) The vorticity ω is transported by the flow ηt of v. If ω0 = ωt=0,

d

dt

∣∣∣∣
t=0

(ηt)∗ω0 = −(ηt)∗£vω0 = −£v(ηt)∗ω0,

so ωt = (ηt)∗ω0 is the only solution with ω0 as initial condition.

(ii) Solution curves of the vorticity advection equation remain on
coadjoint orbits in X∗div,||(D). Indeed, the solution is ω = (ηt)∗ω0,
where ηt is the flow of v.

(iii) Kelvin’s circulation theorem: For any loop C in D bounding a
surface S, the circulation∮

Ct
v[g = constant,

where Ct := ηt(C) and ηt is the flow of v. Indeed, by change of
variables and Stokes’ theorem, for St := ηt(S), we have∮

Ct
v[g =

∫∫
St

dv[g =
∫∫
St
ω =

∫∫
St

(ηt)∗ω0 =
∫∫
S
ω0 = constant.
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ELASTICITY
Euler-Poincaré theory does not apply; do by hand with EP as guide.
BC: Displacement (η given on part of ∂B); traction (P ·NC|∂B = τ̃).
Configuration space Emb(B, S). Material Lagrangian:

L(Vη, %̄, g, G) =
1

2

∫
B
g(η(X))(Vη(X), Vη(X))%̄(X)

−
∫
B
W (g(η( )), T η,G( ))(X)%̄(X).

Material frame indifference: the material stored energy function W
is invariant under the transformations

(η, g) 7→ (ψ ◦ η, ψ∗g), ψ ∈ Diff(S), i.e.,

W
(
ψ∗g(ψ(η( ))), Tη( )ψ ◦ T η,G( )

)
= W (g(η( )), T η,G( )) .

∀η ∈ Emb(B, S), ∀ψ : η(B)→ η(B) diffeomorphism

So can define the convective stored energy W by

W(C(X), G(X)) := W
(
η∗g(X), I, G(X)

)
= W (g(η(X)), TXη,G(X)) .
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Convective quantities: C := η∗g Cauchy-Green tensor,

(V, %̄, C,G) :=
(
Tη−1 ◦ Vη, %̄, η∗g,G

)
∈ X(B)×|Ωn(B)|×S2(B)×S2(B),

`conv(V, %, C,G) =
1

2

∫
B
C(V,V)%−

∫
B
W(C,G)%.

Convective equations of motion:

% (∂tV +∇VV) = 2 DivC

(
∂W

∂C
%

)
, ∂tC −£VC = 0.

So, elasticity has always a convective representation. Spatial rep.?

Isotropy: Need invariance under the right action of Diff(B):

(Vη, %, g,G) 7→ (Vη ◦ ϕ,ϕ∗%, g, ϕ∗G), ϕ ∈ Diff(B)

Kinetic energy is right-invariant. So sufficient condition is

W
(
g(η(ϕ(X))), TX(η◦ϕ), ϕ∗G(X)

)
=
(
W (g(η( )), T η,G( ))◦ϕ

)
(X),

for all ϕ ∈ Diff(B). This is equivalent to

W(ϕ∗C,ϕ∗G) = W(C,G) ◦ ϕ, ∀ϕ ∈ Diff(B)

This is material covariance which implies isotropy.
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Spatial quantities: c := η∗G ∈ S2(DΣ) Finger deformation tensor

u := η̇ ◦ η−1 ∈ X(DΣ), ρ̄ := η∗%̄ ∈ |Ωn(DΣ)|,
Σ = η(∂B) boundary of current configuration DΣ := η(B) ⊂ S,

wΣ(c, g) := W(η∗g, η∗c) ◦ η−1

spatial stored energy function. wΣ, W, and W are related by

(wΣ(c, g) ◦ η) (X) = W(η∗g(X), η∗c(X)) = W
(
g(η(X)), TXη, η

∗c(X)
)
.

Doyle-Ericksen formula for the Cauchy stress tensor

σ = 2ρ
∂wΣ

∂g
∈ S2(DΣ)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Force per unit of deformed area with normal n is t(x, t,n), the
Cauchy traction vector. In R3, if balance of momentum holds:
∀U ⊂ B open,

d

dt

∫
ϕt(U)

ρud3x =
∫
ϕt(U)

ρbd3x+
∫
∂ϕt(U)

tda(x)

where t is evaluated on the outward unit normal to ∂ϕt(U), then
t(x, t,n) = σ(x, t)·n(x, t). b given external body force per unit mass.
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In R3, if balance of moment of momentum holds: ∀U ⊂ B open,

d

dt

∫
ϕt(U)

ρ(x× u)d3x =
∫
ϕt(U)

ρ(x× b)d3x+
∫
∂ϕt(U)

(x× (γ · n))da(x)

where t is evaluated on the outward unit normal to ∂ϕt(U), then σ
is symmetric.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Reduced Lagrangian

`spat(Σ,v, ρ̄, g, c) =
1

2

∫
DΣ

g(v,v)ρ̄−
∫
DΣ

wΣ (c, g) ρ̄,

variables defined on current configuration DΣ and Σ is a variable.
Spatial equations of motion: (BC) v|Σd

= 0, σ · ng|TΣτ = 0

ρ (∂tv +∇vv) = Divg (σ) , ∂tc+ £vc = 0, ∂tρ̄+ £vρ̄ = 0,

∂tΣ = g(v,ng)
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SYMMETRIC REPRESENTATION OF
THE RIGID BODY EQUATIONS

A.) The n-dimensional free rigid body

Invariant inner product on so(n)

〈ξ, η〉 := −
1

2
trace(ξη),

ξ, η ∈ so(n), identifies so(n) with so(n)∗.

The left invariant n-dimensional free rigid body equations are

Q̇ = QΩ and Ṁ = [M,Ω], (RBn)

Q ∈ SO(n) is the attitude of the body, Ω := Q−1Q̇ is the body
angular velocity, M := J(Ω) = ΛΩ+ΩΛ ∈ so(n) is the body angular
momentum. J : so(n) → so(n) is 〈·, ·〉-symmetric, positive definite,
Λ = diag(Λ1, . . . ,Λn), Λi + Λj > 0 for all i 6= j.
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The equations Ṁ = [M,Ω] are the Euler-Poincaré equations on
so(n) for the Lagrangian l(Ω) = 1

2 〈Ω, J(Ω)〉 . This corresponds to
the Lagrangian on T SO(n) given by

L(g, ġ) =
1

2

〈
g−1ġ, J(g−1ġ)

〉
.

General Euler-Poincaré theory implies that Ṁ = [M,Ω] are the sec-
ond component of the geodesic equations on T SO(n), left trivial-
ized as SO(n) × so(n), relative to the left invariant metric whose
expression at the identity is 〈〈Ω1,Ω2〉〉 = 〈Ω1, J(Ω2)〉.

Ṁ = [M,Ω] are integrable (Manakov [1976], Mishchenko-Fomenko
[1976-1978]). Idea:

Ṁ = [M,Ω]⇐⇒
d

dt
(M + λΛ2) = [M + λΛ2,Ω + λΛ], so

1

k
trace(M + λΛ2)k =

k∑
i=0

pi(M)λi

is conserved. Need to count correctly the pi(M), show involution,
independence; 1

2 dimO polynomials, O generic SO(n) adjoint orbit.
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B.) Left symmetric representation

Q̇ = QΩ; Ṗ = PΩ (SRBn)

where Ω is regarded as a function of Q and P via the equations

Ω := J−1(M) ∈ so(n) and M := QTP − PTQ.

It is easy to check that this system of equations on the space
SO(n)×SO(n) is invariant under the left diagonal action of SO(n).

If (Q,P ) is a solution of (SRBn), then (Q,M) where M = J(Ω) and
Ω = Q−1Q̇ satisfies the rigid body equations (RBn).

Proof: Differentiating M = QTP − PTQ and using the equations
(SRBn) gives the second of the equations (RBn). �

The spatial angular momentum (the momentum map for the cotan-
gent lifted action of SO(n) on T ∗SO(n)) equals m = PQT − QPT

and is conserved. More: PQT and QPT are separately conserved.
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C.) Local equivalence

Conversely, let t ∈ R 7→ (Q,M) ∈ SO(n) × so(n) solution of (RBn).
To find a solution of (SRBn) need to solve for P ∈ SO(n) in

M = QTP − PTQ.
Since ‖Q‖ = ‖P‖ = 1 (‖ · ‖ operator norm) ⇒ ‖M‖ ≤ 2. Define
C := {(Q,P ) | ‖M‖ = 2}, S := {(Q,P ) | ‖M‖ < 2}. Since M 7→ ‖M‖
is a Casimir and ‖ · ‖ is invariant under conjugation =⇒ C, S are
invariant under the flow of (SRBn).

Since, for any matrix A,

sinhA := (eA − e−A)/2 = A+
1

3!
A3 +

1

5!
A5 + · · ·

it follows that sinh : so(n) → so(n). If x ∈ R, |x| < 1, the series
expansion of sinh−1 x is

sinh−1 x =
∞∑
n=0

(−1)n
(2n)!

22n(n!)2(2n+ 1)
x2n+1

So there is an inverse sinh−1 : {A ∈ so(n) | ‖A‖ < 1} → so(n).
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For ‖M‖ < 2, the equation M = QTP − PTQ has the solution
P = Q

(
esinh−1M/2

)
.

Example SO(3):
√

1
2 trace

(
x̂x̂T

)
= ‖x̂‖ = ‖x‖ for any x ∈ R3

so(3) = {µx̂ | ‖x‖ = 1, µ ≥ 0} =⇒ {A ∈ so(3) | ‖A‖ < 1} = {µx̂ |
‖x‖ = 1,0 ≤ µ < 1}. Rodrigues’ formula

eµx̂ = I + sin(µ)x̂ +
(
I − xxT

)
(cosµ− 1)

implies that sinh(µx̂) = sin(µ)x̂ so sinh : so(3)→ so(3) is not globally
one-to-one but it has an inverse sinh−1 : {‖A‖ < 1} → so(3) given
by

sinh−1(µĉ) = sin−1(µ)ĉ.

We determine C = {(Q,P ) | ‖M‖ = 2}. Since the exponential map
is onto, QTP = eµx̂ ⇒ M = QTP − (QTP )T = 2 sinh(µx̂) = sin(µ)x̂,
so ‖M‖ = 2⇐⇒ | sin(µ)| = 1⇐⇒ µ = π/2⇐⇒ QTP = I + x̂. Thus

C = {(Q,P ) ∈ SO(3)× SO(3) | QTP = I + x̂, ‖x‖ = 1}
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D.) Hamiltonian structure

Symplectic vector space gl(n)× gl(n) with symplectic form

Ωgl(n)((ξ1, η1), (ξ2, η2)) =
1

2
trace(ηT2 ξ1−ηT1 ξ2), (ξi, ηi) ∈ gl(n)×gl(n)

The Hamiltonian system given by

H(ξ, η) = −
1

8
trace

[(
J−1(ξTη − ηT ξ)

) (
ξTη − ηT ξ

)]
.

leaves SO(n) × SO(n) invariant and induces on it (SRBn). S is a
symplectic submanifold of gl(n)× gl(n). Poisson bracket at (Q,P ):

{F |S,K|S} = 〈∇2K,∇1F 〉 − 〈∇1K,∇2F 〉

−
1

2

〈
Q (∇2K)T + (∇2K)QT ,

(
I +R⊗RT

)−1
R
(
P (∇1F )T + (∇1F )PT

)〉
+

1

2

〈
P (∇1K)T + (∇1K)PT ,

(
I +R⊗RT

)−1 (
Q (∇2F )T + (∇2F )QT

)
R

〉
,

R = QPT , F,K ∈ C∞(gl(n)× gl(n)) and ∇1, ∇2 partial gradients.

Why did this work? What is the general setup?
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CLEBSCH OPTIMAL CONTROL

A.) (SRBn) as an optimal control problem

T > 0, Q0, QT ∈ SO(n). Rigid body optimal control problem:

min
U∈so(n)

1

4

∫ T
0
〈U, J(U)〉dt.

Constraint on U : there is a curve Q(t) ∈ SO(n) such that

Q̇ = QU Q(0) = Q0, Q(T ) = QT .

The rigid body optimal control problem has optimal evolution equa-
tions (SRBn) where P is the costate vector given by the Pontryagin
Maximum Principle. The optimal control in this case is given by

U = J−1(QTP − PTQ).

Idea of proof: Apply Pontryagin Maximum Principle

δ
∫ T

0

[〈
P,QU − Q̇

〉
−

1

4
〈U, J(U)〉

]
dt = 0.

The costate vector P is a multiplier enforcing the dynamics.
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There are no constraints on the costate vector P ∈ gl(n); can con-
sider the restriction of the extremal flows to invariant submanifolds.
This limits possible extremal trajectories that can be recovered. For
example (SRBn) restricts to a system on SO(n)×SO(n). One can
make other assumptions on the costate vector. For example, sup-
pose we assume a costate vector B such that QTB is skew. Then it
is easy to check that that the extremal evolution equations become

Q̇ = QJ−1(QTB), Ḃ = BJ−1(QTB)

and that these equations restrict to an invariant submanifold de-
fined by the condition that QTB is skew symmetric. These are the
McLachlan-Scovel equations [1995]. Comparing these equations
with (SRBn) we see that B = P −QPTQ.

One can discretize all of this and give algorithms.

QUESTION: What is the meaning of this strange formulation of
the free rigid body equation?

IDEA: The optimal control problem should be the link that ties
these equations to the Euler-Poincaré formulation.
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B.) Optimal control

Q manifold, U vector space, g : Q× U → R cost function,
X : Q× U → TQ smooth, Xu := X(·, u) ∈ X(Q).
Given q0, qT ∈ Q, consider the typical optimal control problem:

Find the curves q = q(t) ∈ Q, u = u(t) ∈ U that minimize∫ T
0
g(q(t), u(t))dt

subject to the following conditions:
(A) q̇(t) = X(q(t), u(t));
(B) q(0) = q0 and q(T ) = qT .

C.) Pontryagin Maximum Principle

Pontryagin function Ĥ : T ∗Q×U → R for optimal control problem:

Ĥ(αq, u) := 〈αq, X(q, u)〉 − p0g(q, u),

where p0 ≥ 0 is a fixed positive constant.
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Pontryagin Maximum Principle: if (q(t), u(t)) is solution of this
optimal control problem then there is α(t) ∈ T ∗

q(t)Q, q(t) ∈ Q, s.t.

d

dt
α(t) = X

Ĥu(t)
(α(t)) , Ĥ (α(t), u(t)) = max

u∈U
Ĥ (α(t), u) ,

where X
Ĥu

Hamiltonian vector field defined by Ĥu (α) := Ĥ(α, u).

If p0 6= 0, replacing α(t) by α(t)/p0 shows that in Ĥ one can always
assume that p0 = 1. Solutions with p0 6= 0 are called normal
extremals. Solutions with p0 = 0 are called abnormal extremals.
We work from now on only with normal extremals and set p0 = 1.

Assume Ĥ ∈ C1. Then the optimal control u(t) is found by solving

∂Ĥ

∂u
(α(t), u(t)) = 0.

A sufficient condition that guarantees that maximum is achieved
along the control u(t) is that X is linear in u and g is strictly convex
in u. In this case the optimal control is uniquely determined.
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So, locally the Pontryagin Maximum Principle states that α(t) =

(q(t), p(t)) and u(t) are determined by the system of equations

∂Ĥ

∂u
= 0, q̇ =

∂Ĥ

∂p
= X(q, u), ṗ = −

∂Ĥ

∂q
.

If ∂Ĥ∂u = 0 can be solved for u = u(α), then these equations are the
usual Hamilton equations for H(α) := Ĥ(α, u(α)).

This happens locally, for example, if Ĥ is of class C2 and ∂2Ĥ/∂u2 :

U → U∗, computed at a given point, is an isomorphism. If X is
linear in u and g is strictly convex in u, then this holds at every
point.

These equations can be obtained by the variational principle

δ
∫ T

0

(
Ĥ(αq, u)− 〈αq, q̇〉

)
dt = 0.
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C.) Clebsch optimal control problem

Φ : G×Q→ Q (left or right) action of a Lie group G on a manifold
Q. Infinitesimal generator uQ ∈ X(Q) of the action for u ∈ g:

uQ(q) :=
d

dt

∣∣∣∣
t=0

Φexp(tξ)(q)

Clebsch optimal control problem: given ` : g→ R find u(t), q(t)

min
u(t)

∫ T
0
`(u(t))dt,

` cost function, subject to the following conditions:
(A) q̇(t) = u(t)Q(q(t)) or (A)’ q̇(t) = −u(t)Q(q(t));
(B) q(0) = q0 and q(T ) = qT .

If (A)’ is assumed instead of (A): inverse representation. Clebsch
optimal control problem is obtained from standard one by choosing
U = g, g(q, u) = `(u), and X(q, u) = uQ(q). Thus, X is linear in u.
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The Pontryagin function is in this case

Ĥ(αq, u) = ±〈αq, uQ(q)〉 − `(u) = ±〈J(αq), u〉 − `(u),

where the sign corresponds to (A) or (A)’ and J : T ∗Q → g∗ is the
momentum map of the cotangent-lifted G-action on T ∗Q.

Direct representation: Assume that u ∈ g 7→ δ`
δu ∈ g∗ is a dif-

feomorphism. Let G act on the left (resp. right) on Q. Then,
an extremal solution of the Clebsch optimal control problem with
condition (A) is a solution of

δ`

δu
= J(α), α̇ = uT ∗Q(α).

Moreover, the solution reads α(t) = ΦT ∗
g(t)(α(0)), where

ġ(t)g(t)−1 = u(t), resp. g(t)−1ġ(t) = u(t).

These equations imply Euler-Poincaré equations for the control u

d

dt

δ`

δu
= − ad∗u

δ`

δu
, resp.

d

dt

δ`

δu
= ad∗u

δ`

δu
.
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Proof. For left action. ∂Ĥ
∂u = 0 gives the condition δ`

δu = J(α)
on the optimal control u, which can be solved to give u = f(α).
Compute Hamilton’s equations for Ĥu : T ∗Q → R. Standard fact:
the Hamiltonian vector field associated to the momentum function
P(u)(αq) = 〈αq, uQ(q)〉 is

XP(u)(α) = uT ∗Q(α),

uT ∗Q infinitesimal generator of ΦT ∗
g := T ∗Φg−1 (G× T ∗Q→ T ∗Q).

Solution of α̇ = uT ∗Q(α) is necessarily of the form α(t) = ΦT ∗
g(t)(α(0)),

where g(0) = e and ġ(t)g(t)−1 = u(t). Therefore, since u is a func-
tion of α, we get ġ(t)g(t)−1 = f(α(t)) = f

(
ΦT ∗
g(t)(α(0))

)
which is an

ordinary differential equation for g(t). We take the unique solution
of this equation with initial condition g(0) = e. We thus obtain

δ`

δu(t)
= J(α(t)) = J(ΦT ∗

g(t)(α(0))) = Ad∗
g(t)−1 J(α(0)).

Differentiating with respect to t, get the Euler-Poincaré equations:

d

dt

δ`

δu(t)
= − ad∗

ġ(t)g(t)−1
δ`

δu(t)
= −ad∗u(t)

δ`

δu(t)
. �
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Inverse representation: Assume u ∈ g 7→ δ`
δu ∈ g∗ diffeomorphism.

Left (resp. right) G action on Q. Then, an extremal solution of
Clebsch optimal control problem, condition (A)’, is a solution of

δ`

δu
= −J(α), α̇ = −uT ∗Q(α).

Moreover, the solution reads α(t) = ΦT ∗
g(t)−1(α(0)), where

g(t)−1ġ(t) = u(t) resp. ġ(t)g(t)−1 = u(t).

These equations imply the Euler-Poincaré equations

d

dt

δ`

δu
= ad∗u

δ`

δu
, resp.

d

dt

δ`

δu
= − ad∗u

δ`

δu
.

Recall H(α) := Ĥ(α, u(α)) where the optimal control u(α) is
uniquely determined by the condition δ`/δu = J(α). We thus obtain

H(α) =
〈
δ`

δu
, u

〉
− `(u) = h

(
δ`

δu

)
= h(J(α)),

where h : g∗ → R is the Hamiltonian associated to ` via the Legendre
transformation u 7→ δ`/δu. So H is the collective Hamiltonian
associated to h.
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For (A)’ (instead of (A)), the Hamiltonian is H(α) = h(−J(α)).

Important example: `(u) = 1
2‖u‖

2, where the norm is associated
to a inner product on g. In this case, identifying the dual Lie algebra
g∗ with g via the inner product, we have

H(α) =
1

2
‖J(α)‖2.

QUESTION: What does this have to do with the convexity prop-
erties of the momentum map? Is the Sjamaar convexity theorem
on cotangent bundles a particular case of very general convexity
theorems, far beyond the symplectic category?

D.) Restriction to G-orbits, geodesics, and the normal metric

Simple observations:
• Canonical Hamilton equations α̇ = uT ∗Q(α) on T ∗Q induce canon-
ical equations on T ∗O, where O := {Φg(q) | g ∈ G} orbit.
• Theorems work for any G-manifold Q. So, in the Clebsch optimal
control problem, can choose Q to be a G-orbit O ⊂ Q.
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• In particular, the solution of the Euler-Poincaré equations for `
are obtained by solving the canonical Hamilton’s equations

α̇ = uT ∗O(α)

on T ∗O. This was expected, since the solution is α(t) = T ∗Φg(t)−1(α0)
and thus preserves the G-orbits. Recall that the infinitesimal gen-
erator uT ∗O ∈ X(T ∗O) is the Hamiltonian vector field associated to
the canonical symplectic form ΩO on T ∗O and to the momentum
function P(u) ∈ F(T ∗O) defined by P(u)(αq) := 〈αq, ξO(q)〉.

Assume ` is the kinetic energy of a positive definite inner product γ
on g. Given q ∈ Q, let gq := {ξ ∈ g | ξQ(q) = 0}, isotropy Lie algebra
at q. Orthogonal decomposition g 3 ξ = ξq + ξq ∈ gq ⊕ g⊥q . Get the
normal Riemannian metric γO on the G-orbit through q ∈ O

γO(ξO(q), ηO(q)) := γ(ξq, ηq).

This formula recovers the usual normal metric on adjoint orbits on
compact Lie algebras. If action is locally free: γO(ξO(q), ηO(q)) :=
γ(ξ, η), because gq = {0}.
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H : T ∗O → R associated to L : TO → R given by γO: Denoting by ]
the usual index raising operator associated to γ and γO, we have

H(αq) =
1

2
γO(α]q, α

]
q), αq ∈ T ∗qQ.

If the inner product γ is Ad-invariant, then the normal metric γO is
G-invariant. This is a particular case of the earlier observation: an
Ad-invariant Lagrangian ` induces G-invariant Hamiltonian H.

G acts on the left (resp. right) on Q, γ positive definite inner
product on g, ` Lagrangian = kinetic energy. Then, an extremal
solution of the Clebsch optimal control problem with condition (A)
is given by u(t) = J(α(t))], where α(t)] projects to a geodesic on a
G-orbit O ⊂ Q, for the normal Riemannian metric γO on O

γO(ξQ(q), ηQ(q) := γ(ξq, ηq).

Moreover, this curve is given by α(t) = T ∗Φg(t)−1(α(0)), where

ġ(t)g(t)−1 = u(t), resp. g(t)−1ġ(t) = u(t).
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Remarkably, by Euler-Poincaré theory, g(t) is a geodesic on G for
the right (resp. left) invariant metric induced on G by γ.

E.) The case of a Lie group: Q = H

Specialize results if Q is a Lie group H ⊃ G and the action is
given by multiplication G × H → H. H = G is permitted. Given
u ∈ g, the infinitesimal generator associated to left multiplication
by G on H is uH(q) = TeRq(u) =: uq; for right multiplication:
uH(q) = TeLq(u) =: qu.

Clebsch optimal control problem: Given q0, qT ∈ H, find u(t) ∈ g,
q(t) ∈ h such that

min
u(t)

∫ T
0
`(u(t))dt

subject to the following conditions:
(A) q̇(t) = u(t)q(t), resp. q̇(t) = q(t)u(t);
(B) q(0) = q0 and q(T ) = qT
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The associated variational principles are

δ
∫ T

0
(〈αq, uq − q̇〉 − `(u)) dt = 0, resp. δ

∫ T
0

(〈αq, qu− q̇〉 − `(u)) dt = 0,

the optimal control u is given by

δ`

δu
= J(αq) = i∗

(
αqq
−1
)
, resp.

δ`

δu
= J(αq) = i∗

(
q−1αq

)
,

i∗ : h∗ → g∗ dual of i : g ↪→ g and Hamilton’s equations on T ∗H are

α̇ = uα, resp. α̇ = αu.

Solution: α(t) = g(t)α0, resp. α(t) = α0g(t). For the base curves:
q(t) = g(t)q0, resp. q(t) = q0g(t). If α0 ∈ T ∗eH, then q(t) = g(t).

What does the previous theorem state in this case? For left (resp.
right) translation by G, the orbits are Oq = {gq | g ∈ G} (resp.
Oq = {qg | g ∈ G}), where q ∈ H is fixed. Since the action is free,
the normal metric is

γOq(uf, vf) = γ(u, v) resp. γOq(fu, fv) = γ(u, v), f ∈ Oq .
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By the theorem, if the Lagrangian is given by the kinetic energy
of γ, then the base curves q(t) = g(t)q0, resp. q(t) = q0g(t) are
geodesics on Oq0 with respect to γOq. This is coherent with the
Euler-Poincaré interpretation saying that g(t) is a geodesic on G

with respect to the G-invariant metric induced by γ.

If h ∈ G, then the orbit coincides with the subgroup, Oh = G, and
the normal metric is the right (resp. left) invariant extension of γ
to G. In this case, the two interpretations of geodesics coincide.

In the inverse representation, condition (A) is replaced by (A)’,

q̇ = −uq, resp. q̇ = −qu,
then the variational principles become

δ
∫ T

0
(〈αq, uq + q̇〉+ `(u)) dt = 0, resp. δ

∫ T
0

(〈αq, qu+ q̇〉+ `(u)) dt = 0,

the optimal control u is given by

δ`

δu
= −J(αq) = −i∗

(
αqq
−1
)
, resp.

δ`

δu
= −J(αq) = −i∗

(
q−1αq

)
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and the canonical Hamilton’s equations are

α̇ = −uα, resp. α̇ = −αu.

However, in this case, if the initial condition α0 lies at the identity,
then the curves q(t) and g(t) of the theorem are related by

q(t) = g(t)−1.

This explains why condition (A)’ in the Clebsch optimal control
problem is referred to as the “inverse representation". As we will
see below, this point of view is important for fluids.

F.) The N dimensional free rigid body

Applying these results to G = SO(N), H = GL(N) recovers the
symmetric representation of the N-rigid body . One can also con-
sider G = SO(N) acting on Q = gl(N) by matrix multiplication on
the right.
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A vector in TSO(N) ⊂ TGL(N) = GL(N) × gl(N) is of the form
(Q,V ), where Q ∈ SO(N), V = QU , and U ∈ so(N). Identify the
cotangent and tangent bundles via the pairing

〈P, V 〉 := Tr(PTV ),

which turns out to be a bi-invariant Riemannian metric on SO(N)

(in fact the extension of minus the Killing form on so(N)).

Optimal control problem: Given Q0, QT ∈ GL(N), find U(t) ∈
so(N) and Q(t) ∈ gl(N) such that

min
U(t)

∫ T
0
`(U(t))dt

subject to the following conditions:
(A) Q̇(t) = Q(t)U(t)

(B) Q(0) = Q0 and Q(T ) = QT .
This corresponds to the right action of SO(N) on GL(N), although
the rigid body is left invariant; consistent with theorem, where right
cotangent lifted actions produce the left Euler-Poincaré equations.
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The cotangent bundle momentum map J : T ∗GL(N) → so(N)∗ =
so(N) (via pairing above) associated to right multiplication is

J(Q,P ) =
1

2

(
QTP − PTQ

)
.

By Theorem, the optimal control U is found by solving the equation

δ`

δU
=

1

2

(
QTP − PTQ

)
.

Note: if (Q,P ) ∈ T ∗SO(N), then J(Q,P ) = 1
2

(
QTP − PTQ

)
=

Q−1P ; recovers usual momentum map associated to reduction on
the left. Lagrangian of the N-rigid body is `(U) := 1

4〈U, JU〉, where
J : so(N)→ so(N) symmetric positive definite operator. So,

δ`

δU
=

1

2
JU and the optimal control is U = J−1

(
QTP − PTQ

)
.

Using the formula (Q,P ) 7→ (Qg, Pg) for the cotangent lift of right
translation by SO(N) on GL(N), we obtain the canonical Hamilton’s
equations on T ∗GL(N):

Q̇ = QU, Ṗ = PU.

PDSC, Indian Institute of Technology, Mumbai, March 17–21, 2014

83



Note that if Q(0), P (0) ∈ SO(N), then P (t) ∈ SO(N) for all
time, since (Q(t), P (t)) = (Q(0)g(t), P (0)g(t)), g(t) ∈ SO(N). Thus
SO(N) × SO(N) is an invariant submanifold. Recall from the gen-
eral theory, that the Hamiltonian for these equations is H(Q,P ) =

h

(
QTP−PTQ

2

)
. In the case of the rigid body, we get

H(P,Q) =
1

4

〈(
QTP − PTQ

)
, J−1

(
QTP − PTQ

)〉
.

These results coincide with those of Bloch-Brockett-Crouch (1996,
1997) and are obtained here as a particular case of the general
Clebsch optimal control problem.

From general theory, we know that equations Q̇ = QU, Ṗ = PU are
also Hamiltonian on the SO(N) orbits in GL(N), for any Lagrangian
` whose Legendre transform is a diffeomorphism. If ` is given by a
kinetic energy, which is the case for the N-rigid body, then Q is a
geodesic on an SO(N) orbit relative to the normal metric. When the
SO(N)-orbit in GL(N) is precisely the subgroup SO(N) of GL(N),
this geodesic interpretation coincides with the usual Euler-Poincaré
approach.
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G.) Optimal control for incompressible fluids

Apply results to the “Lie group" H = Diff(D) of all diffeomorphisms
of the compact Riemannian manifold D with boundary and its sub-
group G = Diffvol(D) of volume preserving diffeomorphisms. We
shall recover both the approaches of Bloch-Crouch-Holm-Marsden
[2000] and Holm [2009] which appear now as particular cases of the
two general theorems on the Clebsch Optimal Control Problem.

Recall that a curve ηt ∈ Diffvol(D) represents the Lagrangian motion
of an ideal fluid in the domain D, that is, the curve ηt(x) in D is the
trajectory of the fluid particle located at x at time t = 0, assuming
that η0 is the identity; ηt is referred to as the forward map.

The “Lie algebra" of G consists of divergence free vector fields on
D tangent to the boundary and is denoted by g = Xvol(D). The
curve ηt is the flow of the Eulerian velocity ut ∈ Xvol(D), that is,

η̇t = ut ◦ ηt
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The curve lt := η−1
t is called the back-to-label map and is related

to the Eulerian velocity ut via the relation

l̇t + T lt·ut = 0.

Well known (Arnold [1966], Ebin-Marsden [1970]): A curve ηt ∈
Diffvol(D) is a geodesic with respect to the L2 right invariant Rie-
mannian metric if and only if ut is a solution of the Euler equations

u̇+ u·∇u = −grad p.

Thus, the Euler equations are the Euler-Poincaré equations on
Xvol(D) associated to the Lagrangian `(u) = 1

2

∫
D ‖u‖2.

First approach: Use first general theorem, left version, to obtain
the optimal control formulation of the Euler equations using the
forward map ηt; this will give the result of Bloch-Crouch-Holm-
Marsden [2000]. Given two diffeomorphisms η0, ηT ∈ Diff(D), we
consider the optimal control problem

min
ut

∫ T
0
‖ut‖2dt

subject to the following conditions:
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(A) η̇t = ut ◦ ηt;
(B) η(0) = η0 and η(T ) = ηT .

Use L2 pairing induced by the Riemannian metric on D, to identify
the tangent and cotangent bundles of the diffeomorphism groups.
Then, the momentum map J : T ∗Diff(D)→ Xvol(D)∗ associated to
the cotangent-lift of left translation of Diffvol(D) on Diff(D) is

J(η, π) = P(Jη−1(π ◦ η−1)) = Jη−1(π ◦ η−1)− grad k,

where P : X(D) → Xdiv(D) is the (L2-orthogonal) Helmoltz-Hodge
projector onto divergence free vector fields parallel to the bound-
ary. The optimal control is thus given by u = π ◦ η−1 − grad k and
Hamilton’s equations on T ∗Diff(D) are

η̇ = u ◦ η, π̇ = −(Tu ◦ η)†π,

where † means the transpose with respect to the Riemannian metric
on D. These equations can be obtained via the variational principle

δ
∫ T

0
(〈π, u ◦ η − η̇〉 − `(u)) dt = 0.
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By general theory, u verifies the Euler-Poincaré equations, produc-
ing here the ideal fluid motion u̇+u·∇u = −grad p. Recovers optimal
control formulation of Euler equations given by Bloch et al [2000].

In a similar way as for the N-rigid body, Hamilton’s equations are
equivalent to the geodesics spray of the normal metric on the tan-
gent bundle of a Diffvol(D)-orbit. Solution is the cotangent-lift
acting on the initial condition π0, that is, π = (Tη−1)† ◦ π0.

Second approach: Apply second general theorem, right version,
to obtain the optimal control formulation for Euler fluid equations,
via the back-to-label map lt = η−1

t ; this will give the result of Holm
[2009]. Given two diffeomorphisms l0, lT ∈ Diff(D), we consider the
optimal control problem

min
ut

∫ T
0
‖ut‖2dt

subject to the following conditions:
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(A)] l̇t + T lt ◦ ut = 0

(B) l(0) = l0 and l(T ) = lT .

The momentum map J : T ∗Diff(D) → Xvol(D)∗ for the cotangent-
lift of right translation is

J(l, π) = P(T l† ◦ π) = T l† ◦ π − grad q.

The optimal control is thus given by u = −T l† ◦ π + grad q and the
Hamilton’s equations on T ∗Diff(D) are

l̇ = −T l ◦ u, π̇ = −Tπ ◦ u.

These equations can be obtained via the variational principle

δ
∫ T

0

(
〈π, T l ◦ u+ l̇〉+ `(u)

)
dt = 0.

By general theory, u verifies the Euler-Poincaré equations yielding
ideal fluid motion u̇ + u·∇u = −grad p. This recovers the optimal
control formulation of Euler equations given by Holm [2009].
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Comparison

N-dimensional free rigid body:

Q̇ = QU, Ṗ = PU, JU =
1

2
(QTP − PTQ) = P(QTP )

Ideal incompressible Euler flow:

l̇ = −T l ◦ u, π̇ = −Tπ ◦ u, u = −P(T l† ◦ π)

P : gl(N)→ so(N), resp. the Helmoltz projector P : X(D)→ Xvol(D).

For fluids, can also replace group H = Diff(D) by the manifold Q =

Emb(D,M) of all embeddings of M into a fixed manifold M . In fact,
the Euler fluid equations, resp. the N-rigid body equations, can be
obtained by a Clebsch optimal control problem on any manifold
Q on which the group G = Diffvol(D), resp. G = SO(N) act.
Interpretation in terms of geodesics on Diffvol(D)-orbits holds as
before.
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H.) Averaged hydrodynamics

Replacing the L2 metric by an H1 metric on Diffvol(D), one gets
the dynamics of averaged Euler (or Euler-α) equations given by

ṁ+ u·∇m− α2∇uT ·∆u = −grad p, m = (1− α2∆)u.

Both the approaches described before for ideal fluids are directly
applicable to averaged dynamics. It suffices to use the Lagrangian
`(u) = 1

2‖u‖H1 associated to the Sobolev H1 norm. The optimal
controls are respectively given by

u = (1− α2∆)−1(π ◦ η−1) and u = −(1− α2∆)−1(T l† ◦ π).

I.) Optimal control for the N-Camassa-Holm equation, singu-
lar solutions

The N-Camassa-Holm equations

ṁ+ u·∇m+∇uT ·m+mdiv u = 0, m = (1− α2∆)u

are the spatial representation of geodesics on the group Diff(D) of
all diffeomorphisms of D, relative to the Sobolev H1 metric.
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So, they are obtained by Euler-Poincaré reduction; particular case
of the EPDiff equations. As for Euler equations, obtain equations
by two different Clebsch optimal control problems. Remarkably, the
first approach recovers the dynamics of singular solutions and gives
a new interpretation of these singular solutions as geodesics.

First approach: Use first general theorem, left version, with G =
Diff(D) acting on the left on the manifold Q = Emb(S,D) of all
embeddings of a given manifold S into M . Given two embeddings
Q0,QT ∈ Emb(S,D), associated Clebsch optimal control problem is

min
ut

∫ T
0
‖ut‖2H1dt (1)

subject to the following conditions:
(A) Q̇t = ut ◦Qt;
(B) Q(0) = Q0 and Q(T ) = QT .

The momentum map J : T ∗Emb(S,D)→ X(D)∗ is given by

J(Q,P) =
∫
S

P(s)δ(x−Q(s))ds;
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Since J produces singular solutions, the generalizations of the peakons
of the one dimensional Camassa-Holm equation, J is often called
the singular momentum map. The optimal control is hence

(1− α2∆)u =
∫
S

P(s)δ(x−Q(s))ds,

and Hamilton’s equations are obtained from the variational principle

δ
∫ T

0
(〈P, u ◦Q− Q̇〉 − `(u))dt = 0.

Evaluated on the optimal control u, the Pontryagin Hamiltonian Ĥ
produces the collective Hamiltonian

H(Q,P) =
1

2

∫∫
P(s)G(Q(s)−Q(s′))P(s′)dsds′

where G is the Green’s function associated to the differential oper-
ator (1 − α2∆). By general theory, the solution (Q,P) is obtained
by letting the flow ηt of the optimal control act on the initial values
Q(0),P(0) by the cotangent-lifted action. The fact that optimal
control u is solution of the N-Camassa-Holm equations, recovers
the interpretation of the momentum map as a singular solution.
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Apply the first general theorem to this case: new geometric inter-
pretation of singular solutions.

The singular solutions δ`/δu = J(Q,P) of the N-Camassa-Holm
equations arise as normal metric geodesics on a Diff(D)-orbit

O = {η ◦Q0 | η ∈ Diff(D)} ⊂ Emb(S,D),

γO(u ◦Q, v ◦Q) := 〈u, v〉H1, ∀Q ∈ O.

Note that choosing S = D, we have Emb(S,D) = Diff(D) and we
recover the dynamic of the strong (i.e. non singular) solutions.

Second approach: Apply second general theorem, right version,
in order to obtain the optimal control formulation for Euler fluid
equations, via a generalization of the back-to-label map.

G = Diff(D) acts on the right on Emb(D,M) for a fixed manifold
M . Given q0,qT ∈ Emb(D,M), Clebsch optimal control problem is

min
ut

∫ T
0
‖ut‖2dt
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subject to the following conditions:
(A) q̇t + Tq ◦ ut = 0;
(B) q(0) = q0 and q(T ) = qT .
The momentum map J : T ∗Emb(D,M)→ X(D)∗ is given by

J(q,p) = p·dq.

Thus, the optimal control is given by

(1− α2∆)u = p·dq,

Hamilton’s equations are obtained via the variational principle

δ
∫ T

0
(〈p,dq ◦ u+ q̇〉+ `(u)) dt = 0,

and the collective Hamiltonian reads

H(q,p) = h(p·dq) =
1

2

∫∫
p(x)·dq(x)G(x− x′)p(x′)·dq(x′)dxdx′.

In this case, the second general theorem yields the following inter-
pretation of the solution (q,p).
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The solution (q,p) of Hamilton’s equations defined by H projects
to a geodesic on a Diff(D)-orbit

O = {q0 ◦ η | η ∈ Diff(D)},

with respect to the normal metric

γO(Tq ◦ u, Tq ◦ v) = 〈u, v〉H1, ∀q ∈ O.

J.) The case of the adjoint action

G acts on Q := g on the right : x 7→ Adg−1 x. The infinitesimal
generator is ug(x) = [x, u]. Consider the Lagrangian ` : g → R,
defined by `(u) := 1

2‖u‖
2, where the norm is taken relative to an

Ad-invariant nondegenerate symmetric bilinear form γ on g, so

γ([u, x], v) = γ(u, [x, v]).

Medina-Roy [1985] give complete classification of such Lie algebras.
Assume, in addition, that γ is positive definite inner product.
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Given x0, xT ∈ g, associated Clebsch optimal control problem is

min
u(t)

∫ T
0

1

2
‖u(t)‖2dt

subject to the following conditions:
(A) ẋ = [x, u];
(B) x(0) = x0 and x(T ) = xT .

Use the first general theorem: Q = g, G acts on on the right on
g by u 7→ Adg−1 u. Identifying g and g∗ via the the inner product

γ, the Pontryagin function is Ĥ(x, p, u) = 〈p, [x, u]〉 − 1
2‖u‖

2 and the
momentum map J : T ∗g→ g∗ is J(x, p) = −[x, p]. Thus the optimal
control is u = [p, x] and the canonical Hamilton’s equation are

ẋ = [x, u], ṗ = [p, u],

thus, we get the double bracket equations

ẋ = [x, [p, x]], ṗ = [p, [p, x]].
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By general theory, these equations are Hamiltonian on T ∗g, for

H(x, p) = 〈p, [x, [p, x]]〉 −
1

2
‖[p, x]‖2 =

1

2
‖[p, x]‖2.

By the first general theorem, the control u necessarily satisfies the
Euler-Poincaré equations which in this case are u̇ = − adu u = 0
since with the identification by the bi-invariant inner product γ we
have ad∗u = −adu. Hence the control u is constant along the flow of
Hamilton’s equations, that is, u = [p, x] is a constant of the motion.

By the normal metric theorem, the double bracket equations are
also the Hamiltonian description of geodesics on an adjoint orbit
O = {Adg ξ | g ∈ G} relative to the normal metric γO. In this case of
the adjoint action, it has the expression

γO([x, p], [x, q]) = γ(px, qx),

where the decomposition p = px+px is made relative to the splitting
g = gx⊕g⊥x . If g is a compact semisimple Lie algebra and γ is minus
the Killing form, this recovers the usual normal metric on adjoint
orbits.
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Note that here we have

gx = ker (adx) and (gx)⊥ = im (adx) .

Note that, by our general theory, a similar result holds for any
Lagrangian ` such that u 7→ δ`/δu is a diffeomorphism. More pre-
cisely, Hamilton’s equations for H(x, p) = h([p, x]) on T ∗g restrict
to Hamilton’s equation on T ∗O.

As for the rigid body, one can consider the kinetic energy associated
to γ(u, Jv), where J : g → g is a symmetric and positive definite
operator. In this case, the optimal control is given by u = J−1[p, x],
the Hamiltonian is H(x, p) = 1

2γ([x, p], J−1[x, p]), and Hamilton’s
equations read

ẋ = [x, J−1[p, x]], ṗ = [p, J−1[p, x]].

The inner product γ(u, Jv) induces a normal metric on orbits in
the same way as before. Geodesics of this metric are given by the
above Hamilton’s equations.
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