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Abstract: A method is proposed for automatic synthesis of quantitative feedback theory
(QFT) based robust fractional-order controllers. The problem of QFT controller synthesis is
formulated as an interval constraint satisfaction problem, where the nonlinear and non-convex
robust stability and tracking bound specifications form the constraints. The problem is solved
using the branch and prune algorithm. Among all the obtained feasible controllers, the one
with least high frequency gain is selected for control. The method is demonstrated to design a
PDβ and a generic fractional-order controller for a DC motor plant transfer function having
parametric uncertainties.
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1. INTRODUCTION

The QFT approach to robust control synthesis is appealing
as an engineering based approach, and can be considered
as an extension of classical control. In this paper, the QFT
controller synthesis problem is formulated as an ICSP
based on quadratic inequalities, where the constraint set
comprises of the non-convex nonlinear magnitude-phase
QFT bounds at the various design frequencies. The QFT
bounds arise from quadratic inequalities for the robust
stability and performance specifications. A fixed-structure
fractional-order controller is assumed, and the ICSP is
solved efficiently using the branch and prune technique
described in section 2.4.

The proposed approach finds all feasible controller solu-
tions (in a given search box). From among the feasible
solutions, the optimal solution (in the QFT sense) can
be picked as the one with the minimum high frequency
gain (Horowitz [1993]). The reliability of the design follows
from the usage of interval arithmetic, and robustness of the
design from QFT.

The salient features of the proposed approach are as
follows:

• It is a fully automated approach.
• It enables the designer to specify in advance the

structure of the fractional-order controller to be syn-
thesized.

• It can deal directly with the numerical values of the
possibly non-convex, nonlinear QFT bounds at each
design frequency.

• If, for the specified structure and the given search box
of controller parameter values, a feasible controller

does exist, then the method is guaranteed to find all
controllers lying within the search box.

• It is a reliable approach (i.e., it takes into account all
kinds of computational errors). This property comes
from usage of interval arithmetic in all computations.

• It can be used to readily find the ”optimal” controller
solution from the generated set of feasible controller
solutions. The optimal controller in the QFT sense is
the one having minimum high frequency gain (for the
controller structure in (12) below, the high frequency
gain is the controller parameter k). The optimal QFT
controller can be thus found by simple sorting based
on the obtained values of high frequency gain k.

• It finds controller solutions that are robust to the
given parametric uncertainty. This follows from the
satisfaction of all the QFT design inequalities at each
design frequency.

The proposed approach is demonstrated on an example
of electric motor with large parametric uncertainty. For
this example, fractional-order controllers of two different
structures are synthesized: a fractional PD, and a more
general one.

The rest of the paper is organized as follows: The back-
ground of QFT, interval arithmetic, and interval constraint
processing is given in section 2. The QFT controller syn-
thesis problem is formulated in section 3. In section 4, the
methodology to solve the problem is given. In section 5, the
proposed approach is demonstrated on an electric motor
example. Section 6 gives the conclusions of this paper. The
HC4 pruning (filtering) is illustrated in appendix A.



2. BACKGROUND

In this section, we give a brief outline of the essentials
of QFT, interval arithmetic, interval constraint processing
and a branch and prune algorithm to solve ICSPs. We
start with the outline of QFT.

2.1 Quantitative feedback theory

Quantitative Feedback Theory (QFT) (Horowitz [1991])
has been applied in many engineering systems successfully.
The basic idea in QFT is to convert the given design
specifications and plant uncertainties into robust stability
and performance bounds in the Nichols chart. Then, a
controller is designed to satisfy the bounds using gain-
phase loop shaping techniques. The main objective is to
design a controller for an uncertain plant such that the
cost of feedback is minimized, and all robust stability
and performance specifications are satisfied. The most
important feature of QFT is that it is able to deal with
fairly complicated uncertain plants, for large uncertainties.
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Fig. 1. The two degree of freedom structure in QFT.

Consider the two degree of freedom configuration shown
in Fig. 1, where G(s) and F (s) are the controller and
prefilter respectively. The uncertain linear time-invariant
plant P (s) is given by P (s) ∈ {P (s, λ) : λ ∈ λ}, where
λ ∈ Rl is a vector of plant parameters whose values vary
over a parameter box λ given by

λ = {λ ∈ Rl : λi ∈ [λi, λi], λi ≤ λi, i = 1, ..., l} (1)

This gives rise to a parametric plant family or set

P = {P (s, λ) : λ ∈ λ}

The open loop transmission function is defined as

L(s, λ) = G(s)P (s, λ) = g(jω)ejφ(jω)p(jω)ejθ(jω) (2)

where G(s) is controller transfer function. The nominal
open loop transmission function is

L0(s) =G(s)P (s, λ0) = g(jω)ejφ(jω)p0(jω)ejθ0(jω)

= l0(jω)ejψ0(jω) (3)

where
l0(jω) = g(jω)p0(jω)

and
ψ0(jω) = φ(jω) + θ0(jω)

The objective in QFT is to synthesize G(s) and F (s) such
that the various stability and performance specifications
are met for all P (s) ∈ P. In general, the following
specifications are considered in QFT:
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(4) Robust input disturbance rejection performance
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(5) Robust output disturbance rejection performance
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where ws is the stability margin specification, TL(jω) and
TU (jω) are the lower and upper tracking performance
specifications, while wdi

and wdo
are the input and output

rejection performance specifications.

In practice, the objective is to satisfy the given specifica-
tions over a finite design frequency set Ω.

The main steps of the QFT design process are

(1) Generating plant templates: For a given uncer-
tain plant P (s) ∈ P, at each design frequency ωi ∈ Ω,
calculate the template or value set of the plant P (jω)
in the complex plane.

(2) Computation of QFT bounds: At each design
frequency ωi, translate the stability and performance
specifications using the plant templates to obtain
the stability and performance bounds in the Nichols
chart. The bound at ωi is denoted as Bi(∠L0(jω), ωi),
or simply Bi(ωi).

(3) Design of controller: Design a controller G(s) such
that
• The bound constraints at each design frequency
ωi are satisfied.

• The nominal closed loop system is stable.
(4) Design of prefilter: Design a prefilter F (s) such

that the robust tracking specifications are satisfied.

For a detailed description of the QFT design procedure,
the reader is referred to (Horowitz [1993]).

Robust fractional-order controller synthesis using QFT
principles has been addressed only recently. Robust frac-
tional PID controllers are designed using QFT principles
in (Cervera and Banos [2006b]) and (Nataraj and Thare-
wal [2007]). Automatic loop shaping based on QFT using
CRONE structures is dealt in (Banos and Barreiro [2006],
Cervera and Banos [2008, 2006a]).

2.2 Interval arithmetic

The key idea behind interval arithmetic as given in (Moore
et al. [2009]) is the approximation of real numbers by
intervals to quantify the errors introduced with finite
precision arithmetic. In addition, interval computations
provide an appropriate framework to deal with uncertain
data.

Basic calculus on intervals with care for rounding errors
was first developed by M. Warmus in (Warmus [1956]) and
(Warmus [1961]). Modern interval arithmetic was devel-
oped independently in late 1950s by several researchers, in-
cluding M. Warmus (Warmus [1956]), T. Sunaga (Sunaga
[1958]) and R. E. Moore (Moore [1959]). Later on, R.



E. Moore enriched the research in this direction with his
PhD thesis (Moore [1962]) and later on came up with the
first foundational book on interval analysis (Moore [1966])
and many further publications. Owing to his excellent
contributions, R. E. Moore is regarded as a founding father
of interval arithmetic and interval analysis. Traditional
mathematical methods sometimes produce erroneous re-
sults because of the presence of rounding errors in comput-
ers. This type of errors can be handled by using interval
arithmetic as an alternative to finite precision arithmetic.
So the interest in interval arithmetic has been growing
and has been successfully used in numerous computing
methods including real world applications.

The essential notations of interval analysis are given below.

(1) A real interval x is a closed and bounded set x =
[x, x] = {x ∈ R : x ≤ x ≤ x}, where x and x are lower
and upper endpoints of the interval.

(2) The set of all intervals in denoted by IR.
(3) An interval vector is a vector whose elements are

intervals. Let n be the number of elements of the real
vector (x1, x2, ..., xn) ∈ R

n. Then, x denotes the the
n-dimensional interval vector (x1,x2, ...,xn).

(4) An interval vector with x = (x1,x2, ...,xn) with
components xk = [xk, xk] is called as box x. The
term box is used as a synonym for interval vector and
rectangle for a 2-dimensional interval vector.

(5) The set of all boxes of dimension n is denoted by IR
n.

(6) Two intervals are equal if their corresponding end-
points are equal.

(7) The width of an interval x is defined and denoted by
w(x) = x− x

(8) The midpoint of x is given by mid(x) = m(x) =
1
2 (x + x).

(9) The radius of x is given by rad(x) = r(x) =
1
2 (x − x).

(10) The intersection of two intervals x y is empty if x > y
or x < y.

(11) The relations ∈, ⊂, ∩, ∪, etc., are all defined
component-wise.

Other definitions and general results of interval arithmetic
like natural inclusion function, hull, union, projection, etc.,
can be found in the books (Moore [1979]) and (Moore
et al. [2009]). Interval methods for solving system of
equations can be found in (Neumaier [1990]) and methods
for optimization problems in (Hansen and Walster [2004]).

The finite nature of computers prevents an exact repre-
sentation of many real numbers. In practice, the real set,
R, is therefore approximated by a finite set F∞ ≡ F ∪
{−∞,+∞}, where F is the set of floating-point numbers
(Goldberg [1991]). The set of real intervals is then approxi-
mated by the set, I⋄, of closed floating-point intervals with
bounds in F∞ . The concept of an interval hull is extended
to that of an F-hull, the smallest interval box in I

n
⋄

contain-
ing S ⊆ R

n, and is denoted by 2
FS. The other concepts

are also extended with respect to the inclusion property.
The power of interval arithmetic lies in its implementation
on computers. In particular, outwardly rounded interval
arithmetic allows computing rigorous enclosures for the
ranges of operations/functions. The arithmetic operations
(+,−, ∗, /) can be made rigorous by adding suitable round-
ing controls. This makes a qualitative difference in scien-

tific computations because the results are now intervals in
which the exact result must lie. Interval arithmetic can
be carried out for virtually any arithmetic expression that
can be evaluated with floating-point arithmetic. However,
expressions that are equivalent in real arithmetic differ in
interval arithmetic because interval arithmetic is only sub-
distributive. Therefore, computations should be arranged
so that the overestimation of the ranges of functions is
minimized.

2.3 Interval constraint processing

The two areas that have had the greatest impact on a
modern theory of constraints and their use in automated
problem solving are operations research (OR) and artificial
intelligence (AI). Operations research is concerned with
building mathematical models of real world situations to
allow the experimental analysis of problems. Artificial
intelligence is concerned with intelligently accelerating
automated problem solution techniques. The concept of
solving constraints by using constraint propagation was
developed independently by a number of researchers to
solve arithmetic and boolean constraints. The term gen-
erally is attributed to Sussman and Steele (Sussman and
Steele [1980]), who used constraint propagation to solve
constraints in the constraint language CONSTRAINTS.

Numerical constraint satisfaction problems accept as input
only problems represented by exact numerical values and
correspondingly produce only crisp solutions as output.
This limitation can be removed by implementing gener-
alized constraint propagation schemes based on interval
arithmetic instead of conventional arithmetic. By using
intervals instead of exact values, we may express inexact
numerical constraints in a well-defined way and compute
necessary conditions for consistency in inconsistent situa-
tions.

An interval constraint satisfaction problem (ICSP) as
given in (Hyvonen [1992]) is composed of

(1) A set of real valued variables, e.g., v = {v1, ..., vn};
(2) A set of interval domains of the variables, e.g., x =
{x1, ...,xn};

(3) A set of constraints, e.g., c = {c1, ..., cm} over the
given set of variables.

The problem is to find in the initial box x1× ...×xn all the
consistent values with respect to all constraints. A variable
vi ← xi is consistent if and only if each interpretation
vi ← x ∈ xi, can be satisfied with respect to all constraints
by some extension: ∀x ∈ xi ∃ {v1 ← x1 ∈ x1, ..., vi ←
x, ..., vm ← xm ∈ xm} : c1, ..., cm are satisfied. The set of
variables of the constraint ci is denoted by Vci

There are two steps in solving an ICSP, constraint prop-
agation and constraint branching. The basic idea of con-
straint propagation algorithms (also called filtering or nar-
rowing or consistency algorithms or narrowing operators)
consists of removing, from the domains associated to the
constraint variables, inconsistent values that can never be
part of the solution. This process reduces significantly the
search tree and possibly the computational effort to find
a solution if one exists or to demonstrate that there is no
solution. In general, the results are propagated through
the whole constraint set, and the process is repeated until



a stable set is obtained. Research in the area of solving
interval constraint satisfaction problems (Benhamou et al.
[1999]) is devoted to finding correct and (near) optimal
interval propagation techniques that can be efficiently im-
plemented. A constraint narrowing algorithm transforms
the domains of those variables involved in it into tighter
intervals such that:

(1) Resulting intervals are always included in the original
ones (contractance property).

(2) All values in the original intervals verifying the as-
sociated constraint of the narrowing operator, belong
to the resulting intervals (soundness or correctness).

(3) The subset interval relation is conserved by the trans-
formation (monotonicity).

Well known examples of constraint narrowing operators
are hull and box consistency (Benhamou et al. [1999])
and kBConsistency operators (Lhomme [1993]). In our
problem, we make use of an efficient implementation of hull
consistency, known as HC4, as the the narrowing operator.
HC4 filter is described below.

HC4 filter: The HC4 filter was proposed in (Benhamou
et al. [1999]). Inputs to the HC4 filter are the constraint
in user form (i.e. without decomposing it in several equa-
tions) and the set of interval domains (box). The algorithm
efficiently computes an interval extension of the equation,
narrowing intervals of the variables involved. Inside the
HC4 filter the input equation is represented as an attribute
tree where the root node is a p-ary relation symbol, and
terms in the equation form sub-trees rooted at nodes
containing either a variable, a constant or an operation
symbol.

The HC4 filter works in two phases called forward evalu-
ation and backward propagation. The forward phase is a
tree traversal going from the leaves to the root, evaluating
at each node the natural interval extension of that sub-
term of the constraint. The backward phase traverses the
tree from the root to the leaves, projecting on each node
the effects of interval narrowing already performed on its
parent node. In the backward propagation phase, an inter-
val may become empty. When this happens the constraint
is inconsistent with respect to the initial domains. HC4
algorithm is explained by means of a simple example in
Appendix A. Refer to (Benhamou et al. [1999]) for an
extended description.

Until now we have been dealing with the first step in
solving the ICSP, i.e., constraint propagation. Constraint
propagation algorithms alone are not sufficient for solving
an ICSP, that is to say, they do not eliminate all the non-
solution elements from the domains. As a consequence, it
is necessary to employ some additional strategy to solve
it. One complementary method is the so-called constraint
branching that divides the variable domains to construct
new sub-problems, i.e., branches in the search tree on
which constraint propagation is reactivated. The process
is also called as splitting or sub-division process.

2.4 Branch and prune algorithm of ICST

In this section, the branch and prune algorithm to solve
an ICSP as given in (Benhamou et al. [1999], Granvilliers
and Benhamou [2006]) is described.

Algorithm: Branch and prune using HC4 filter.

Inputs: The variable set v = {v1, ..., vn} of the ICSP, set
of initial interval domains of the variables x0 = {x0

1
, ...x0

n
}

of the ICSP, the constraint set c = {c1, ..., cm} of the ICSP,
and the specified accuracy tolerance ǫ of the solution set.

Output: The solution set Lsol (boxes) of the ICSP com-
puted to the prescribed accuracy tolerance ǫ.

Algorithm 1 (Branch and prune algorithm)

1: Construct the natural inclusion functions for each
constraint in the constraint set c = {c1, ..., cm}.

2: Initialize the solution list Lsol ← {} and the working
list L ← x0.

3: while L 6= {} do
4: Extract x from L.
5: s← c
6: while s 6= {} AND x 6= {} do
7: Extract ci from s.
8: Narrow the box x using the HC4 filter (as ex-

plained in the section 2.3) to x
′

.

9: if x 6= x
′

then
10: s← s∪{cj | ∃vk ∈ Vcj

∧ xk 6= x
′

k
} {Add to the

set s all the constraints containing the variables
whose search domains are narrowed.}

11: x← x
′

12: else
13: s← s \ {ci}
14: end if
15: end while
16: if x 6= {} then
17: if w(x) ≤ ǫ then
18: Lsol ← Lsol ∪ x
19: L ← L \ {x}
20: else
21: Subdivide the box x, along the variable whose

width is the largest, into two sub-boxes x1 and
x2.

22: L ← L ∪ x1 ∪ x2

23: end if
24: end if
25: end while
26: Output the solution set Lsol and EXIT.

3. PROBLEM FORMULATION

Consider the two degree-of-freedom structure shown in
Fig. 1, where, G(s) = G(s, x) and F (s) are the fractional-
order controller and prefilter respectively, x is the vector
of unknown controller parameters, and P (s) ∈ P is
the uncertain linear time-invariant plant. The objective
in QFT is to synthesize G(s) and F (s) such that the
various stability and performance specifications are met
for all P (s) ∈ P. In terms of quadratic inequalities, these
specifications can be written as (Chait and Tsypkin [1993],
Chait and Yaniv [1993]) (see notation of section 2.1):

• Robust stability specification, see (4),

g2p2 + 2gp cos(φ+ θ) + 1 ≥ 0 (9)

• Robust gain-phase margin specification, see (5),
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The last inequality should be met for each possible pair
Pi(s) = pi(jω)ejθi(jω), Pk(s) = pk(jω)ejθk(jω) of plants
from the uncertain plant set P. The objective is to satisfy
the above specifications, over the plant set P, and over
the design frequency set Ω. In practice, a finite number of
plants and frequencies are chosen from these sets.

In our work, the controller G(s, x) is represented with the
fractional-order structure

G(s, x) =

k

nz
∏

i=1

(sβ + zi)

np
∏

k=1

(sα + pk)

(12)

where the controller parameter vector x is

x = (k, β1, .., βnz
, α1, αnp

, z1, ..., znz
, p1, ..., pnp

) (13)

with αs and βs as fractional (positive) powers. Another
fractional-order structure that we use is the fractional-
order PIαDβ structure of Podlubny (Podlubny [1999]):

G(s, x) = kp + kis
−α + kds

β (14)

In this case, the controller parameter vector x is

x = (kp, ki, kd, α, β) (15)

The magnitude and angle functions of G(s, x) are defined
as

gmag(ω, x) = |G(s = jω, x)| ; gang = ∠G(s = jω, x) (16)

Note that in the proposed approach, one can choose any
fractional-order structure for the controller, as long as
one can obtain the expressions for the magnitude and
angle functions (this puts virtually no restriction on the
controller structure that can be used).

The control design problem is to solve the above set of
inequality constraints, derived for all plants in P, and
for all design frequencies in Ω. With an initial search
box for x specified, this becomes an ICSP. Its solution
gives the feasible set of controller parameters x. If desired,
the optimal QFT controller can be extracted from the
obtained feasible solution set by picking the controller
having the minimum gain k (a more efficient approach
would use some kind of optimization technique, but this is
left for future research).

For implementation of the fractional-order controller in
frequency domain, it has to be approximated to integer-
order one using Oustaloup’s recursive approximation tech-
nique given in (Oustaloup et al. [2000]). The digital imple-
mentation of the integer-order controller so obtained can

be be done by discretizing it using well known Euler or
Tustin method.

4. METHODOLOGY

The proposed approach to solve the ICSP described above
is as follows:

(1) Choose a structure for the fractional-order controller,
say the one in (12).

(2) Form the variable set comprising of the controller
parameters v = x in (13) for the ICSP.

(3) Construct the initial search box x0 of the controller
parameters x.

(4) For the given problem specifications, construct the
quadratic inequalities given by (9) to (11) for each
plant and at each design frequency. From these in-
equalities, form the constraints of the ICSP: c ←
{c1, ..ci}.

(5) Solve the ICSP using the branch and prune algorithm
described in section 2.4.

(6) The output of the algorithm is the set of all feasi-
ble controller parameters satisfying the QFT bound
constraints to the prescribed accuracy ǫ. If desired,
one can sort the obtained feasible solution set to
obtain optimal QFT controller having minimum gain
k (this controller solution is recommended from a
QFT viewpoint for actual) implementation.

5. DESIGN EXAMPLE

The proposed approach is demonstrated on an example
of a DC motor with uncertain plant parameters. Two
different controllers are designed, to show the capabilities
of the approach. The design is executed on a computer
with Intel R© CoreTM2 Duo 2.4 GHz processor and 2 GB
of RAM, running Linux Fedora Core-7. The method is im-
plemented using RealPaver (Granvilliers and Benhamou
[2006]).

Example 5.1. Consider the uncertain plant transfer func-
tion for the speed loop of a DC Motor (D’Azzo and Houpis
[1995])

P (s) =
ka

s(s+ a)
; k ∈ [1, 10], a ∈ [1, 10]

The design specifications for this problem are as follows:
stability, gain margin of at least 3 dB, no overshoot,
settling time between 2 and 4.5 seconds, and zero steady
state error. These specifications are translated into the
frequency domain as (see notation of section 2.1)

• Robust stability margin spec, ws = 1.2
• Tracking performance spec,

TU (s) =
1.5

(s+ 1.5)

TL(s) =
1

(s+ 1)
2

The nominal plant parameters are k0 = 1 and a0 = 1.

Using the proposed approach, first a fractional PDβ con-
troller of the form Kp + Kds

β is synthesized. The initial
search domain for the controller parameters are taken as



Kp = [0, 1000],Kd = [1.96, 2.95], β = [0.524, 0.787]

The controller solutions are to be found to an accuracy
ǫ = 0.001.

The parametric plant uncertainty is captured by a set of 9
plants obtained from the combination of the minimum,
mean, and maximum values of the k and a parameter
intervals. The design frequency set is

Ω = [0.001, 0.015, 0.25, 3.84, 60]

. The above specifications are converted into a set of
quadratic inequalities, for each plant and each design fre-
quency. This gives a set of inequality constraints, where
the controller parameters Kp,Kd, β are the unknown vari-
ables. The ICSP is solved using the branch and prune
algorithm given in section 2.4, and all feasible controllers in
the search region are obtained in about 24. The controller
with minimum high frequency gain is chosen (by simple
sorting of all the feasible controller solutions) as

G(s) = 2.785 + 1.968s0.787 (17)

Fig. 2 shows that the obtained controller achieves all
the given specifications - the QFT bounds representing
the inequalities are respected at each frequency by the
designed L(s).
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Fig. 2. Example 5.1. Plot of nominal loop transmission
function corresponding to the PDβ controller in (17).

Example 5.2. The proposed approach is next demon-
strated on the same DC motor plant, but for designing a
slightly more general fractional-order controller structure,
with different tracking specifications. The fractional-order
controller structure is chosen now as

G(s) =
k(sβ + z1)

(s+ p1)(sα + p2)

with the frequency domain specifications as

• Robust stability margin spec, ws = 1.2
• Tracking performance specifications as,

TU (s) =
0.6854(s+ 30)

(s2 + 4s+ 19.752)

TL(s) =
120

s3 + 17s2 + 82 + 120

The initial search domain for the controller parameters are
taken as

k = [0, 108], β = [0.6, 0.9], α = [0.7, 1],

z1 = [1, 2], p1 = [1300, 1350], p2 = [1000, 1200]

The controller solutions are to be found to an accuracy
ǫ = 0.1.

As before, the parametric plant uncertainty is captured
by a set of 9 plants obtained from the combination of
the minimum, mean, and maximum values of the k and
a parameter intervals. The design frequency set is

Ω = [0.1, 0.5, 2, 15, 100].

The above given specifications are converted into a set
of quadratic inequalities, for each plant and each design
frequency. This gives a set of inequality constraints, where
the controller parameters are the unknown variables. The
ICSP is solved using the branch and prune algorithm given
in section 2.4, and all feasible controllers in the search
region are obtained in about 115 seconds. The controller
with minimum high frequency gain is chosen (by simple
sorting of all the feasible controller solutions) as

G(s) =
10067845(s0.78 + 1.22)

(s+ 1312)(s0.995 + 1110)
(18)

Fig. 3 shows graphically that the obtained controller
respects all the QFT bound constraints.
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Fig. 3. Example 5.2. Plot of nominal loop transmission
function corresponding to the controller in (18).

6. CONCLUSIONS

A new computationally efficient approach has been pro-
posed for the automatic synthesis of fixed structure
fractional-order QFT controllers. The approach uses the
various QFT quadratic inequalities describing the robust
stability and performance specifications, over the set of
uncertain plants and design frequencies. The unknown
variables in the inequalities are the parameters of the
fractional-order controller. This approach leads to an in-
terval constraint satisfaction problem, which is efficiently
solved using the branch and prune algorithm of ICST.

The proposed approach has several notable features. It
deals directly with the numerical values of the possi-
bly non-convex, nonlinear QFT bounds, thereby avoiding
the over design arising from any approximation of QFT
bounds. The issues of robust stability and performance



are all rigorously taken into consideration in the proposed
approach. For a given structure of controller and initial
search domain, the proposed method is guaranteed to find
all feasible fractional-order controllers.
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Appendix A. ILLUSTRATION OF HC4 FILTER

Let us consider a constraint C : x2 + y2 = 1. Here
the variable set is {x, y}. Let the initial search domain
for x and y be [−10, 10]. First step is to form the tree
using constraint as shown in Fig. A.1. The operands and
constants occupy the leaf nodes whereas the operators are
be placed at the parent nodes.

M N

O

22

∧∧

x y

=

1+

Fig. A.1. Binary tree constructed using the constraint
C : x2 + y2 = 1

The forward evaluation is done using the left-hand and
right-hand parts of the equation using interval arithmetic,
saving at each node the result of the local evaluation as
shown in Fig. A.2. In the backward propagation step the
expression tree is swept from top to bottom (see Figs. A.3,
A.4, and A.5), the domains computed during the forward
evaluation are used to project the relation at each node
on the remaining variables. The values evaluated during
backward propagation are shown in left side of the node
in bold. First we start at the root node and from the
constraint the right hand side should be equal to left hand
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Fig. A.2. Forward evaluation

side, so the value at the node O should be equal to [1, 1].
The updated tree is shown in Fig. A.3. The old values are
shown in ellipses on the right side of the node and the new
values are shown in bold on the left side of the node.
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Fig. A.3. Backward propagation - 1

New value at node M is evaluated as given below.

Mnew = Mold ∩ (Onew −Nold)

= [0, 100] ∩ ([1, 1]− [0, 100])

= [0, 100] ∩ [−99, 1]

= [0, 1]

New value at the node N is evaluated using the new value
of node M

Nnew = Nold ∩ (Onew −Mnew)

= [0, 100] ∩ ([1, 1]− [0, 1])

= [0, 100] ∩ [0, 1]

= [0, 1]

The updated tree is as shown in Fig. A.4 below.

[−10, 10] [2, 2] [−10, 10] [2, 2]

[0, 100]

[0, 200] [1, 1]

[0, 1]

M N

O

[0, 1]

[1, 1]

22

∧∧

x y

=

1+

[0, 100]

Fig. A.4. Backward propagation - 2

The new evaluation of x2 is the new value at the node M

xnew = xold ∩ (Mnew)
0.5

= [−10, 10] ∩ ([0, 1]0.5)

= [−10, 10] ∩ [−1, 1]

= [−1, 1]

Similarly the new value of y is evaluated as shown below.

ynew = yold ∩ (Nnew)
0.5

= [−10, 10] ∩ ([0, 1]0.5)

= [−10, 10] ∩ [−1, 1]

= [−1, 1]

The updated tree is as shown in Fig. A.5
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Fig. A.5. Backward propagation - 3

After backward propagation is complete, the search do-
main contracts i.e., the inconsistent search domain will be
thrown out. The updated values of both x and y are [-1,
1]. The updated tree after complete backward propagation
is shown in Fig. A.6.
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Fig. A.6. Updated tree after complete backward propaga-
tion

So the search domain (box) x×y shrinks from [−10, 10]×
[−10, 10] to [−1, 1]× [−1, 1] after one iteration of HC4.


